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Abstract. In the past few years, random field theory has been increasingly used to model the inherent soil variability. The scale 
of fluctuation is one of the important parameters describing a stationary random field. In this study, the factors affecting an 
accurate estimation of the scale of fluctuation were studied with numerical experiments to show how a proper sampling strategy 
can help improve the estimate of scale of fluctuation. Hypothetical data sets were generated from random field theory. Data were 
then sampled for different sampling strategies. The scale of fluctuation estimated from the sampling programs were compared 
with the predefined scale of fluctuation. The accuracy with which one can estimate scale of fluctuation depends on both the 
sampling intensity and extent of the sampling range. For the numerical example in this study, the sampling interval should be 
close enough such that 10 samples are measured within one scale of fluctuation, and the distance covered by the sampling should 
cover at least 100 scales of fluctuation. 
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1. Introduction 

The inherent variability of soil is one of the ma-
jor sources of uncertainties in geotechnical engi-
neering (e.g., Vanmarcke, 1977; Phoon and 
Kulhawy, 1999). In the past few years, random 
field theory has been increasingly used to model 
the inherent (aleatory) soil variability to reduce 
the uncertainty in soil characteristics (e.g., Keav-
eny et al., 1989; Lacasse and Nadim, 1996; Fen-
ton and Griffiths, 2002; Dasaka and Zhang, 
2012). A stationary random field is widely used 
in geotechnical engineering. It is often character-
ized by the mean, variance and scale of fluctua-
tion (SoF). Generally, while the mean and vari-
ance can be determined conveniently, much 
more efforts are required to estimate the SoF of 
the random field (Onyejekwe and Ge, 2013). In 
particular, the quantity of data is often quite 
limited in geotechnical engineering. It is also 
largely unclear to the geotechnical profession 
how the samples should be taken in the field to 
ensure a reliable estimate of the SoF. The site 
exploration program is often planned without 
particular consideration of the random nature of 
the soil characteristics. 

This paper studies the factors affecting the 
estimation of SoF with numerical experiments.  

 
The most common autocorrelation models to 
estimate SoF is first presented. Then, the numer-
ical experiments for assessing the factors affect-
ing the estimation of SoF are described. The 
results of the numerical experiments are then 
presented and discussed.  

2. Scale of fluctuation 

Because of the complex geological and environ-
mental processes involved, the soil characteris-
tics in situ are rarely homogeneous. The soil 
characteristics can be highly variable and spatial-
ly correlated in the vertical and horizontal direc-
tions. As shown in Figure 1, a soil property g(z) 
can be decomposed into a deterministic trend 
component t(z) and a stationary random function 
w(z) as follows (e.g., DeGroot and Baecher, 
1993): 

 
� � � � � �g z t z w z� 
   (1) 

 
The concept of the SoF was first proposed 

by Vanmarcke (1977). Within the SoF, the val-
ues of w(z) will tend to be either all above or all 
below zero, indicating that the soil property with-
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in the SoF shows a relatively strong correlation. 
The SoF can be infinite when the soil is de-
scribed by a fractal model (e.g., Fenton, 1999; 
Jaksa, 2013). This paper discusses the finite SoF 
only. Fenton (1999) suggested that there may be 
little difference between the finite and infinite 
SoF's if an appropriate finite-scale model and a 
fractal model over the finite domain are used. 

In practice, the SoF should be estimated 
from a population of observations. Various ap-
proaches for estimating the SoF have been pro-
posed. To apply these methods, the data may 
need to be transformed such that the stationary 
assumption is valid (e.g., Campanella et al., 
1987). In the present study, the autocorrelation 
fitting method (ACFM) will be used for estimat-
ing the SoF. It appears to be one of the most 
widely used methods for estimating SoF (e.g., 
Uzielli et al., 2005; Lloret-Cabot et al., 2014). 
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Figure 1. Illustration of the soil inherent variability 

3. Autocorrelation fitting method (ACFM) 

The main idea of ACFM is to fit theoretical 
models to the sample autocorrelation function 
ˆ ( )" ?  based on an ordinary least squares ap-

proach. Some common theoretical autocorrela-
tion models are given in Table 1. 

For a one-dimensional stationary random 
field w(z), let's assume that the sequence of ob-
servations wT = {w(z1), w(z2), … , w(zn)} is made. 
Let w  and 21̂  denote the sample mean and the 
sample variance of w(z). The sample autocorrela-

tion function can be obtained from the following 
equation: 
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where n(?) denotes the number of pairs that are 
separated by the distance ?. As ? increases, less 
number of pairs will be available for calculating 
ˆ ( )" ? . Generally, the data for calculating ˆ ( )" ?  

are considered insufficient for obtaining a relia-
ble estimate of the SoF when ? exceeds the dis-
tance of a quarter of the sampling space domain 
(Lumb, 1975; Box et al., 1994). 
 
