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A B S T R A C T

A simple scaling analysis using a simple mass block model supports observations and measurements on snow
avalanches, that the maximum front-velocity of “major” avalanches scales with the total drop height of the track.
That is ∼U g H /2max sc and the average velocity ≈U Uπ

2
max . The approximation of avalanche tracks as either

cycloid or parabola reveal furthermore the connection between the path geometry and the well-known α-βmodel
(Lied and Bakkehøi, 1980). This connection implies a strong dependency of the apparent retardation on the
mean steepness of the track. The velocity scaling and the dependency of the retardation on the mean slope angle
needs to be reflected in avalanche models.

1. Introduction

Snow avalanches constitute in many alpine areas a serious threat to
settlements and infrastructure. Usually, avalanche practitioners use a
series of more or less sophisticated dynamical avalanche models to
identify areas endangered by avalanches; models like the Voellmy-
model (Voellmy, 1955), the PCM-model (Perla et al., 1980), and more
recently RAMMS (Christen et al., 2010), SAMOS-AT (Sampl and Granig,
2009) or similar ones. The models are also used to determine forewarn
times for, e.g., temporal mitigation measures like traffic lights. How-
ever, those models still lack a thorough and documented valida-
tion—which is partly caused by the lack of sufficient avalanche da-
ta—and therefore, it requires extensive experience from practitioners to
assess the model results.

On the other side, Lied and Bakkehøi (1980) proposed a method to
estimate the “maximum” avalanche runout distance based only on to-
pographic parameters. To this end, they investigated 423 Norwegian
avalanches, which had their maximum extent registered. That is, they
looked at “major events” that more or less reached terminus of the path
in question. Here and in the following, we use the term “major events”
in the sense that these avalanches have return periods of at least several
years and can be considered large relative to the path. That means they
can be classified as R4 or R5 (cf. Greene et al., 2016, 3.6.5.2 Size -
relative to path). In contrast to the often used Canadian avalanche size
classification (CASC), which is based on the “destructive force”, see
McClung and Schaerer (2006) or Greene et al. (2016, 3.6.5.1 Size -
destructive force), the relative size classification does not involve an
explicit length scale. For this reason, the relative size is more

appropriate for the aim of this paper, the study of scaling behavior.
Just a brief remark at this point, whereas the CASC is based on

avalanche mass for its categorization, the European Avalanche Warning
Services (EAWS) use the deposition volume for its size categorization
(c.f. Moner et al., 2013). This can cause a slight difference between both
classifications.

Lied and Bakkehøi found that the “Fahrböschungswinkel (Heim,
1932)”, the so-called α-angle, can be—in first order—related to the so-
called β-angle, which can be regarded as a measure for the mean gra-
dient/slope angle of the avalanche path. In its present form for Norway,
the relation for the mean “Fahrböschungswinkel”, αm, for “major”
events is given by

= − ∘α β0.96 1. 4 ,m (1)

with a standard deviation± σ=2.3°. It is noteworthy to say that σ
involves both, temporal and spatial variations, due to the variety of
considered paths and due to the uncertainty of the return periods of the
investigated avalanches. Very similar relations exist for various other
countries and regions (McClung and Mears, 1991; Wagner, 2016, and
references therein). Common to these statistical relations is that they
are independent of any length scale or absolute avalanche size, however
they all consider “large” or “major” events (i.e. relative size R4 or R5).
These are the sizes that most interest practitioners in hazard mapping.

Recently, Gauer et al. (2010), Gauer (2013, 2014) investigated some
scaling relations based on a series avalanche observations from various
test-sites, whereby they indicated that the maximum observed front-
velocity of major (dry-mixed) avalanches scales as ∼U g Hscmax ,
where g is the gravitational acceleration and Hsc the drop height. Also
McClung and Schaerer (2006) suggested a scaling ∝U Hscmax .
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In this paper, we investigate now the scaling behavior of a simple
mass block moving along idealized avalanche paths (see Fig. 1). First,
we look at the motion along cycloidal paths (Section 2.1) and then
along parabolic paths (Section 2.2). Specifically, we look at the relation
between runout length and maximum velocity along the track. In this
way general trends can be shown.

