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Abstract 13 

Pockmarks are seafloor craters usually formed during methane release on continental 14 

margins. However, the mechanisms behind their formation and dynamics remain elusive. 15 

Here we report detailed investigations on one of the World’s largest pockmark fields located 16 

in the Troll region in the northern North Sea. Seafloor investigations show that >7000 17 

pockmarks are present in a ~600 km
2
 area. A similar density of pockmarks is likely present 18 

over a 15,000 km
2
 region outside our study area. Based on extensive monitoring, coring, 19 

geophysical and geochemical analyses, no indications of active gas seepage were found. Still, 20 

geochemical data from carbonate blocks collected from these pockmarks indicate a 21 

methanogenic origin linked to gas hydrate dissociation and past fluid venting at the seafloor. 22 

We have dated the carbonates using the U-Th method in order to constrain the pockmark 23 

formation. The carbonates gave an isochron age of 9.59 ± 1.38 ka BP, i.e. belonging to the 24 

initial Holocene. Moreover, radiocarbon dating of microfossils in the sediments inside the 25 

pockmarks is consistent with the ages derived from the carbonates. Based on pressure and 26 

temperature modelling, we show that the last deglaciation could have triggered dissociation 27 
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of gas hydrates present in the region of the northern part of the Norwegian Channel, causing 28 

degassing of 0.26 MtCH4/km
2
 at the seafloor. Our results stress the importance of external 29 

climatic forcing of the dynamics of the seafloor, and the role of the rapid warming following 30 

the Younger Dryas in pacing the marine gas hydrate reservoir. 31 

 32 

Keywords: Norwegian North Sea; Troll; pockmarks; gas hydrates dissociation; deglaciation; 33 

modelling 34 

 35 

1. Introduction 36 

Despite several decades of research on pockmarks, many features and mechanisms 37 

controlling their activity remain poorly understood. Key aspects such as 1) timing of 38 

formation and 2) external (climatic) versus internal (overpressure) forcing are still debated. 39 

Part of the reason for this is the limited availability of large-scale high resolution bathymetry 40 

and monitoring data from continental margins, and the lack of accurate pockmark ages.  41 

Pockmarks often display gas flares, gas-rich sediments, gas hydrate deposits or contain 42 

carbonates originating from the seepage of thermogenic or microbial methane (e.g. Mazzini 43 

et al., 2005; Haas et al., 2010; Nickel et al., 2013). They have been found in a large variety of 44 

geological settings at continental margins (e.g. Gontharet et al., 2007; Greinert et al., 2010; 45 

Kocherla et al., 2015). Although exceptions exist, it is commonly accepted that the driving 46 

force for pockmark formation is linked to methane migration and degassing. The methane 47 

may ultimately be sourced from deep hydrocarbon-rich reservoirs or from dissociating 48 

shallow gas hydrate deposits (e.g. Solheim and Elverhøi, 1993; Naehr et al., 2000; Smith et 49 

al., 2014). A common assumption is that some of the pockmarks offshore Norway were 50 

formed at some stage after the Last Glacial Maximum (e.g., about 21 ka ago), maybe even 51 
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quite recently (e.g. Jung and Vogt, 2004; Paull et al., 2008; Hustoft et al., 2009; Plaza-52 

Faverola et al., 2011). Cremiere et al. (2016) recently published a study on pockmarks in the 53 

Barents Sea, where methanogenic carbonates from pockmarks were dated. The results 54 

suggest methane seepage between 17-2 ka, linked to initial gas hydrates dissociation after the 55 

deglaciation of the southwest Barents Sea (~18–16 ka). 56 

By investigating one of the World’s largest pockmark fields offshore Norway, located above 57 

a giant gas reservoir (Fig. 1A), we aim at resolving if the degassing was driven by deep or 58 

external forcing, and if the last deglaciation was the ultimate pockmark trigger. The main 59 

difference between this study and those previously done in the same region (e.g. Vogt et al., 60 

1994; Bunz et al., 2005; Mazzini et al., 2006; Ivanov et al., 2010; Reiche et al., 2011; Chand 61 

et al., 2012), is that we have access to petroleum industry data including seismic profiles and 62 

bathymetry, ROV video observations and cores and sea floor carbonate samples, providing 63 

the necessary regional coverage, and statistical analyses in addition to stratigraphic details 64 

from a selection of pockmarks.  65 

 66 

2. Study area and Quaternary geology 67 

The Norwegian Channel is a distinct trough separating the Norwegian mainland from the 68 

shallower parts of the North Sea Shelf to the south and west. The water depths in the central 69 

part of the trough increase gently from around 305 m in the Troll area to about 400 m at the 70 

shelf break. Fast flowing ice streams are believed to have given The Norwegian Channel its 71 

characteristic physiography (Sejrup et al., 2003; Ottesen et al., 2005). During the LGM, ice 72 

streams probably extended all the way to the shelf edge where the North Sea Trough Mouth 73 

Fan was deposited (Nygard et al., 2007). The Troll area was thus situated below an ice 74 
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stream, about 200 km from its terminus during these periods. Present day Antarctic ice 75 

streams show that analogous settings have subglacial water pressures that are approximately 76 

equivalent to the glacial overburden (e.g. Alley et al., 1989) and that the ice rides on a layer 77 

of deforming sediments (deformation till). The temperature and pressure regime imposed by 78 

the presence of the ice streams provides an important constraint for understanding the 79 

possible contribution of gas hydrates to the formation of pockmarks in the Norwegian 80 