 
Table 1. Theoretical autocorrelation models (Vanmarcke, 
1977 and 2010) 

Model Autocorrelation function 

Triangular � �
1 ,

0,
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UPN
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? >
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Squared exponential � �
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Second-order Markov � � 4 4
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��������������������������� and >(is scale of fluctuation. 

4. Numerical experiments 

To study the factors affecting the estimation of 
SoF, data were generated from random field 
theory with a given mean, standard deviation and 
SoF. The data were then extracted for different 
site exploration strategies and used for estimating 
SoF with the ACFM approach. By comparing the 
estimated values of SoF with the predefined 
value of SoF (ASoF), the accuracy of the estima-
tion was assessed. In this study, the random field 
was assumed to be a one-dimensional Gaussian 
random field with a mean of 0, a variance of 1 
and an SoF of 100. The exponential autocorrela-
tion model shown in Table 1 was used. The 
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Cholesky decomposition method was imple-
mented to generate the data from the random 
field (DeGroot and Baecher, 1993).  

As an example, one can assume a length of 
sampling space domain (L) of 1000 and a size of 
sampling interval (D) of 10 in a site exploration 
program. Figure 2 shows two possible data sets 
generated from this site exploration program. 
The values of SoF estimated from datasets A and 
B are 90.9 and 61.9, respectively. Due to the 
random nature of the data, the estimated values 
of SoF from one given site exploration program 
can also vary. 

 
 

 
Figure 2. Two sets of sampled data (D=10, ASoF=100 and 
L=1000) 
 
 

In the present study, Monte Carlo simulation 
was used to assess the effectiveness of a site 
exploration program. Specifically, N datasets 
from the site exploration program were consid-
ered, and the SoF was evaluated for each of the 
datasets. The values of the mean ( SoF� ) and 
standard deviation ( SoF1 ) of the estimated SoFs 
were then calculated. Figures 3 and 4 show the 
mean and standard deviation of the estimated 
SoFs as N increases from 5 to 3000. The values 
of SoF�  and SoF1  gradually stabilize as N in-
creases and it appears that N = 3000 is sufficient 
for estimating SoF�  and SoF1  without too much 
computation effort. In this study, a target of N = 
3000 was employed. 

 

�

 
Figure 3. Mean SoF ( SoF� ) versus N (D=10, ASoF = 100 
and L = 1000) 

1

 
Figure 4. Standard deviaiotn of SoFs ( SoF1 ) versus N (D=10, 
ASoF = 100 and L = 1000) 

 
To evaluate the effectiveness of the site ex-

ploration program, the relative error ( SoF$ ) and 
coefficient of variation ( SoF> ) were defined as 
follows: 

| |SoF
SoF
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�
$

�
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S

F
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>
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�

�   (4) 

The site exploration program is more effective as 
both SoF$  and SoF>  get closer to 0. 

5. Results and discussions 

5.1. Distribution of estimators 

Figure 5 shows the histogram of the estimators 
for the scale of fluctuation (SoF), as estimated by 
the aforementioned site exploration program and 
Monte Carlo simulations. The distribution of 
estimators is right-skewed and more than two 
thirds of the estimators are smaller than the pre-
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defined scale of fluctuation implied in the analy-
sis (ASoF) of 100. Note that in the example in 
Figure 5, the parameter SoF$  is 19% and SoF>  is 
52%, indicating that this particular sampling 
strategy is biased and has rather high variability. 

5.2. Sampling intensity (sampling interval) 

In the present study, L and D are two parameters 
that define a sampling strategy, where D denotes 
the sampling interval and L denotes the length of 
the domain over which sampling is done (also 
called sampling range). To screen out this possi-
ble effect, normalized values were used to repre-
sent the sampling interval and sampling range. 
 

�SoF=80.8
1SoF=41.8
$SoF=19%
>SoF=52%

 
Figure 5. The histogram of estimators for SoF (D = 10, 

ASoF=100 and L = 1000) 
 

Figures 6 and 7 show how the error and coef-
ficient of variation of the SoF, SoF$  and SoF>  , 
change with the normalized sampling interval 
(ASoF/D) for the case L/ASoF of 10. A larger 
normalized sampling interval (ASoF/D) denotes 
"more intense" sampling. The two figures show 
that when ASoF/D exceeds 10, both SoF$  and 

SoF>  become nearly constant. The results indi-
cate that a further increase in the sampling inten-
sity (decrease in sampling interval D) does not 
increase the effectiveness of the sampling in 
terms of reducing the uncertainty due to natural 
variability. In practice, the sampling costs in-
crease with the sampling intensity. Thus, from a 
cost-effectiveness point of view, the normalized 
sampling interval adopted in the site exploration 
program should not exceed 10, unless one wants 
to reduce the epistemic uncertainty due to lack of 
knowledge (e.g., Baecher and Christian, 2003). 

