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ABSTRACT 
Many geotechnical problems involve calculation of the permanent deformation of overconsolidated 
clay under undrained cyclic loading. There are many existing methods in the literature which have 
been made for predicting cumulative plastic deformation for soils under cyclic loading. This paper 
presents the development of an anisotropic shear strength model for undrained cyclic accumulated 
plastic strain of overconsolidated clay. Effects of cyclic stress ratio, average stress ratio and number 
of stress cycles are considered in the model. In addition, the model also differentiate the cyclic 
behaviour of clay between active (A) and passive (P) modes of loading. Test data obtained from a 
series of NGI cyclic triaxial tests are employed to verify the model. Comparisons between predicted 
and experimental results show the validity and good applicability of the anisotropic model. For 
general 3D stress conditions the model is extended into a modified Tresca formulation which can be 
implemented into finite element codes for the prediction of permanent deformation of offshore 
foundation under cyclic loading. 
KEYWORDS: Cyclic; accumulated plastic strain; anisotropy; overconsolidated clay. 

 

INTRODUCTION 
Offshore foundations are subjected to combinations of static and cyclic loads from wind and 

waves. For foundations on clay the loading conditions during a storm can be considered as 
undrained. Monopiles are a frequently used foundation type for offshore wind turbines. Due to 
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strict requirements regarding accumulated deformations models for predicting the soil response 
during cyclic loading are needed for these foundation types. The stress path in the soil 
surrounding a monopile foundation under cyclic loading is complicate. However, the shear stress 
paths along a potential failure surfaces can be simplified as shown in Fig. 1. This stress path 
simplification philosophy was proposed by Lambe (1967) and Bjerrum (1973) originally for the 
applications under monotonic loading, but is here used for cyclic loading conditions. Thereafter, 
the cyclic behavior for different stress paths can be characterized by standard cyclic triaxial and 
DSS tests. 

 
Figure 1: Simplified stress path along a potential failure surface (Jostad 2013) 

Standard cyclic test procedures (Andersen et al. 1988 and Vucetic 1988) are proposed and a 
considerable amount of standard cyclic tests are carried out to investigate the behaviors of soils 
under cyclic loading. Excessive pore pressure is observed under undrained cyclic loadings 
(Matasovic et al. 1995 and Andersen 2004). The increase of excessive pore pressure can lead to 
low effective stresses and eventually to a loss of the overall stability. Besides, due to cyclic 
loading, an accumulation of irreversible strains is generated (Li et al. 1996 and Guo et al. 2013). 
It can endanger the long-term serviceability of structures especially when the displacement 
tolerance of the structures is small. As the cyclic behavior of clay depends strongly on OCR, this 
paper focuses on the prediction of the accumulation plastic shear strain of overconsolidated clay 
under undrained conditions. 

A summation of small residual strains is developed under cyclic loadings. In computational 
sense, two computational strategies, implicit or explicit strategy, have been proposed for the 
prediction of the accumulated plastic strain due to cyclic loading. With the implicit method, each 
cycle is calculated by many strain increments. The fact that the stress loops are not perfectly 
closed results in accumulated plastic strain, as shown in Fig. 2(a). However, as inevitable 
cumulative numerical errors occur with an application of a large number of cycles (Niemunis etc. 
2005), the practicability of this method is limited by the number of cycles.  
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With an explicit method, the strain accumulation is calculated directly as a function of the 
number of cycles. This concept is similar to visco-plastic models where plastic strains develop as 
function of time instead of number of stress cycles. This method will not be sensitive to 
cumulative numerical errors. Therefore, the explicit concept is adopted to develop the model 
proposed in this paper. 

 

 
 

(a) (b) 
Figure 2: (a) Stress–strain curve during cyclic loading (Adapted from Andersen 2004); 

(b) Explicit accumulative plastic strain (Adapted from Niemunis etc. 2005); 

Various equations have been proposed for predicting the accumulative plastic strain in soil. 
Among these equations, the most commonly used one is the power model (Monismith et al. 1975 
and Knutson et al. 1977) as following: 

 𝛾𝑎𝑐𝑐 = 𝐴 ∙ 𝑁𝑏                   (1) 

where 𝛾𝑎𝑐𝑐  is accumulated plastic strain, N is the number of cyclic stress applications and A is the 
accumulated plastic strain for the first cycle. Parameters A and b are dependent on soil type, soil 
properties, average stress state, cyclic shear stress amplitude, loading direction, strain rate, etc. 