Channel.  81 

Following the break-up of the Norwegian Channel Ice Stream, the pressure history is 82 

determined by the interaction of eustatic sea level changes and isostatic rebound. Relatively 83 

rapid Late Glacial, glacial marine sedimentation has allowed the determination of a detailed 84 

seafloor temperature history for the Troll area (Sejrup et al., 2003; Sejrup et al., 2004). 85 

The base of the sediments from this period is separated from the underlying gravelly and 86 

sandy sediments (Unit L3; Saalian age) by a glacial erosion surface at 74 m depth (i.e. 87 

8903/8904 borehole in Sejrup et al., 1995; Sejrup et al., 2003). The sediments above consist 88 

of tills, probably deformation tills, deposited by the latest Norwegian Channel Ice Stream 89 

(NCIS). The top of the till at 16.9 mbsf is crenulated by iceberg plough marks and overlain 90 

by glacial marine deposits that merge into Holocene marine deposits at ~3 mbsf.  91 

 92 

3. Methods 93 

 94 

3.1 Marine expeditions, petrography, and geochemical and geotechnical analyses 95 
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During the period 2005-2007 large seismic and multibeam echo-sounder surveys and several 96 

sampling campaigns were conducted over the Troll gas field in the Norwegian Channel to 97 

better understand the gas transfer processes from deeper levels to the seafloor (Fig.1A). 98 

Additional high-resolution multibeam lines, video stills, and subbottom profiler (SBP) 99 

records were later acquired during several ROV dives (some examples in Fig. 1B-C). Forty-100 

five cores and a large collection of sea floor carbonate blocks were collected from three 101 

selected pockmark complexes (Septagram, Arch, Peanut) and the surrounding areas (e.g. Fig. 102 

1D). The data collected at these localities is used for a broader interpretation of the whole 103 

area. Carbonates were studied using optical and electron microscopy, carbon and oxygen 104 

isotope analyses and complemented with the data presented by Mazzini et al. (2016). The 105 

composition of the pore waters extracted from the sediment cores was also analysed. Cone 106 

penetration tests (CPT) were performed at six locations respectively outside, on the sloping 107 

edge and inside the targeted pockmarks.  108 

 109 

3.2 Statistical analyses 110 

A selected region of 296 km
2
 from high-resolution bathymetric data was subjected to a range 111 

of data analysis methods using PAST, v. 3.04 (Hammer et al., 2001) and in-house software. 112 

Point pattern analysis can give information about the mode, timing and structural control of 113 

pockmarks (e.g. Hammer et al., 2009; Cartwright et al., 2011; Moss et al., 2012; Hillman et 114 

al., 2015). The  analysis was limited to a rectangular region south of Troll A with relatively 115 

stationary point density (3189 pockmarks). Nearest-neighbour analysis (Clark and Evans, 116 

1954) is a simple technique using the distance from each point to its nearest neighbour. The 117 

average neighbour distance is compared with the one expected for Complete Spatial 118 
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Randomness (CSR). Donnelly’s edge correction (Donnelly, 1978) was applied.  The average 119 

nearest neighbour distance is 173.0 m, compared with 152.4 expected from CSR. CSR can 120 

thus be rejected at p<0.0001 (t test). This indicates a lateral inhibition mechanism where 121 

points tend to avoid each other. 122 

Nearest neighbour analysis only gives information on the local scale. To investigate point 123 

density at a range of scales, Ripley’s K analysis was applied (Ripley, 1976). The number R(d) 124 

of points within circles of radius d centred on one point is computed, and averaged over all 125 

points. For CSR, a quadratic R(d) is expected, as the number of points is proportional to area. 126 

A normalized function L(d), square root of R(d), is expected to follow L(d)=d for CSR. The 127 

function L(d)-d thus represents departure from CSR at any scale d. An estimate of fractal 128 

dimension was obtained from the asymptotic linear slope in a log-log plot of R(d). The main 129 

feature of the Ripley’s K curve (Fig. 2A) is a dip at small scales (up to ca. 250 m), indicating 130 

local lateral inhibition. At larger scales, the pattern drifts towards CSR. A region of elevated 131 

values, corresponding to clustering, occurs at scales from 1000 to 1500 m. The estimated 132 

fractal dimension value of D=2.0 coincides with that of CSR (Fig. 2B), and thus does not 133 

give any indication of fractal geometry as might be expected from an underlying fractal 134 

pattern of faults or cracks. 135 

Local alignment of points along straight lines was assessed following Amorese et al. (1999). 136 

A rectangular blade with length 1.6 km was centred on each point, and rotated through a full 137 

revolution. Point counts within these blades were compared with the expected count for CSR 138 

and tested using a binomial distribution with a significance level of 0.05 (not corrected for 139 

multiple comparison). The alignments were filtered using the dispersion index, mean index 140 

and butterfly bow criteria of Amorese et al. (1999). The linear alignment analysis is shown in 141 

Fig. 2C. A strong preference for NNW-SSE orientation is evident in the rose plot, with an 142 
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average orientation of 347 degrees (geographical), random orientation rejected at p<0.01 143 

(Rayleigh test). 144 

Morphological parameters were computed as follows. For each position in the N=7243 data 145 

set, a square with sides 150 m was extracted from the grid data, and smoothed with a 146 

Gaussian filter. The local regional depth was estimated from the median depth of the corners. 147 