In order to establish a connection to real avalanche observations at
the end, we demonstrate how the α-β model behaves with regard to the
runout length on our idealized tracks (Sections 2.1.1 and 2.2.1). For our
investigations on the velocity, we focus on two friction laws: 1) a
constant retarding acceleration in paragraphs 2.1.2.1 and 2.2.2.1 and 2)
a Coulomb friction law in paragraphs 2.1.2.2 and 2.2.2.2. Section 3
tries to provide a compilation of observed trends. To this purpose, ei-
ther analytical expressions or approximations based on regression
analyses of numerical results are provided, or the trends are depict in
plots. In particular, Fig. 12 provides an overview on the investigated
scaling behavior—if someone wants to look a little ahead. In Section 4,
we briefly discuss how the derived scaling behavior relates to real ob-
servations and measurements from (dry-mixed) avalanches (i.e. ava-
lanches that are partially fluidized and accompanied by a powder
cloud; for more explanation on flow regimes see, e.g., Gauer et al.,
2008). To this end, avalanche measurements of runout and velocity are
qualitatively compared with results from the scaling analysis.

2. Scaling behavior of a simple mass block model

We base our analysis on a simple mass block model of the form,

⎜ ⎟= ⎛
⎝

− ⎞
⎠

md U
d t

m g ϕ asin ,rete
(2)

which is—admittedly—an oversimplification for real avalanche flow.
Nonetheless, the model is an admissible first-order approximation and
therefore a justifiable proxy for the following scaling analysis. It is si-
milar to the established Voellmy- and PCM-model. Here, U is the ve-
locity of the center of the mass block, m is its mass, g the acceleration
due to gravity, and ϕ is the local slope angle. The effective retarding
force m arete is a measure for the energy dissipation along the track.

2.1. Cycloidal path profile

Many avalanche paths resemble—at least to a first degree—in parts
a cycloid. A cycloid is known as the curve of the fastest descent of a

mass block under constant gravity. The horizontal and vertical com-
ponent of the evolute can be described by

= −X R (Θ sin Θ),e (3)

= −Z R (1 cos Θ),e (4)

where Θ corresponds to the angle through which a rolling circle with
radius, R, has rotated.

Fig. 2 shows an example of such an “avalanche track” scaled by its
maximum drop height Hsc. The parameterization for the shown track is
given by

= − − −x R(Θ) ((Θ sin Θ) (Θ sin Θ )),0 0 (5)

= −z R(Θ) (cos Θ cos Θ),0 (6)

where the relation

= −π ϕΘ 2 , (7)

is used with ϕ in [ϕ0,0]. ϕ equals the negative gradient of the track,
ϕ=−arctan(dz/dx). The effective drop height is

= − +H RΔ (Θ , Θ) ( cos Θ cos Θ )e 0 0 (8)

and the maximum drop height, Hsc, of the track is given by

=
= +
= −
=

H H π
R
R ϕ

R ϕ

(Θ ) Δ (Θ , ),
(1 cos Θ ),
(1 cos(2 )),

2 sin .

sc e0 0

0

0
2

0 (9)

The distance, S, along the track (i.e. the arc-length) is given by

∫

∫

= ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

=

S dx
d

dy
d

d

R d

(Θ , Θ )
Θ Θ

Θ

2 sin(0.5Θ) Θ,

0 1 Θ

Θ 2 2

Θ

Θ

0

1

0

1

(10)

or integrated as

= −
= −

S R
R ϕ ϕ

(Θ , Θ ) 4 ( cos(0.5Θ ) cos(0.5Θ ))
4 (sin sin ).

1 0 0 1

0 1 (11)

2.1.1. α-β model, part I
As reference point for their statistical model, Lied and Bakkehøi

(1980) chose—more or less—arbitrarily the β-point, which is defined as

Fig. 1. Comparison between cycloidal (full lines) and parabolic (dashed lines) tracks for
initial slope angles, ϕ0, between 30° and 60° in 5° steps. The tracks are scaled with the
maximum drop height, Hsc. The markers mark the so-called β-point (see Lied and
Bakkehøi, 1980).