 

An explicit accumulated plastic strain model for sand under high cycle number is proposed 
by Niemunis et al (2005). In this model, anisotropic effects during settlement are accounted for 
by a tensorial formulation. However, a large number of parameters and an extensive amount of 
laboratory tests are required. In addition, a cyclic multi-dimensional simple shear device was 
developed to obtain information of the anisotropic soil behaviour (Wichtmann et al. 2006). 

Besides, a model together with a calculation procedure for analyses of cyclic and permanent 
displacements and capacity of foundations subjected to a combination of permanent and cyclic 
undrained loading, with direct input of cyclic triaxial and DSS contour diagrams for a given 
equivalent number of cycles (as shown in Figure 3), was presented by Jostad and Andersen 
(2009).  

In order to incorporate accumulated plastic shear strain explicitly into an elastoplastic model, 
the constitutive relation can be expressed as following 

𝑑𝜎 = 𝐷 ∙ (𝑑𝜀 − 𝑑𝜀𝑎𝑐𝑐 − 𝑑𝜀𝑝𝑙)                                              (2) 

http://www.ejge.com/Index_ejge.htm


Vol. 19 [2014], Bund. S 4396 
 
where 𝜀𝑎𝑐𝑐 is the accumulated plastic strain, 𝜀𝑝𝑙 is the plastic strain developed under monotonic 
loading and it can be calculated with the NGI-ADP shear strength model (Grimstad et.al 2012) as 
following 

�𝐻(𝑤𝑎) ∙ 𝐽2𝑎 − 𝜅𝑎 ∙ 𝑠𝑢
𝐴+𝑠𝑢

𝑃

2
= 0                                               (3) 

𝑑𝜀𝑝𝑙 =  𝑑𝜆𝑝𝑙 ∙ 𝜕𝑄𝑝𝑙

𝜕𝜎
                                                        (4) 

where 𝐻(𝑤𝑎) is a term to approximate the Tresca criterion, 𝐽2𝑎 is modified second stress 
invariant, 𝜅𝑎 is stress path dependent hardening parameter, 𝑠𝑢

𝐴 and 𝑠𝑢
𝑃 are undrained shear 

strengths in plane strain active and passive loading respectively, and 𝑄𝑝𝑙 is the flow potential for 
plastic strain under monotonic loading. 

For triaxial tests, equation (2) can be reformulated as 

 𝑑𝜏𝑎 = 𝐺 ∙ (𝑑𝛾 − 𝑑𝛾𝑎𝑐𝑐 − 𝑑𝛾𝑝𝑙) (5) 

where 𝜏𝑎 is the average stress, G is the elastic shear modulus, 𝛾𝑎𝑐𝑐  is the cyclic accumulated 
plastic shear strain developed under cyclic loading, and 𝛾𝑝𝑙 is plastic shear strain developed under 
monotonic loading. 

The accumulated plastic strain 𝜀𝑎𝑐𝑐 in equation (2) can be related to average stresses by 
another hardening relation.  

In the formulation presented in this paper, the relation between average stress and 
accumulated plastic strain is investigated. The average shear stress is expressed as a function of 
accumulated plastic shear strain, cyclic shear stress and number of cycles. Anisotropic effects are 
included as the cyclic behaviors of overconsolidated clay in active (A) loading mode and in 
passive (P) loading mode are different. The implementation procedure will be presented in a 
companion paper later. 

This paper is organized as follows: in Section 2, the relation of hardening for accumulated 
plastic strain is formulated and explained. An equation to describe the relation between 
accumulation plastic shear strain and number of cycles is proposed in Section 3. In Section 4, the 
model is verified through the comparisons between test data and calculated results. Material 
parameters are determined by curve fitting with least square method. Section 5 presents the 
formulation of the modified Tresca formulation for the finite element implementation.  

CYCLIC HARDENING RELATION FOR 
ACCUMULATED PLASTIC STRAIN 

Contour diagrams are proposed by Andersen et al. (1988) to present cyclic test results. In 
these diagrams, cyclic and average shear strains are shown as functions of cyclic and average 
shear stresses for a given number of cycles. An example of the contour diagram for Drammen 
clay with OCR 4 after 10 cycles is shown in Fig. 3(a). 