The depth of the pockmark was estimated as the difference between the local depth and the 148 

largest depth in the square. Automatic delineation of pockmarks is difficult, because the 149 

depression continues gradually into the surrounding plain. For robustness, we simply defined 150 

the pockmark as the area deeper than a threshold value set to 1.3 m below the local depth. 151 

The diameter/depth calculations are summarized in Fig. 2D. The pockmark was edge-152 

detected using the Canny algorithm and least squares fitted to an ellipse. Diameter was 153 

computed as the geometric mean between the major and minor axes. The average orientation 154 

of the major axes (Fig. 2E) is 347 degrees, the same value as for the lineaments described 155 

above. Random orientation can be rejected at p<0.0001 (Rayleigh test). 156 

 157 

3.3 Preparation and TIMS U-Th analysis of carbonates 158 

The carbonate blocks collected from the pockmarks contained a large fraction of detrital 159 

material and were not suitable for regular U-Th dating. We performed TIMS U-Th analysis to 160 

obtain isotopic ratios of 
230

Th/
232

Th, 
238

U/
232

Th and 
234

U/
232

Th for isochron plotting.  161 

Sample preparation and TIMS U-Th analysis (Table 1 I) was performed at the Department of 162 

Earth Science, University of Bergen. Bulk carbonate samples were crushed to <5 mm and 163 

washed with water to remove clay and shell fragments. Further cleaning was done by 164 

repeated treatment with an EDTA and ascorbic acid solution for gentle leaching of the outer 165 
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surface of the sample fragments. For TIMS analysis sub-samples of 1-3 g were incinerated at 166 

500 and 900°C prior to dissolution to decompose organic matter. The material was dissolved 167 

in HNO3 and spiked with 
233

U, 
236

U, and 
229

Th. Chemical separation and purification included 168 

scavenging with Fe-precipitation, two sets of ion-exchange columns (AG-1x 8 chloride 169 

forms, 200-400 mesh) and final evaporation with H3PO4. U and Th were loaded separately on 170 

single filaments (5x zone refined rhenium) with graphite and measured as U
+
 and Th

+
 on a 171 

Finnigan MAT 262 mass spectrometer, through three different experiments with SEM ion 172 

counter jumping mode acquisition. Mass calibration was done routinely when switching from 173 

lighter elements to U, as well as an initial run of the in-house standard (B-018, Eemian 174 

speleothem). All U-Th ages are reported with 2 σ uncertainties. A standard algorithm was 175 

used to calculate the ages using the program ‘TIMS-Age4U2U’ (Lauritzen and Lundberg, 176 

1998). Results include activity ratios, U and Th concentrations, and U-Th ages (Fig. 3). 177 

 178 

3.4 Radiocarbon dating of foraminifera 179 

Radiocarbon dating was performed on foraminifera and molluscs picked from samples 180 

selected from the different cored units, both within and outside the pockmarks (Table 2, Fig. 181 

1D). Samples were prepared by picking monospecific sub-samples of benthic foraminifera 182 

where possible from the sand fraction. Both a mollusc and foraminifera (mostly Nonionellina 183 

labradorica) samples were dated at BH 102 tube 6E. Samples were analysed by Beta 184 

Analytic Inc. (Florida, USA) using AMS analyses. The 2 error in the ages of the AMS 185 

radiocarbon dates is ± 40–50 years, where  is the standard deviation. 186 

 187 

3.5 Gas hydrate stability modelling at Troll 188 
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The TEMP/W (®-TEMP/W) software was used to model the hydrate stability at the Troll 189 

location in the local uppermost 450 m of the sedimentary succession. TEMP/W is a finite 190 

element software that can be used to model the thermal variations in the ground related to 191 

environmental changes. The formulation allows to analyse both simple and highly complex 192 

geothermal problems, with or without temperatures that result in freezing or thawing of 193 

sediment moisture. For this work parameters representative of gas hydrates substituted the 194 

properties of ice thus allowing to determine the stability of gas hydrates for given conditions. 195 

Environmental conditions, i.e. temperature and pressure, were applied to the model for a time 196 

period ranging from the LGM (22 ka b2k) until 8 ka b2k (Tables 3-4). The water pressure 197 

was calculated from either subglacial conditions assuming wet based ice or, following 198 

deglaciation, from a combination of eustatic sea level from Deschamps et al. (2012) and an 199 

isostatic depression of about 110 m (also used by Sejrup et al., 2003 in the Troll area) that 200 

decayed logarithmically until present.  201 

The subglacial temperature was assumed to be 0°C. After the time of the glacial breakup, 202 

from the Norwegian Channel, seafloor temperatures were based on Sejrup et al. (2004). 203 

However, inspection of the species contributing to the earlier part of this curve may indicate 204 

that the temperatures provided by these authors are too high due to the influence of reworked 205 

warm water foraminifera on the transfer functions. The temperature history we used is shown 206 

by the orange curve in Fig. 4A.  207 

The sedimentation history was divided into 18 discrete events since the used software did not 208 

allow a continuous sedimentation history. The hydrostatic pressure at the time of deposition 209 

was used to define the corresponding hydrate stability vs temperature curves (Dickens and 210 

Quinby-Hunt, 1994). The seafloor temperature was applied as a boundary condition to the 211 

topmost layer that had been deposited at the appropriate time step. The depositional history 212 
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from Lehman and Keigwin (1992) was converted to calendar years using CALIB REV7.1.0 213 