Fig. 2. Cycloidal track scaled by Hsc as approximation for an avalanche track. The ad-
ditional lines connect the top point with the so-called β, αm, and αm− σ points according
to Eq. (1). The black dashed line connects the top with the low point of the cycloid and αc
is the corresponding “Fahrböschungswinkel”. In addition ϕ0 is indicated, which is the
initial gradient of the track at its top.
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the point, where the gradient to the track,

= −
−

= −d z
d x

ϕsin Θ
1 cos Θ

tan ,
(12)

equals ϕ= ϕβ=10°. With

= + − +x R ϕ ϕ π π(2 sin(2 ) ( /9 sin( /9))),β 0 0 (13)

= − +z R ϕ π( cos(2 ) cos( /9)) ,β 0 (14)

tanβ can be expressed by

= =
− +

+ − +
β

z
x

ϕ π
ϕ ϕ π π

tan
cos(2 ) cos( /9)

2 sin(2 ) ( /9 sin( /9))
,β

β

0

0 0 (15)

or using γ1β=(π/18− ϕ0) and γ2β=(π/18+ ϕ0)

=
+

β
γ

γ γ γ
tan

sin
/sin cos

.β

β β β

2

1 1 2 (16)

Due to the fortunate choice of the β-point, the β-angle is almost
linear related to relevant ϕ0 angles,

≈ + ∘β ϕ0.42 6. 8 ,0 (17)

with (R=0.98; σf=0.09°). As mentioned, ϕ0 is the gradient of the
track in the “release area”, which is typically in the range of [30°,55°].
Both, the β-angle and ϕ0, can be regarded as a measure for the steepness
of the track.

Similar to Eq. (15), the runout angle α (“Fahrböschungswinkel”) is
given by

= =
− +

+ − +
α z

x
ϕ ϕ

ϕ ϕ ϕ ϕ
tan

cos(2 ) cos(2 )
2 sin(2 ) (2 sin(2 ))

,α

α

α

α α

0

0 0 (18)

or using γ1α=(ϕα− ϕ0) and γ2α=(ϕα+ ϕ0)

=
+

α
γ

γ γ γ
tan

sin
/sin cos

,α

α α α

2

1 1 2 (19)

where ϕα=−arctan(dzα/dxα) (i.e. ϕα is the slope angle of the track at
the point (xα, zα)). Therefore, ϕ0 and ϕα can be used to parameterize the
runout on our idealized track. In the case the avalanche stops in the
valley bottom, that is at the low point of the cycloid where ϕα=0, one
obtains for the “Fahrböschungswinkel” αc

⎜ ⎟=
−

+
= ⎛

⎝
⎞
⎠

α
ϕ

ϕ ϕ
ϕtan

1 cos(2 )
2 sin(2 )

sin 0.5 .c
0

0 0
0

(20)

Otherwise,

≈ − + +α ϕ ϕtan 0.02 1.07 sin(0.5 ) 1.24 sin(0.5 )α0 (21)

gives a first approximation. For ϕ0 in the range of 25° to 60°, which
covers the slope angle of typical release areas,

≈ + ∘α ϕ0.42 2. 2 .c 0 (22)

Combining Eqs. (15) and (18) one can obtain a relationship for αc
depending on the β angle,

≈ − ∘α β0.97 4. 6 ,c (23)

which is quite similar to the one obtained by Lied and Bakkehøi (1980)
for αm− σ. Fig. 3 shows the comparison between the Norwegian α-β
relation (1) and the relation for αc in Eq. (23).

2.1.2. Mass block model—energy considerations, part I
Until now we looked at some geometrical relations that follow di-

rectly from the idea behind the statistical α-β model. In this section
now, we discus some dynamic aspects that result. To this end, we look
at a simple mass block moving down the track. The energy balance of
the mass block is given by

= −mv m g z e1
2

( Δ ),Dis
2

(24)

where ∫=e a s ds( )Dis
S

ret0 marks the energy dissipated per unit mass
along the track with an arc-length S. Δz is the vertical drop. Here, we
also assume that the initial velocity is zero. The mean retarding accel-
eration

∫=a
S

a s ds1 ( ) ,ret
S

ret
1 0

1

(25)

which is based on the relation for the energy balance from start to stop

∫= ⎛
⎝

− ⎞
⎠

g dz
dx

d a s
dx

dx0 ( ) ,
x

x ret

0

1

(26)

where x0 is the horizontal start and x1 the stopping position. This im-
plies, the total potential energy is dissipated along the arc-length S1. For
a cycloidal track, one obtains