The undrained compression strength 𝑠𝑢
𝑐 of clay increases with the preconsolidation stress 

𝜎𝑣𝑝𝑐
′ . The SHANSEP procedure was proposed by Ladd and Foott (1974) and Ladd et al. (1977) 

for the static characterization of NC and OC clays. In this procedure, all measured stresses were 
normalized with 𝑠𝑢

𝑐 or 𝜎𝑣𝑝𝑐
′  prior to further analyses. This procedure is also used here for cyclic 

loading. Therefore, the cyclic shear stress 𝜏𝑐𝑦 is divided by 𝑠𝑢
𝑐, and the normalized parameter 
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𝜏𝑐𝑦

∗ = 𝜏𝑐𝑦 𝑠𝑢
𝑐⁄  is called cyclic stress ratio; The average shear stress 𝜏𝑎 is divided by 𝑠𝑢

𝑐, the 
normalized parameter 𝜏𝑎

∗ = 𝜏𝑎 𝑠𝑢
𝑐⁄  is called average stress ratio, and initial shear stress 𝜏0 is 

divided by 𝑠𝑢
𝑐, and the normalized parameter 𝜏0

∗ = 𝜏0 𝑠𝑢
𝑐⁄  is called initial stress ratio. 

  
(a) (b) 

Figure 3: (a) Cyclic contour diagram for Drammen clay with OCR 4 after N=10  
(Adapted from Andersen et al. 1988); (b) Stress – strain curve under monotonic triaxial tests; 

The contours presented in Fig. 3(a) show information about the average and cyclic shear 
strains developed under cyclic loading. The stress-strain curve under monotonic loading can also 
be constructed from the data in the diagrams as shown in Fig. 3(b). Thereafter the accumulated 
plastic strain can be calculated with the following equation 

𝛾𝑎𝑐𝑐 = 𝛾𝑎 − 𝛾𝑒𝑝                                                         (6) 

where 𝛾𝑎𝑐𝑐  is the accumulated plastic shear strain, 𝛾𝑎 is average shear strain and 𝛾𝑒𝑝 is the 
elastoplastic strain developed under monotonic loading. 

It is indicated from a series of NGI cyclic triaxial test results that average shear strain 𝛾𝑎 
depends on the average shear stress 𝜏𝑎, the cyclic shear stress 𝜏𝑐𝑦 and cycle number N. Based on 
the correlations found in the contours, the cyclic hardening equation can be decomposed into two 
parts: triaxial compression part and triaxial extension part. Point A is the division point between 
triaxial compression and triaxial extension as shown in Fig.4.  

𝜏𝑎
∗ = �

�1 − 𝜅𝑑� ∙ 𝜏0
∗ + 𝜂 + 𝜅,                     𝑇𝑟𝑖𝑎𝑥𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

�1 − 𝜅𝑑� ∙ 𝜏0
∗ + 𝜂 − 𝜅 ∙ 𝑠𝑢

𝐸

𝑠𝑢
𝑐 ,                   𝑇𝑟𝑖𝑎𝑥𝑖𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

                      (7) 

where 𝑠𝑢
𝐸 is the undrained triaxial extension strength, 𝑠𝑢

𝑐 is the undrained triaxial compression 
strength, 𝑑 is a power parameter and 𝜏0

∗ is the initial stress ratio. A state variable 𝜂 is introduced 
to account for the translation of point A caused by cyclic loading. State variable 𝜅 represents 
cyclic strength hardening. 
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Figure 4: Stress–strain curves for cyclic triaxial compression and extension tests. 

Phenomenological laws are put forward for the cyclic translation 𝜂 and the cyclic hardening 𝜅 
respectively. In cyclic triaxial tests, 𝜂 is observed to be a function of the cycle number and cyclic 
stress ratio. It grows with both cycle number and cyclic stress ratio. The value of 𝜂 is 0 if there is 
no cyclic loading. The hardening parameter 𝜅 is observed to be a function of the cycle number, 
the cyclic stress ratio and the accumulated plastic shear strain. For given cycle number and cyclic 
stress ratio, 𝜅 increases with accumulated plastic shear strain, and for a given accumulated plastic 
strain, it reduces with the increase of cycle number and cyclic stress ratio. 