(Stuiver and Reimer, 1993) and the Marine 13 calibration curve (Reimer et al., 2013). 214 

The heat flux was kept constant but tuned to give a thermal gradient as found at present with 215 

the present day stratigraphy and a temperature at the sea floor of 7°C and 13.8°C at 200 mbsf 216 

(from unpublished borehole data). 217 

The thermal conductivities were calculated as a function of quartz content, porosity and 218 

hydrate content. The latter was limited to 10 % of the pore volume which is similar to 219 

contents found by seismic refraction experiments (i.e. Bunz et al., 2005; Westbrook et al., 220 

2008 and refs therein) in hydrate bearing areas. Table 4 shows the latent heat of formation 221 

and thermal conductivity of hydrate respectively. 222 

The model output does not compute the migration of gas, so the hydrate content was solely 223 

based on the propagation of the appropriate thermal conditions that are controlled by the heat 224 

flux, thermal conductivity and the latent heat of formation of hydrate (up to a default 225 

maximum of 10% of the pore volume). The model therefore indicates whether or not there is 226 

a possibility for hydrate formation and also gives the time history for temperature changes to 227 

propagate through the sediment.  228 

 229 

4. Results 230 

 231 

4.1 Mapping and statistical analyses 232 

A total of 7,243 pockmarks have been mapped from the high resolution bathymetry data 233 

collected in the area above the Troll field (Fig. 1A). Statistical analyses from the selected 234 
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region of bathymetric data show that the pockmarks (Fig. 1B) have an average density of 235 

10.8 /km
2
. The structures range in size from 10 to 100 meters in diameter and are typically 6 236 

meters deep but can exceptionally be deeper than 20 meters. Three groups can be 237 

distinguished with respect to diameter/depth ratio: deep (shafts), regular (bowls) and shallow-238 

large (saucers) (Fig. 2D). Bathymetric data also show that there is no evidence of structural 239 

control on the location of the pockmarks. This conclusion is in agreement with statistical 240 

analysis of the pockmark distribution that shows neighbour avoidance up to a scale of 241 

hundreds of meters and no indication of fractal geometry (Fig. 2C). Statistical analyses also 242 

reveal a very pronounced NNW-SSE orientation of elongated pockmarks (Fig. 2E). This 243 

orientation coincides with the main N-S currents sweeping the area. Linear alignments of 244 

pockmarks have a similar NNW-SSE trend (Fig. 2C). Industrial data (courtesy of Statoil) 245 

show that the pockmarks field extends over a broad region of 15,000 km
2
 (215 km by 70 km) 246 

in the northern part of the Norwegian Channel. The pockmark density may varies from east to 247 

west, reaching a maximum of 20/km
2
. By using the measured average pockmark density of 248 

10 to 20 per square kilometre we obtain a total number of pockmarks in the range of 150,000 249 

to 300,000 in the region, making this one of the largest pockmark fields in the World.  250 

 251 

4.2 Sea floor observations and analytical results 252 

In addition to the data reported by Mazzini et al. (2016), further observations on pockmark 253 

activity are summarized below. Sea floor images and sampling revealed the presence of 254 

broadly distributed, exhumed carbonate blocks in the pockmarks. These carbonates have bulk 255 


13

C as low as -59.7‰ V-PDB and 
 18

O up to 4.5‰ V-PDB. These values indicate 256 

methanogenic origin, possibly linked to gas hydrate dissociation (Mazzini et al., 2016) as 257 

similarly concluded from carbonate studies collected at other comparable sites (Bohrmann et 258 
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al., 1998; Mazzini et al., 2006; Ivanov et al., 2010; Cremiere et al., 2016). The origin of the 259 

pockmarks can therefore be linked to methane seepage. We argue that the pockmarks in the 260 

Troll area are currently inactive based on: 261 

a) No evidence of bubbles, fluid seepage, microbial colonies or other typical living 262 

chemosymbiotic assemblages observed during seafloor video dives or reported by the 263 

hydrocarbon industry surveys.  264 

b) No free in situ gas has been found in any layer of the cores collected from the pockmarks. 265 

c) Extended exposure of carbonates to sea floor resulting in abundant outer surface alteration, 266 

corrosion and pyrite oxidation. 267 

d) Water analyses extracted from cores sampled inside and outside the pockmarks show no 268 

difference between pockmark and background pore water sulphate concentrations (Mazzini et 269 

al., 2016).  270 

e) No evidence of gas charged sediments or defined conduits is observable from the seismic 271 

data through the pockmarks.  272 

f) Metagenomic studies of pockmark sediments do not show overabundance of 273 

methanotrophic organisms compared to normal sediments (Havelsrud et al., 2012). 274 

 275 

4.3 Dating the pockmark activity 276 

In order to determine the timing and mechanisms for pockmark formation, TIMS U-Th dating 277 

was performed on ten authigenic carbonates samples from the Troll pockmark field. The 278 

TIMS results show high levels of 
232

Th (Table 1A), and the individual U-Th analyses cannot 279 

provide reliable ages because of the detrital contamination. To resolve the contamination 280 
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issue we used isochron plotting to obtain the detrital-free 
230

Th/
234

U and 
234

U/
238

U ratios (Fig. 281 

3, Table 1B). The best-fitted isochron plot for the Troll samples (n=5) gives a U-Th age of 282 