= −
−

= +

a
g

ϕ ϕ

(Θ , Θ ) 1
4

cos(Θ ) cos(Θ )
cos(0.5Θ ) cos(0.5Θ )

0.5( sin sin ),

ret 1 0 0 1

0 1

0 1 (27)

where ϕ1 is the negative gradient of track at the stopping position. In
the special case Θ1= π (i.e. ϕ1= 0), this is

=

≈ −

a
g

ϕ

β

0.5 sin

0.94 sin 0.07.

ret
0

(28)

This relation is similar and shows the same tendency to the one
proposed by Gauer et al. (2010)

≈ +a
g

β0.82 sin 0.05,retm

(29)

with± σ/g=0.04, which they derived from avalanche observations
and measurements. Both relations are shown in Fig. 4.

2.1.2.1. Mass block with constant retarding acceleration aret = const.. Let
us first focus on a mass block moving with a constant retarding
acceleration.

Maximum velocity. To derive an expression for maximum velocity,
we start from the relation

= −v g z a s2 (Δ ) ,rg (30)

which is based on the energy balance (24) and where we use the
abbreviation arg= aret/g. For the cycloidal track, Eq. (30) equals

Fig. 3. Comparison of α-β relations according to Eq. (1) and relations (23) and (77). The
red dash-dotted line shows the fit by Lied and Bakkehøi (1980) and the gray-shaded area
marks the corresponding± σ-range. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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= − − −ds
dt

gR a2 ((cos Θ cos Θ) 4 ( cos(0.5Θ ) cos(0.5Θ))) ,rg0 0 (31)

with =v ds
dt . The maximum velocity along the track can be found by

using the prerequisite

=
−

− − −
=d s

dt
gR a d dt

gR a
2 ( sin Θ 2 sin(0.5Θ)) Θ/

2 ((cos Θ cos Θ) 4 ( cos(0.5Θ ) cos(0.5Θ)))
0,rg

rg

2

2
0 0

(32)

from which the condition follows that

=

=

= +

a cos(0.5Θ)
0.5 sin Θ
sin(0.5Θ)
0.5( cos(0.5Θ ) cos(0.5Θ )).

rg

0 1 (33)

Using now Eq. (33) in Eq. (31) one obtains a relation for the max-
imum velocity along the track

= −U g R ( cos(0. 5Θ ) cos(0. 5Θ )),max 0 1 (34)

or

= −
−

U g HΔ ( cos(0.5Θ ) cos(0.5Θ ))
(cos(Θ ) cos(Θ ))

.emax
0 1

0 1 (35)

Relating Eq. (35) to the maximum drop height Hsc (cf. Eq. (9)), gives

⎜ ⎟

⎜ ⎟= ⎛
⎝

− ⎞
⎠

= ⎛
⎝

− ⎞
⎠

U
g H

g H ϕ
ϕ

2
1 cos(0.5Θ )

cos(0.5Θ )

2
1

sin
sin

.

sc

sc

max
1

0

1

0 (36)

For Θ1= π, it follows

=U
g H

1
2

.
sc

max

(37)

That means, for an avalanche on cycloidal track, which reaches the
valley bottom and has a constant retarding acceleration, the scaled
maximum velocity is independent of the actual steepness of the track.
Relation (36) is included in Fig. 12.

Travel time. Using Eq. (30), the travel time of a mass block down the
track is given by

∫ ∫=
−

dt ds
g z a s s2 ( Δ ( ) )

.
t S

ret0 0

a 1

(38)

For a cycloid path the travel time is

∫=
− − −

t R
g

d
a

2 sin(0.5Θ) Θ
( cos Θ cos Θ) 4 (Θ , Θ)(cos(0.5Θ ) cos(0.5Θ))

.a
rgΘ

Θ

0 0 00

1

(39)

If one assumes that arg(Θ0,Θ) is constant along the track, in which
case arg=0.5 (sinϕ0+ sinϕ1)= 0.5 (cos(0.5Θ0)+ cos(0.5Θ1)), one
obtains for an avalanche descending along of a cycloidal track

=

=
−

t π R
g

π H
g

2 2

2 2Δ
( cos Θ cos Θ )

a

e

0 1 (40)

and related to the maximum drop height, Hsc,

=t π
ϕ

H
g

2
sin

.a
sc

0 (41)

This means the travel time is independent ϕ1; that is ta time is in-
dependent of the actual runout distance. This phenomenon is known as
isochronous. However, the travel time depends on the steepness of the
track. On a shallower track avalanches take longer. Relation (41) is also
included in Fig. 12.