𝜅 = �
(𝑎1 ∙ 𝛾𝑎𝑐𝑐)(𝑏1∙𝜏𝑐𝑦∗ +𝑐1) ∙ 𝑁𝑒𝑞

�−𝑑1∙𝜏𝑐𝑦∗ �,                            𝛾𝑎𝑐𝑐 < 𝛾𝑝
𝑓

(𝑎1 ∙ 𝛾𝑝
𝑓)(𝑏1∙𝜏𝑐𝑦∗ +𝑐1) ∙ 𝑁𝑒𝑞

�−𝑑1∙𝜏𝑐𝑦∗ �,                             𝛾𝑎𝑐𝑐 ≥ 𝛾𝑝
𝑓  

                     (8) 

𝜂 =
𝑎2∙𝜏𝑐𝑦∗

𝑏2+𝜏𝑐𝑦∗ ∙ 𝑁𝑒𝑞
𝑐2                                                               (9) 

Where 𝛾𝑝
𝑓 is the failure (peak) plastic shear strain and 𝑁𝑒𝑞 is the equivalent number of cyclic 

stress applications at a constant cyclic shear stress amplitude level (Andersen et al. 1992). 𝑎1, 𝑏1, 
𝑐1, 𝑑1, 𝑎2, 𝑏2 and 𝑐2 are parameters which are dependent on soil properties and soil physical 
state. They can be determined by curve fitting to the results from cyclic laboratory tests.  

RELATION BETWEEN ACCUMULATED PLASTIC 
STRAIN AND CYCLE NUMBER 

Based on equation (1), a formulation for the relation between accumulated plastic strain and 
cycle number is proposed. 

𝛾𝑎𝑐𝑐 =  𝐴 ∙ 𝑁𝑒𝑞
�

𝑑1∙𝜏𝑐𝑦∗

𝑏1∙𝜏𝑐𝑦∗ +𝑐1
�
                                                     (10) 

Thus, the rate form of the accumulated plastic strain can be expressed as 
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𝛾𝑎𝑐𝑐̇ = 𝐴 ∙ � 𝑑1∙𝜏𝑐𝑦
∗

𝑏1∙𝜏𝑐𝑦
∗ +𝑐1

� ∙ 𝑁𝑒𝑞
�

𝑑1∙𝜏𝑐𝑦∗ −𝑏1∙𝜏𝑐𝑦∗ −𝑐1
𝑏1∙𝜏𝑐𝑦∗ +𝑐1

�
                                  (11) 

where 𝛾𝑎𝑐𝑐̇ = 𝑑𝛾𝑎𝑐𝑐
𝑑𝑁𝑒𝑞

. 

Rearranging equation (8) into equation (11) gives 

𝛾𝑎𝑐𝑐̇ = �𝐴 ∙ � 𝑑1∙𝜏𝑐𝑦
∗

𝑏1∙𝜏𝑐𝑦
∗ +𝑐1

� ∙ ( 𝜅

(𝑎1∙𝛾𝑎𝑐𝑐)(𝑏1∙𝜏𝑐𝑦∗ +𝑐1))
(

𝑏1∙𝜏𝑐𝑦∗ +𝑐1−𝑑1∙𝜏𝑐𝑦∗

𝑑1∙𝜏𝑐𝑦∗ ∙(𝑏1∙𝜏𝑐𝑦∗ +𝑐1))
,        𝛾𝑎𝑐𝑐 < 𝛾𝑝

𝑓

∞,                                                                                                𝛾𝑎𝑐𝑐 ≥ 𝛾𝑝
𝑓

            (12) 

Alternatively, equation (12) can be rewritten into equation (13) in order to express 𝜅 as a 
function of the accumulated plastic strain rate. 