9.59 ± 1.38 ka (Fig. 4A Table 1C). This shows that the timing of methane seepage and thus 283 

carbonate formation took place shortly after the end of the Younger Dryas (YD) temperature 284 

anomaly (Clark et al., 2012; Deschamps et al., 2012). As seep carbonates typically form by 285 

rapid precipitation during methane release (e.g. Luff and Wallmann, 2003), the carbonate age 286 

is virtually identical to  the age of the pockmark field.  287 

Further support for the new age of the pockmarks formations comes from microfossil 288 

radiocarbon dating of samples from units identified with the ROV sub-bottom profiler that 289 

imaged sediments down to 20-35 m (Fig. 1D, Table 2). We have identified four different 290 

units adjacent to the pockmarks (Fig. 1C), and these are representative for the study area 291 

(Haflidason et al., 1998). These are: Unit a (marine deposit 3-4 m thick, fairly transparent, 292 

with a well-defined base up to 10,000 
14

C years BP old - 11.5 cal ka BP); Unit b (10-15 m 293 

thick and well-stratified glacial marine deposit); Unit c (6-7 m thick, transparent and 294 

structureless deposit, with some signal-scattering intervals > 15,000 
14

C years BP old – 17.8 295 

cal ka BP, glacial marine, perhaps reworked by iceberg ploughing); Unit d (a probable 296 

deformation till giving high-amplitude reflection which inhibits deeper imaging). Units a, b 297 

and c correspond to Unit L1, whereas Unit d corresponds to Unit L2 in Sejrup et al., (2003) 298 

and Nygard et al. (2007) that overlies Unit L3, a sandy gravelly deposit from the penultimate 299 

glaciation. The pockmarks clearly cross-cut the reflections in Unit b, including the boundary 300 

between Unit a and Unit b. The radiocarbon-dated foraminifera from the bottom of the 301 

Septagram pockmark gives it a maximum age of about 13 
14

C ka BP (~15 cal ka b2k). 302 

Geotechnical cone penetration tests (CPTs) show that the sediments inside the pockmarks are 303 

over-consolidated compared to those present outside where normal hemipelagic compaction 304 
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occurs. Calculations indicate that up to 7 meters of sediments have been eroded from inside 305 

the pockmarks and can account for the missing part of Unit b that were likely removed during 306 

pockmark formation (Fig. 5). Analogue and modelling studies (e.g. Pau et al., 2014 and refs 307 

therein) show that currents similar to those measured on the seafloor at Troll (i.e. up to 25 308 

cm/s) trigger substantial turbulence inside pockmarks and are capable of preventing the 309 

sedimentation of particles up to fine sand. This process also clarifies why the pockmarks are 310 

not filled and still present on the seafloor although they are inactive. The ice-rafted clasts 311 

inside the pockmarks are interpreted to be lag deposits winnowed from Unit b (a glacial 312 

marine unit) during pockmark formation. 313 

Besides giving an indication for the time of the pockmark formation, the calculated initial 314 

234
U/

238
U activity ratios (Table 1A) suggest that the carbonates precipitated from pore waters 315 

with a composition different from seawater, and that the Troll samples thus have ratios more 316 

characteristic of fresh water or evolved pore waters. Waters with fresh signatures could 317 

potentially be derived from shallow aquifers in sand-silt horizons loaded with ice-derived 318 

melt water, and/or from dissociation of gas hydrates and release of low salinity waters. The 319 

latter is more consistent with the presence of methane-derived carbonates, the broad 320 

distribution of pockmarks, and the 
18

O values of the carbonates. 321 

 322 

4.4 Gas hydrate stability 323 

The regional pressure and seafloor temperature histories since the LGM were used to model 324 

the gas hydrate stability and show that changes in seafloor temperature propagate downwards 325 

within a few hundred years affecting the hydrate stability. 326 
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The model shows that the gas hydrates stability zone extended down to ~300 mbsf when the 327 

area was covered by an ice stream, but that the stability zone was limited to Unit L3 (~75-110 328 

mbsf) following glacial breakup mainly due to the drop in pressure due to loss of subglacial 329 

water pressure. This unit, consisting of coarse sand and gravels, can potentially host a 330 

significant amount of hydrates and remained within the stability zone until the Holocene 331 

warming of the seafloor water masses (11.5 cal ka; Sejrup et al., 2004) with the possible 332 

exception of a period during the Allerød-Bølling period. Fig. 4B summarizes the hydrate 333 

stability in this unit. If only a few percent of CO2 is present in the methane, the whole period 334 

prior to the Holocene warming is well within the stability zone. Hughes et al. (2016) 335 

demonstrate that the deglaciation of the most of the North Sea and the Norwegian Channel 336 

occurred very quickly between 19 and 18 cal ka BP. The sudden drop in pressure (points 2 to 337 

3, Fig. 4B) reflects this rapid breakup of the Norwegian Channel ice stream. Even without a 338 

glacially induced elevated water pressure, Unit L3 remains within the stability zone. 339 

The present gas concentrations in Unit L3 and below are relatively high whereas those in the 340 

overlying units are very low (Statoil unpublished data). This piece of evidence combined with 341 

modelled history of hydrate stability (Fig. 4B), supports that Unit L3 was a pre Holocene 342 

reservoir for gas hydrates.  343 

 344 

5. Discussion 345 

5.1 Scenario for pockmark formation  346 

The observations and the multidisciplinary data collected in the Troll region provide solid 347 

data to constrain the pockmark activity and formation scenario. Rapid changes in water 348 

temperature occurred during the last deglaciation with shifts in seafloor temperatures of more 349 
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than 5°C within a time period of a few decades (Lehman and Keigwin, 1992; Sejrup et al., 350 