Mean velocity. Finally, the mean velocity can be found by

=U S
t

(Θ , Θ ) ,
a

0 1

(42)

which gives the relations

⎜ ⎟

= −

= −
−

= ⎛
⎝

− ⎞
⎠

U
g R

π
g H
π

π
g H ϕ

ϕ

2
( cos(0.5Θ ) cos(0.5Θ )),

2 Δ ( cos(0.5Θ ) cos(0.5Θ ))
cos(Θ ) cos(Θ )

,

2
2

1
sin
sin

.

e

sc

0 1

0 1

0 1

1

0 (43)

For Θ1= π, one obtains

=U
π

g H2
2

sc

(44)

Comparing Eq. (36) with Eq. (43) one recognizes, that in all cases,
the mean velocity is

=U
π

U2 .max (45)

As an illustration, Fig. 5 shows an example of the velocity dis-
tribution of a mass block with constant retarding acceleration moving
along a cycloidal track. For comparison, the apparent friction factor μa
(= aret/gcosϕ) is shown, that is the variable friction factor that a
Coulomb model needs, to behave like a model with constant retarding
acceleration.

2.1.2.2. Mass block with Coulomb friction aret = μ g cosϕ. In this section,
we consider a mass block sliding with Coulomb friction. This is
probably one of the first mathematical descriptions for the motion of
an avalanche, proposed by Prof. M. Rosenmund (cited in Coaz, 1910).

Friction parameter μ. Simple energy considerations for a mass block
require that potential energy between start and stopping position is
dissipated along the track, that is

∫=g H g μ R dΔ 2 sin (0.5Θ) Θ.e Θ

Θ 2
0

1

(46)

Here, we use again relation (10) and cosϕ=sin(0.5 Θ). Further,
using Eq. (8), one obtains the relation

Fig. 4. Comparison of aret according to relation (28) with ϕ1 as parameter and relation
(29). The gray-shaded area marks the± σ-range of Eq. (29).
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= −
− − −

μ cos Θ cos Θ
(Θ sin Θ ) (Θ sin Θ )

,0 1

1 1 0 0 (47)

which depends on the start and stopping position. Using γ1= (Θ1

−Θ0)/2 and γ2= (Θ1+Θ0)/2

=
−

μ
γ

γ γ γ
sin

/sin cos
,2

1 1 2 (48)

and in the case Θ1= π, this is

=μ ϕsin(0.5 )0 (49)

For small ϕ1,

≈ + +μ ϕ ϕ0.02 0.9 sin(0.5 ) 1.05 sin(0.5 ).0 1 (50)

Based on avalanche observations, Gauer et al. (2010) suggested that
the friction coefficient μ0 for a Coulomb model should vary, like

≈ +μ β
β

0.82 tan 0.52
cos

.0 (51)

Fig. 6 shows a comparison between relations (48) and (51), where β
is given by Eq. (17).

Maximum velocity. Following the same approach as above, one can
derive the relation for the maximum velocity, starting with

= − − − − −ds
dt

gR μ2 ((cos Θ cos Θ) ((Θ sin Θ) (Θ sin Θ ))),0 0 0

(52)

where we use ∫ dsin (0.5Θ) ΘΘ
Θ 2
0

. The prerequisite

=
− −

− − − − −
=d s

dt
g R μ

μ2
sin Θ (1 cos Θ)

((cos Θ cos Θ) ((Θ sin Θ) (Θ sin Θ )))
0

2

2
0 0 0

(53)

provides a condition for the location of the maximum velocity to occur:

= =μ ϕcot(0.5Θ) tan . (54)