𝜅 = (𝑎1 ∙ 𝛾𝑎𝑐𝑐)(𝑏1∙𝜏𝑐𝑦
∗ +𝑐1) ∙ 𝛾𝑎𝑐𝑐̇

(
𝑑1∙𝜏𝑐𝑦∗ ∙(𝑏1∙𝜏𝑐𝑦∗ +𝑐1)
𝑏1∙𝜏𝑐𝑦∗ +𝑐1−𝑑1∙𝜏𝑐𝑦∗ )

∙ 𝐴
(

𝑑1∙𝜏𝑐𝑦∗ ∙(𝑏1∙𝜏𝑐𝑦∗ +𝑐1)
𝑑1∙𝜏𝑐𝑦∗ −𝑏1∙𝜏𝑐𝑦∗ −𝑐1

)
∙

�𝑏1∙𝜏𝑐𝑦
∗ +𝑐1

𝑑1∙𝜏𝑐𝑦
∗ �

(
𝑑1∙𝜏𝑐𝑦∗ ∙(𝑏1∙𝜏𝑐𝑦∗ +𝑐1)
𝑏1∙𝜏𝑐𝑦∗ +𝑐1−𝑑1∙𝜏𝑐𝑦∗ )

     when   𝛾𝑎𝑐𝑐 < 𝛾𝑝
𝑓          (13) 

Also, with the insertion of equation (10), equation (8) and equation (9) can be expressed as 

𝜅 = �
(𝑎1 ∙ 𝐴)(𝑏1∙𝜏𝑐𝑦

∗ +𝑐1),                                     𝛾𝑎𝑐𝑐 < 𝛾𝑝
𝑓

(𝑎1 ∙ 𝐴𝑓)(𝑏1∙𝜏𝑐𝑦
∗ +𝑐1),                                   𝛾𝑎𝑐𝑐 ≥ 𝛾𝑝

𝑓                             (14) 

𝜂 =

⎩
⎪
⎨

⎪
⎧ 𝑎2∙𝜏𝑐𝑦∗

𝑏2+𝜏𝑐𝑦∗ ∙ (𝛾𝑎𝑐𝑐
𝐴

)
�

(𝑏1∙𝜏𝑐𝑦∗ +𝑐1)∙𝑐2
𝑑1∙𝜏𝑐𝑦∗ �

,                               𝛾𝑎𝑐𝑐 < 𝛾𝑝
𝑓

𝑎2∙𝜏𝑐𝑦∗

𝑏2+𝜏𝑐𝑦∗ ∙ (
𝛾𝑝

𝑓

𝐴𝑓
)

�
(𝑏1∙𝜏𝑐𝑦∗ +𝑐1)∙𝑐2

𝑑1∙𝜏𝑐𝑦∗ �
,                               𝛾𝑎𝑐𝑐 ≥ 𝛾𝑝

𝑓
                       (15) 

where 𝐴𝑓 is the value of 𝐴 when accumulated plastic strain 𝛾𝑎𝑐𝑐 reaches the specified failure 
strain 𝛾𝑝

𝑓. 

MODEL VERIFICATION 
Cyclic triaxial tests data of overconsolidated clays from Drammen (Andersen et al. 1988) and 

Moum (Andersen et al. 1989) are used for the model verification. The details about test 
procedures are elaborated in the corresponding references. 

Drammen Clay 
Drammen clay is a marine clay with plasticity index 𝐼𝑝 = 27% and clay content of 45-55% 

(Bjerrum 1967). Before the cyclic tests, the "undisturbed" samples were consolidated to a vertical 
effective stress 𝜎𝑣𝑝𝑐

′  of 392 kPa. No lateral strain was allowed during consolidation. The 
overconsolidated clay is here created by unloading the samples to smaller vertical effective 
stresse 𝜎𝑣𝑐

′ .  

The database developed by Andersen et al. (1988) for Drammen clay with OCR 4 is used to 
demonstrate the applicability of the proposed model. Several tests are selected for the calibration 
of the parameters required by the model. The selected tests are listed in Table 1. Least square 
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method is employed for the parameter calibration. The obtained parameters are shown in Table 2. 
Fitted results are plotted together with test results in Fig. 5.  

Table 1: Tests for the calibration of model parameters 
Cycle number Cyclic stress ratio 𝜏𝑐𝑦

∗  
1 0.2 
1 0.6 

10 0.4 
100 0.315 
1000 0.12 
1000 0.2 

Table 2: Model parameters for Drammen clay with OCR = 4 
𝑎1 𝑏1 𝑐1 𝑑1 𝑎2 𝑏2 𝑐2 𝑑 
4.6 0.42 0.1 0.25 0.6 1.81 0.11 20 

   