2004; Hughes et al., 2016). The numerical modelling supports the concept that abrupt 351 

climatic changes that influenced global and local ice-sheet melting histories triggered the gas 352 

hydrate dissociation and methane release to seafloor. This resulted in the rapid formation of 353 

pockmarks and extensive precipitation authigenic carbonate in the conduits close to the sea 354 

floor. This sequence of events is supported by all the available data and the formation 355 

scenario involving broad clathrate dissociation is consistent with the large number of 356 

pockmarks evenly distributed over a large flat area. This situation would unlikely result from 357 

sporadic gas seepage from deeper seated reservoirs. Further supporting evidence comes by 358 

the statistical calculations and in particular by the application of the “drainage cell” model of 359 

Moss et al. (2012). According to these authors, neighbour avoidance may indicate a relatively 360 

shallow source and that the pockmarks formed over a relatively short period of time. The 361 

suggested 75 m deep Unit L3 is indeed a shallow candidate that was capable of releasing 362 

significant amounts of gas from clathrates dissociation.  363 

The fact that the gas release was synchronous throughout the area is supported by the vast 364 

regional seismic survey. The data shows no evidence of buried pockmarks other than on the 365 

horizon associated with the Younger Dryas (YD), thus ruling out the possibility of earlier 366 

stages of gas venting in the region. Instead, all the pockmarks are located at the same 367 

stratigraphic level. This timeframe not only matches the output of the applied numerical 368 

model but also the U-Th dating (9.59 ± 1.38 ka BP ) of the precipitated carbonates and 369 

defines a time window for the methane seepage. Additional matching evidence is provided by 370 

the dating of the sediments around and inside the pockmarks revealing the same age of the 371 

pockmarks formation.  372 
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Our results show that the gas hydrate dissociation was completed after the YD, during a 373 

period when rapid warming is broadly documented (e.g. Alley, 2000; Alley, 2004 and refs. 374 

therein). Indeed there is no evidence of gas hydrates being currently present in the Troll area, 375 

which is now outside the hydrate stability zone and showing very low methane 376 

concentrations in the sediments between 0-75 m below the sea floor. No active pockmarks 377 

are reported in the area although numerous surveys have been performed for the oil and gas 378 

industry during the development of various hydrocarbon fields. This finding is consistent 379 

with the absence of post-YD methane concentration peaks in the ice cores and with the short 380 

residence time (~10 years) of methane in the atmosphere (WG1, ICCP_Report 2013). We 381 

conclude that the hydrate dissociation and pockmark-derived methane release represent a 382 

climate-induced pacing of the seafloor temperature. Such a scenario is relevant for 383 

understanding the consequences of the current warming of the oceans. 384 

 385 

5.2 Gas hydrates volumes 386 

For a conservative calculation of the gas volume released from the pockmarks above the Troll 387 

field, we use a 30 % porosity and a 10 % saturation of the pore volume by hydrate volume 388 

present before the last deglaciation in the sand and gravel rich Unit L3 over the Troll region. 389 

This is consistent with values documented by various authors (i.e. Bunz et al., 2005; 390 

Westbrook et al., 2008 and refs therein). Unit L3 is on average ~7 m thick, and mapped to be 391 

laterally extensive in all of the Troll region and further over a large flat area of at least 15,000 392 

km
2
 in the northern part of the Norwegian Channel (e.g. Rise et al., 2004). The bathymetry 393 

changes by only ~100 meters from Troll to the shelf edge and pockmarks are present 394 

throughout the area. Using these parameters we assess a potential volume of 3.15 km
3
 of gas 395 

hydrates that presumably dissociated from Unit L3 in a relatively short period of time (~150 396 
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to 300 yrs). This conservative estimate would generate ~0.26 MtCH4/km
2
. The released 397 

methane was likely partly oxidized in the water column. However, if rapidly released from 398 

the pockmarks, a significant fraction would have reached the atmosphere. 399 

 400 

 401 

6. Conclusions 402 

Based on a multidisciplinary study from the Northern North Sea, we conclude that: 403 

 One of the World's largest pockmark fields is located in the Norwegian Channel in the 404 

Northern North Sea. More than 7000 pockmarks have been found at the sea floor in a 405 

broad region above and around the Troll gas field. The pockmark density is ~10/km
2
. 406 

 The pockmarks do not show clustering, but rather neighbor avoidance, suggesting a 407 

regional and well distributed sub-surface source of gas.  408 

 Carbonate geochemistry and gas hydrate stability modelling shows that gas hydrate 409 

dissociation is a likely triggering mechanism for the pockmarks. None of the 410 

investigated pockmarks showed evidence for present-day activity and gas seepage.  411 

 U-Th dating of the carbonates shows a formation during the initial Holocene, thereby 412 

indicating that the pockmarks formed as a consequence of the rapid climatic changes 413 

following the Younger Dryas.  414 

 We conclude that external forcing was responsible for the formation of one of the 415 

World’s largest pockmark fields. 416 

 417 
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 426 

Figure captions 427 

 428 

Fig. 1 (A) Fragment of Troll field multibeam coverage where more than 7,000 pockmarks 429 