Using Eq. (54) in Eq. (52), one can obtain an approximation for the
maximum velocity along the track

≈ + −U g R ϕ ϕ2 (0.0315 0.635 0.655 ),max 0 1 (55)

or

≈
+ −

−
U g H

ϕ ϕ
ϕ ϕ

2 Δ
(0.0315 0.635 0.655 )

sin(2 ) sin(2 )
.emax

0 1

0 1 (56)

Related to the maximum drop height Hsc (see Eq. (9)), it is

⎜ ⎟≈ ⎛
⎝

+ − ⎞
⎠

U
gH ϕ ϕ

ϕ2
0.044 0.9 0.92

sin
.sc

max
0 1

0 (57)

The approximations are based on regression analyses of numerical
results.

Travel time. Further, one obtains the relation for the travel time:

∫=
− − − − −

t R
g

d
μ

2 sin(0.5Θ) Θ
( cos Θ cos Θ) 4 (Θ sin Θ (Θ sin Θ ))

.a Θ

Θ

0 0 00

1

(58)

This might be approximated by

≈ + −t π R
g

ϕ ϕ ϕ2 2 (0.77 0.22cos )(1 0.28 sin tan ),a 0 0 1
(59)

or, when related to the maximum drop height, by

≈ + −t π
ϕ

H
g

ϕ ϕ ϕ2
sin

(0.77 0.22 cos )(1 0.28 sin tan ).a
sc

0
0 0 1

(60)

In this case, the travel time is depending on the steepness and the
actual runout distance.

Mean velocity. Finally, the mean velocity,

=U
S ϕ ϕ

t
( , )

,
a

0 1

(61)

is again around

≈U
π

U2 .max (62)

2.2. Parabola (polynomial 2 degree)

In one of the original papers, Bakkehøi et al. (1983) used a second
degree function of the type

= + +z a x b x c2 (63)

to fit the avalanche tracks for their analysis (see Fig. 7). A closer look
reveals the connections between the parameters of the parabola and the
α-β model. The horizontal distance xm to the low point is

Fig. 5. Upper panel, velocity of a mass block (blue line) moving with a constant retarding
acceleration along a cycloidal track (black line, ϕ0= 45°) and reaching the “valley
bottom”. The green-dotted line marks the β-point, and the dash-dotted red line and the
dashed magenta line depict the αm- and αm–σ-points according to Eq. (1). The lower panel
shows the retarding acceleration, aret (blue line), and the corresponding apparent friction
factor, μa= aret/gcosϕ (red dashed line). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison of μ according to relation (48) with ϕ1= [0°,5°,10°] and relation (51).
The gray-shaded area marks the± σ-range of Eq. (51).

P. Gauer Cold Regions Science and Technology 151 (2018) 34–46

38



= −x b
a2

,m (64)

and the elevation of the low point

= +z b
a

c
4

.m
2

(65)

With Hsc= z0− zm, where z0 is the elevation of the “release area”
and

=H b
a4

,sc
2

(66)

the offset, c, is

= +c z b
a4

.m
2

(67)

Finally, the steepness of the “release area” (i.e. the negative gra-
dient) is

= − = −′′ϕ z H btan 2 ,sc0 (68)

where z′′=2a, and from Eq. (66) it follows

=a
ϕ

H
tan

4
.

sc

2
0

(69)

Combining Eqs. (64)–(69), Eq. (63) can be rewritten as

= − + +z
ϕ

H
x ϕ x H z

tan
4

tan ,
sc

sc m

2
0 2

0 (70)

and

= − +z
ϕ

H
x ϕ xΔ

tan
4

tan .
sc

2
0 2

0 (71)

2.2.1. α-β model, part II
For a parabola, the so-called β-point is found similar to Eq. (15) by

= =
+

β z
x

π ϕ
tan Δ tan( /18) tan

2
.10

10

0

(72)

As in the case of the cycloid track approximation, the β-angle is also
in the case of a parabola almost linear related to ϕ0 in the relevant
range (i.e. ϕ0= [30,55]),

≈ − ∘β ϕ0.72 1. 4 ,0 (73)

with (R=0.98; σf=0.37°). In the case that the avalanche stops in the
“valley bottom”, one obtains for the runout angle (i.e.
“Fahrböschungswinkel”)