 

$

 
Figure 6. SoF$  versus normalized sampling interval ASoF/D 

for L/ASoF = 10 

>

 
Figure 7. SoF>  versus normalized sampling interval ASoF/D 

for L/ASoF = 10 

5.3. Sampling range 

As shown in the previous section, ASoF/D=10 
implies a fairy dense sampling interval. To study 
the effect of sampling range or the length of the 
domain over which sampling is done, Figures 8 
and 9 show how the parameters SoF$  and SoF>  
change with L/ASoF for the case of ASoF/D = 10. 
Here, L/ASoF denotes the normalized sampling 
range. A larger value of L/ASoF denotes a wider 
sampling range. 
 

$

 
Figure 8. SoF$  versus normalized sampling range L/ASoF 
for ASoF/D = 10 
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Figure 9. SoF>  versus normalized sampling range L/ASoF 
for ASoF/D = 10 
 

In general, both SoF$  and SoF>  decrease as 
the sampling range increase, indicating that in-
creasing the sampling range helps to improve the 
effectiveness of the sampling program. As shown 
in Figure 8, when L/ASoF exceeds 100, SoF$  is 
very close to 0, indicating that a further increase 
in the sampling range is not necessary to better 
estimate the SoF. As shown in Figure 9, SoF>  
does not converge to a stable state even when 
L/ASoF is larger than 300, but the variance is 
getting smaller and smaller. A sampling range 
wider than 300 is required to reduce SoF>  to a 
value less than 10%. In the case analyzed in this 
paper, a normalized sampling range of 300 im-
plies 3000 measurements and 3000 measure-
ments are not sufficient to reduce the statistical 
error to zero. Thus, it seems that a very large 
quantity of data are required for an accurate 
estimation of SoF. 

5.4. Scale of fluctuation 

In practice, the soils are often sampled through a 
predetermined investigation scheme with given 
D and L. Figures 10 and 11 illustrate the effect of 
ASoF on SoF$  and SoF>  for the case of D = 1 and 
L = 1000, respectively. Both SoF$  and SoF>  
increase as ASoF increases, indicating that the 
effectiveness of a sampling program may vary 
with the underlying value of SoF. Thus, when 
planning the site exploration program for esti-
mating the SoF, it is important to first have some 
fair judgment about the actual possible range of 
the SoF. Table 2 lists some values of SoF of CPT 
cone resistance (qc) reported in literatures. 
 

Table 2. Scale of fluctuation of CPT Cone Resistance (qc) 
Soil type Direction SoF (m) Reference 
Offshore 

soils Horizontal 30 Høeg and Tang 
(1976); Tang (1979) 

Silty 
clay Horizontal 5-12 Lacasse and de 

Lamballerie (1995) 
Offshore 

sand Horizontal 14-38 Keaveny et al. 
(1989) 

Sand Vertical 0.13-0.71 Campanella et al. 
(1987) 

Silty 
clay Vertical 1 Lacasse and de 

Lamballerie (1995) 

Clay Vertical 0.4 Cafaro and 
Cherubini (2002) 

Sand, 
clay Vertical 0.13-1.11 Uzielli et al. (2005) 

 

$

 
Figure 10. SoF$  versus ASoF (D = 1 and L = 1000) 

>

 
Figure 11. SoF>  versus ASoF (D = 1 and L = 1000) 

5.5. Implications for site exploration program 

From the results of the analysis, an accurate 
estimation of SoF is very data demanding, which 
in most cases exceeds the data available in ordi-
nary geotechnical engineering. Considering such 
data demand, tests such as the cone penetration 
test (CPT) that can produce a large number of 
measurements cost-effectively would be more 
useful for estimating the spatial variability of the 
soil properties than other non-continuous tests. 
However, if a soil layer is not thick enough, even 
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the CPT may not be able to produce sufficient 
data for an accurate estimation of SoF. The SoF 
values inferred in many geotechnical projects 
may only be an approximate estimate of the 
actual SoF and may not be the actual SoF, due to 
the limited quantity of data in geotechnical engi-
neering.  

The effectiveness of a sampling strategy is a 
function of the sampling intensity and sampling 
range. With the current level of efforts in site 
exploration, the effectiveness of a site explora-
tion program could be enhanced by carefully 
selecting the sampling interval and the sampling 
range as a function of the expected scale of fluc-
tuation. 

6. Conclusion 

The scale of fluctuation in a random field model 
characterizes the spatial variability of soil prop-
erties, which can be of great importance to ge-
otechnical probabilistic analysis. Through nu-
merical solutions, the paper investigated the 
factors affecting the cost-effectiveness of a site 
exploration program. The analyses showed that 
the reliability of the scale of fluctuation estimate 
depends on both the sampling interval and the 
extent of the sampling. For the numerical exam-
ple assessed in this study, the sampling interval 
should be short enough such that at least 10 ob-
servations (measurements) are obtained within 
one scale of fluctuation, and the sampling extent 
should be wide enough such that it covers at least 
100 times the scale of fluctuation. 
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