(2.5 m gridding resolution) have been mapped. Indicated are the Troll A platform and the 430 

pockmark areas more intensively studied. Inset map offshore Norway. UTM Zone 31,WGS84 431 

datum. (B) Example of high-resolution bathymetry (0.2 m resolution) of the Septagram 432 

pockmarks showing a 15 m deep circular depression with a flat interior For location refer to 433 

Fig. 1A. (C) Example of ROV sub-bottom profile through the Septagram pockmark. 434 

Indicated are the four imaged units (a-d). Fir size refer to Fig. 1B. The pockmarks typically 435 

cross-cut the reflections of Unit b. See text for geochronology of these units. (D) Multibeam 436 

line across the Septagram region and locations of the cores available that were collected in 437 

the area for radiocarbon dating and CPT (pink triangles). The scale for the maps in the 438 

manuscript are in meters or kilometers, UTM Zone 31, WGS84 datum. 439 
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 440 

Fig.2 (A) Ripley’s K analysis. (B) Log-log plot of Ripley’s R(d). The asymptotic linear slope 441 

gives a fractal dimension close to D=2.0. (C) Lineaments found with the blade method and 442 

rose plot of the orientations over the survey area (scale in kilometers). (D) Diameter and 443 

depth of the analysed pockmarks highlights three distinct groups of pockmarks: deep (shafts), 444 

regular (bowls) and shallow-large (saucers). (E) A pockmark with its fitted ellipse. Grid cells 445 

are 2.5 m square. Rose plot of major axis orientations (N=6834). The mean pockmark 446 

orientation coincides with the main N-S currents swiping the area.  447 

 448 

Fig. 3 U-T raw data isochron plots for the Troll samples. The slopes of the regression lines 449 

provide the detrital Th-free ratios of 
230

Th/
234

U and 
234

U/
238

U. The intercept with the y-axis in 450 

the left diagram gives the un-contaminated 
230

Th/
232

Th activity ratio. 451 

 452 

Fig. 4 (A) Single age data and isochron data from all the samples compared to 1) the 453 

Greenland temperature data (GISP2 core, Alley, 2000; Alley, 2004); 2) the (GISP2 core, 454 

Alley, 2000); 2) temperature history for the hydrate stability modelling (orange curve) with 455 

some adjustments in the older parts where the transfer functions may be influenced by 456 

reworked warm species.). The orange curve is derived from 3) the seafloor temperature 457 

history from Sejrup et al. (2004) (black curve). The Troll carbonate ages follow the Younger 458 

Dryas rapid warming event. Carbonate formation (and hence pockmark formation) could be 459 

related to the deglaciation and the resulting changes in sea floor pressures and temperatures 460 

that followed. (B) The pressure-temperature development from Table 3 (point numbers in 461 

blue) plotted in a diagram showing the stability zone of methane hydrate (light blue area to 462 
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the upper left). The point numbers in Table 3 are shown in blue. The dashed red line indicates 463 

the hydrate stability curve for methane with 10 % CO2. 464 

 465 

Fig. 5 Results of CPT tests performed in the study area. The results are adjusted to same 466 

depth below sea level (i.e. elevation). The shaded area shows the range of CPT measurements 467 

previously performed in the Troll area. Fig. 1D shows location of CPT stations. 468 

 469 
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Table 1.  
I - Summarised output of TIMS U-Th analysis of pockmark carbonates from Septagram, Troll. All errors are 2.  

 
II – Ratios for isochron plotting calculated from TIMS U-Th analysis. All errors are 2. 

Lab.No. 230Th/232Th 238U/232Th 234U/232Th 
716 2.0303 ± 0.1268 0.7298 ± 0.0482 7.9493 ± 0.5300 
717 2.1468 ± 0.2132 0.7410 ± 0.1005 8.4132 ± 1.1927 
732 1.2868 ± 0.0223 0.1565 ± 0.0034 1.5546 ± 0.0355 
733 1.1803 ± 0.0369 0.2352 ± 0.0088 2.4414 ± 0.0916 
734 1.4835 ± 0.0441 0.4575 ± 0.0171 4.8314 ± 0.1790 

 
III – Activity ratios for calculating 230Th ages and resulting ages (± 1).  

Group 234U/238U 230Th/234U Age ± 1 (ka) 
Troll – Septagram 11.042 ± 0.471 0.08508 ± 0.01179 9.587 + 1.378 – 1.366 

 
 

Lab.No. Sample ID ppm 238U ppm 232Th 234U/238U (act) 230Th/234U (act) 230Th/232Th (act) 234U/238U (init act) Age ± 2 (ka) Corrected age (ka)* 

716 B53-2 mørk 4.128 ± 0.019 154 1.126 ± 0.018 0.255 ± 0.006 2.030 ± 0.127 1.14 ± 0.02 31.89 ± 0.89 9.31 ± 1.92 
717 B53-2 lys 3.986 ± 0.078 147 1.173 ± 0.081 0.255 ± 0.026 2.147 ± 0.213 1.19 ± 0.08 31.80 ± 3.90 10.65 ± 3.79 
732 B67-4 1.024 ± 0.003 182 1.026 ± 0.010 0.828 ± 0.012 1.289 ± 0.022 1.04 ± 0.01 188.3 ± 8.8 Negative§ 
733 B67-6 1.527 ± 0.005 178 1.073 ± 0.011 0.483 ± 0.010 1.180 ± 0.037 1.09 ± 0.01 71.18 ± 2.18 Negative§ 
734 B610-8 2.438 ± 0.008 145 1.091 ± 0.009 0.307 ± 0.007 1.484 ± 0.044 1.10 ± 0.01 39.67 ± 1.08 Negative§ 
* Correction factor used by TIMS Age4U2U (Lauritzen and Lundberg, 1998) is 1.5. § Negative because correction factor is larger than present-day measured value 
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Table 2: Results of radiocarbon analyses and core coordinates.