= = − =α H
x

b ϕ
tan

2
tan

2
.c

sc

m

0

(74)

Otherwise α is given by

=

= − +

=
+

α H
x

ϕ
H

x ϕ

ϕ ϕ

tan Δ

tan
4

tan ,

tan tan
2

,

e

α

sc
α

α

2
0

0

0
(75)

where we use the relation tanϕα=−dzα/dxα. Here again, we use ϕα
instead of ϕ1 to emphasize that there is a unique relation between the
slope angle for a parabola and α. Combining Eqs. (72) and (75) yields

= +
−

α β
ϕ π

tan tan
tan tan( /18)

2
.α

(76)

For the range of interest for tanϕ0, this ensures a nearly linear re-
lation

≈ − ∘α β1.1 6. 4 ,c (77)

which is included in Fig. 3.

2.2.2. Mass block model—energy considerations part II
Following the same line of argumentation as in Section 2.1.2, one

obtains the relation for the mean retarding acceleration

=
a ϕ ϕ

g
H
S

( , ) Δ ,ret e1 0

(78)

where ϕ0 and ϕ1 are the slope angles (i.e. the negative gradient −
arctan(dz/dx)) of the start and stopping position, respectively. The arc-
length, S, can be calculated using

∫= + +S ax b dx1 (2 ) .
x

0
21

(79)

This gives

= + + − + +S x
a

X X X
a

b b b( ) 1
4

( 1 arcsinh( )) 1
4

( 1 arcsinh( )),1
2 2

(80)

where the tangents of the local slope angle is X=(2ax1+ b). From this,
one obtains

=
−

− + − + −

− − + − + −

a ϕ ϕ
g ϕ ϕ ϕ

ϕ ϕ ϕ

( , ) 1

( tan( ) 1 tan ( ) arcsinh(tan( )))
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(81)

which might be approximated by

≈ − +
a ϕ ϕ

g
ϕ ϕ

( , )
1.1 0.95 cos 0.37 tanret 1 0

0 1 (82)

and for ϕ1= 0 as

≈ −a
g

β1.05 sin 0.095.ret

(83)

Fig. 8 shows the comparison between relation (82) and Eq. (29).

2.2.2.1. Mass block with constant retarding acceleration aret = const.. Let
us again first focus on a mass block moving with a constant retarding
acceleration.

Fig. 7. Parabolic track scaled by Hsc as approximation for an avalanche track. The ad-
ditional lines connect the top point with the so-called β, αm, and αm− σ points according
to Eq. (1). The black dashed line connects the top with the low point of the parabola and
αc is the corresponding “Fahrböschungswinkel”. In addition ϕ0 is shown, which is the
gradient of the track at its top.
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Maximum velocity. Starting from energy balance (24), the velocity
along the track is

= −ds
dt

g z a s2 (Δ ) ,rg (84)

where =a a g/rg ret . Following the same line of argumentation as in
Section 2.1.2.1 (i.e. exploring the condition d2s/dt2= 0), one obtains
the condition where along the track the maximum velocity occurs:

=
−

X
a

a1
.rg

rg
2

(85)

Here, we use the abbreviation for the local gradient X=2ax+ b.
With this and Eqs. (84), (80), and (71), the maximum velocity can be
approximated by

⎜ ⎟≈ ⎛
⎝

+ − − ⎞
⎠

U
g H

ϕ ϕ
ϕ
ϕ2

1.05 0.16 tan 0.15 tan 1.1
tan
tan

.sc
max 1 0

1

0 (86)

Again, the approximation is based on a regression analysis of nu-
merical results.

Travel time. The travel time is found by using

∫ ∫=
−

dt ds
g z a s s2 ( Δ ( ) )

,
t S

ret0 0

a 1

(87)

which provides the estimate

≈ + +t π H
g

ϕ ϕ2 (0.52 0.81 cot 0.43 tan ).a
sc

0 1
(88)

The travel time is depending on the steepness as well as on the
actual runout distance.