   
Figure 5: Fitted results of selected tests for Drammen clay with OCR = 4 

It is shown in the graphs that the parameters for the model are well fitted. Secondly, the 
model with calibrated parameters is used to predict the average shear stress vs. accumulated 
plastic strain curve for other cyclic stress ratios and cycle numbers. The comparisons between 
experimental and calculated results are plotted in Figure 6. It shows that the model give good 
predictions for the accumulated plastic strain also for these cases. 
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Figure 6: Comparisons between calculated results and test data for Drammen clay with 
OCR = 4 

Moum Clay 
The second clay was obtained from Moum, in the southeastern part of Norway. After being 

reconstituted and reconsolidated, the clay was: salt content 12.5 g/L (14.0 g/L), liquid limit 50.9% 
(48.0%), plasticity index 28.5% (25.1%), and clay content 45% (45%) < 2𝜇 (Dyvik et al. 1989).  

The database compiled by Andersen et al. (1989) for Moum clay with OCR = 3.4 is also used 
for the verification of the model. Tests selected for the parameters calibration with least square 
method are listed in Table 3. The calibrated values of the parameters for Moum clay OCR 3.4 are 
shown in Table 4. Fitted results are plotted together with test data in Figure 7.  
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Table 3: Tests for the calibration of model parameters 
Cycle number Cyclic stress ratio 𝜏𝑐𝑦

∗  
10 0.133 
10 0.53 
10 0.673 

100 0.175 
100 0.281 
100 0.451 

Table 4: Model parameters for Moum clay 
𝑎1 𝑏1 𝑐1 𝑑1 𝑎2 𝑏2 𝑐2 𝑑 

64.6 0.32 0.27 0.39 0.14 0.21 0.01 20 

   

   
Figure 7: Fitted results of selected tests for Moum clay OCR 3.4 

   
Figure 8: Comparisons between calculated results and test data for Moum clay with 

OCR 3.4 
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It is shown from the graphs that the parameters for the model are rather well fitted. The 
predicted average shear stress vs. accumulated plastic strain curve for other cyclic stress ratios 
and cycle numbers are plotted in Figure 8. 

From the comparisons between calculated results and test data, it is shown that the 
predictions from the model fit the test data for Moum clay OCR3.4 rather well. 

MODEL FORMULATION 
The model proposed in the previous sessions is shown to be suitable for cyclic triaxial load 

cases. In order to make use of it for different stress conditions, the model should be formulated 
for a general stress state. The model formulation is presented here in the following steps: starting 
with ‘1D’ anisotropy in cyclic triaxial test condition; Thereafter, the formulation is extended to 
full 3D stress state with modified Tresca formulation. 

Tresca criterion 
The Tresca criterion is widely used in geotechnical engineering to represent isotropic 

undrained shear strength. It can be represented as a hexagonal prism in three-dimensional 
principal total stress space. 

𝐹 = 𝜏 − 𝜅 ∙ 𝑠𝑢 = �𝐽2𝑐𝑜𝑠𝜃 − 𝜅 ∙ 𝑠𝑢 = 0                                        (16) 

Where 𝐽2 is the second deviatoric stress invariant, 𝜃 is the Lode angle, 𝜅 is the strength 
hardening parameter, and 𝑠𝑢 is the isotropic undrained shear strength.  

1D Model Presentation 
The Tresca criteria can be modified to account for the difference of undrained shear strength 

in compression and extension (Grimstad et al. 2012). Thus, Tresca criteria is reformulated to fit 
equation (3) with the following form  

𝐹 = �𝜏𝑎 − 𝜂 ∙ 𝑠𝑢
𝑐 − 𝜅 ∙ 𝑠𝑢

𝑐 −𝑠𝑢
𝐸

2
− (1 − 𝜅𝑑) ∙ 𝜏0� − 𝜅 ∙ 𝑠𝑢

𝑐 +𝑠𝑢
𝐸

2
= 0                (17) 

The Model in 3D Stress Space 
To use the model for the general stress condition, a modified deviatoric stress vector is 

introduced as following 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑠̂𝑥𝑥
𝑠̂𝑦𝑦
𝑠̂𝑧𝑧
𝑠̂𝑥𝑦
𝑠̂𝑥𝑧
𝑠̂𝑦𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝑥𝑥

′ + 𝜂 ∙ 2
3

∙ 𝑠𝑢
𝑐 + 𝜅 ∙ 1

3
∙ (𝑠𝑢

𝑐 − 𝑠𝑢
𝐸) − (1 − 𝜅𝑑) ∙ 𝜎𝑥0

′ − 𝑝̂

𝜎𝑦𝑦
′ + 𝜂 ∙ 2

3
∙ 𝑠𝑢

𝑐 + 𝜅 ∙ 1
3

∙ (𝑠𝑢
𝑐 − 𝑠𝑢

𝐸) − (1 − 𝜅𝑑) ∙ 𝜎𝑦0
′ − 𝑝̂

𝜎𝑧𝑧
′ − 𝜂 ∙ 4

3
∙ 𝑠𝑢

𝑐 − 𝜅 ∙ 2
3

∙ (𝑠𝑢
𝑐 − 𝑠𝑢

𝐸) − (1 − 𝜅𝑑) ∙ 𝜎𝑧0
′ − 𝑝̂

𝜏𝑥𝑦

𝜏𝑥𝑧 ∙ 𝑠𝑢
𝑐 +𝑠𝑢

𝐸

2∙𝑠𝑢
𝐷𝑆𝑆

𝜏𝑦𝑧 ∙ 𝑠𝑢
𝑐 +𝑠𝑢

𝐸

2∙𝑠𝑢
𝐷𝑆𝑆 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

           (18) 

where a modified mean stress is defined accordingly as 
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𝑝̂ = 𝑝′ − �1 − 𝜅𝑑� ∙ 𝑝0
′  

𝑝0
′  is the initial mean stress. 

Therefore the modified Tresca criterion can be expressed as 

𝐹 = �𝐻(𝑤) ∙ 𝐽2 − 𝜅 ∙ 𝑠𝑢
𝑐 +𝑠𝑢

𝐸

2
= 0                                           (19) 

where 𝐽2 is modified second deviatoric stress invariant 

𝐽2 = −𝑠̂𝑥𝑥𝑠̂𝑦𝑦 − 𝑠̂𝑥𝑥𝑠̂𝑧𝑧 − 𝑠̂𝑦𝑦𝑠̂𝑧𝑧 + 𝑠̂𝑥𝑦
2 + 𝑠̂𝑥𝑧

2 + 𝑠̂𝑦𝑧
2  

The term 𝐻(𝜔) is introduced as below to approximate the Tresca criterion: 

𝐻(𝜔) = 𝑐𝑜𝑠2(
1
6

∙ arccos (1 − 2𝜔)) 

where 

𝜔 =
27
4

∙
𝐽3

2

𝐽2
3 

And 𝐽3 is the third deviatoric stress invariant. 

𝐽3 = −𝑠̂𝑥𝑥𝑠̂𝑦𝑦𝑠̂𝑧𝑧 + 2𝑠̂𝑥𝑦𝑠̂𝑦𝑧𝑠̂𝑥𝑧 − 𝑠̂𝑥𝑥𝑠̂𝑦𝑧
2 − 𝑠̂𝑦𝑦𝑠̂𝑥𝑧

2 − 𝑠̂𝑧𝑧𝑠̂𝑥𝑦
2  

For the further implementation of the model, cyclic stress ratio should be calculated 
individually and used as an input parameter for the calculation of the accumulated deformation of 
the overconsolidated clay. And as the accumulation of the strain will be predicted directly due to 
a package of cycle numbers, number of cycles will also be needed as input for the calculation. In 
reality, a storm is composed of loads with varying amplitudes and periods, so in order to make 
use of the laboratory test results which are gained with one constant cyclic shear stress amplitude 
throughout each test, the determination of an equivalent number of cycles for irregular cyclic load 
histories is also needed. 

CONCLUSION 
This paper presents a cyclic hardening formulation of accumulated plastic strain for 

overconsolidated clays. The effects of average shear stress, cyclic shear stress and cycle number 
on the accumulated plastic strain are accounted for in the model. The anisotropic effects of 
overconsolidated clays are also included in the model. A function between accumulated plastic 
strain and cycle number is proposed and incorporated into the model. The cyclic shear stress 
amplitude which also is input to the model, needs to be calculated by another suitable model. The 
comparisons between calculated results and test data indicate that the model predicts the test data 
rather well. Finally, the model is extended to a general 3D stress state by using a modified Tresca 
formulation. This model may then be implemented into a finite element program. 
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