Name Sample Northings Eastings Depth 
(m) Dated material

14C Age 
(yrs)

St.dv.  
(1 s)

d13C ‰   
(V-PDB)

Cal age b2k Cal age  
(1 s)

BH102 BH 102 tube 6E 6722185 543260 5.80 Molluscs 12 430 40 -0.8 13 960 70

BH102 BH 102 tube 6E 6722185 543260 5.80 N. labradorica 12 960 50 -4.8 14 955 150

BH103 BH 103 tube 7 6722195 543320 6.40 N. labradorica 14 290 50 -2.4 16 890 130

DWS101 DWS 101 tube 7 6722185 543149 10.00 N. labradorica 13 180 40 -10.4 15 270 70

DWS-201A DWS 201A-2-D 6722280.8 543691.8 0.64 U. mediterranea 6 020 40 -0.3 6 490 55

DWS-201A DWS 201A-5-B/C 6722280.8 543691.8 3.39 U. mediterranea 9 950 40 -1.8 10 980 95

DWS-201A DWS 201-A-Shoe B 6722280.8 543691.8 5.43 N. labradorica 11 160 40 -2.4 12 710 45

DWS-204 DWS 204-4-F 6722269.7 543653.1 2.90 N. labradorica 11 140 40 -3.4 12 700 45

DWS-204 DWS 204-6-B 6722269.7 543653.1 4.47 Sp. Undetermined 11 790 40 -0.8 13 320 55

DWS-206 DWS 206-2-D 6722210.2 543326.4 0.45 N. labradorica 12 980 40 -3.2 14 995 130

DWS-209 DWS 209-3-F 6722041.7 542782.8 1.25 U. mediterranea 7 300 40 -0.2 7 810 55

DWS-209 DWS 209-6-B 6722041.7 542782.8 3.75 N. labradorica 10 940 40 -4 12 570 60

DWS-209 DWS 209-6H 6722041.7 542782.8 4.55 N. labradorica 12 130 40 -3.2 14 205 75

DWS-209 DWS 209-6H 6722041.7 542782.8 4.55 N. labradorica 12 090 40 -1.4 13 575 70
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Table 3: Pressure and temperature development for moraine layer (Unit L3) at 90 mbsf. The 
temperatures have been extracted from model. The pressure was calculated from a combination of 
water depth (Fleming et al, 1998) and estimated isostatic depression for points 3 to 7. For points 1 
and 2 a subglacial water pressure corresponding to a head of water of 200 m water above sea level 
was used. All hydrate had melted for points 8, 9 and 10. Point no. refers to blue number in Fig. 4B. 

 

Point Temp. Pressure  Cal Age 
Rel. Sea 

level Isostasy 
“Seafloor” 

temp 
Burial 
depth Comment 

No. (°K) (MPa) (ka BP) (m) (m) (°K) (m) 
1 273.5 3.9 22 -110 100 273 6 Ice Stream: 200 m head of water 
2 275.4 4.5 18.5 -93 100 273 62 Burial by till: 200 m head of water 

3 275.7 3.5 16.5 -93 63 274 62 

Cold seafloor water at site. Ice 
breaks up – no sub glacial 
pressure. 

4 276.6 3.55 14.3 -73 48 274 64 Allerød warming 
5 276.35 3.62 13.5 -63 45 274 72 Burial, rising sea level 
6 276.35 3.67 11.5 -45 32 274 76.5 End of ice age 
7 276.64 3.67 11.3 -45 32 277 76.5 Influx of warm water 
8 281.35 3.9 8.5 -13 23 277 77.8 Rising sea level 
9 281.35 3.9 8.5 -13 23 280 77.8 Warmer water 

10 283.14 3.8 0 0 0 280 80 Present 
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Parameter Value Unit

Seawater density 1027 kg·m-3

Hydrate density 915 kg·m-3

Grain matrix density 2793.44 kg·m-3

Thermal conductivity of seawater 49.68 kJ·days-1·m-1·K-1

Thermal conductivity of hydrate 42.34 kJ·days-1·m-1·K-1

Thermal conductivity of quartz 664.42 kJ·days-1·m-1·K-1

Thermal conductivity of non-quartz minerals 216 kJ·days-1·m-1·K-1

Quartz fraction of grains 0.2 -
Specific heat capacity of seawater 3.87 kJ·kg-1·K-1

Specific heat capacity of hydrate 2.08 kJ·kg-1·K-1

Specific heat capacity of grains 0.71 kJ·kg-1·K-1

Volumetric heat capacity of seawater 3974.49 kJ·m-3·K-1

Volumetric heat capacity of hydrate 1903.2 kJ·m-3·K-1

Volumetric heat capacity of grains 1983.34 kJ·m-3·K-1

Latent heat of hydrate 430 kJ·kg-1

Volumetric latent heat of hydrate 393450 kJ·m-3

Table 4. Properties of water and hydrate used to calculate the thermal properties of 
the sediments.

Table4
Click here to download Table: Table 4_sediment properties.pdf

http://ees.elsevier.com/epsl/download.aspx?id=887855&guid=574b68a6-580d-4ba5-a183-bb76775ed53b&scheme=1