Mean velocity. The mean velocity is given by

=U
S ϕ ϕ

t
( , )

a

0 1

(89)

and is again

≈U
π

U2 .max (90)

2.2.2.2. Mass block with Coulomb friction aret = μ g cosϕ. In this section,
we consider a mass block sliding with constant Coulomb friction. The
respective friction parameter is found again by energy considerations
similar to Eq. (46), that is

∫− =g H g μ dxΔ 0,e x

x

0

1

(91)

where dx= ds/cosϕ. Using tanϕ1=−dz1/dx1, one obtains

=
+

μ
ϕ ϕtan tan

2
.0 1

(92)

Fig. 9 shows a comparison between relations (92) and (51), where β
is given by Eq. (73).

Maximum velocity. The velocity along the track is

⎜ ⎟= ⎛
⎝

−
+ − ⎞

⎠
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g
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H
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tan
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sc

2
0 2
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(93)

The maximum velocity is found using once again the prerequisite
d2s/dt2= 0, which provides the condition

= =
+

μ ϕ
ϕ ϕ

tan
tan tan

2
.0 1

(94)

Using Eq. (94) in Eq. (93), gives the relation for the maximum ve-
locity

⎜ ⎟= ⎛
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Travel time. Using Eq. (38), the travel time of a mass block with
Coulomb friction along a parabolic track is given by

∫ ∫=
+ +

− − −
dt

g
ax b dx

a x bx μ x
1
2

1 (2 )
( )

,
t x

0 0

2

2

a 1

(96)

which is around

≈ +t π
ϕ

H
g

ϕ
sin

2 (0.41 0.58 cos ),a
sc

0
0

(97)

where we disregard a slight dependency on ϕ1.
Mean velocity. The mean velocity is found by

=U
S ϕ ϕ

t
( , )

a

0 1

(98)

and yields

≈U
π

U2 .max (99)

Fig. 10 plots an example of the velocity distribution of a mass block
with constant Coulomb friction moving along a parabolic track. For

Fig. 8. Comparison of aret according to relation (82) with ϕ1 as parameter and Eq. (29).
The gray-shaded area marks the± σ-range of Eq. (29).

Fig. 9. Comparison of μ according to relation (92) with ϕ1= [0°,5°,10°] and relation (51).
The gray-shaded area marks the± σ-range of Eq. (51).
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comparison, the apparent retarding acceleration =a μ g ϕ( cos )reta is
shown, that is the variable retarding acceleration that a mass block
needs, to behave like a pure Coulomb model.

3. Compilation of observed trends

In this section, we provide a summary of the main results from our
scaling analysis. The following Tables 1 to 3 present either analytical
expressions or approximations based on regression analyses of numer-
ical results. Table 1 gives a brief overview of typical geometrical rela-
tions or their approximations for a cycloid and a parabola.

Table 2 summarizes the relation between the geometry of the track
and a representative α-angle, for which we choose the gradient between
high and low point of the track (αc).

To repeat some of the underlying thoughts of our scaling analysis in
Section 2. Basic energy considerations provide a relation between the
mean retarding force and the stopping position of an avalanche. For our
simple mass block model this relation is

=a
g

H
S

Δ .ret e

1 (100)

This means, a mass block with a constant retarding acceleration
equal to aret will stop at a distance S1. For a mass block with constant
Coulomb friction, Eq. (100) provides also a condition for the required
friction factor

= =μ H
x

a
g

S
x

Δ .e ret

1

1

1 (101)

These relations are independent of the actual form of the track and
are not restricted to our idealizations.

Fig. 11 shows contour plots of the required aret and μ values de-
pending on given start and stopping positions, which are parameterized
by ϕ0 and ϕ1, for our idealized avalanche tracks. The lower panel in the
figure shows the same data, however, related to the β-angle, which is by
practitioners more commonly used. As mentioned above, the β-angle
can be regarded as a measure for the mean steepness of the track. Cy-
cloids with large initial gradients (i.e. large ϕ0) are on average less steep
than their parabolic counterparts. This is seen Fig. 1 and this is the
reason why in Fig. 11, ϕ0 is mirrored in a much smaller range of β-
angles in the case of cycloids than for parabolas.

The dependency of aret or μ on the steepness of the track supports
suggestions that those parameters reflect rather dynamical than pure
material behavior. Considering the idea behind the α-β model, all
runouts with ϕ1 in the gray areas or to the right reflect large or “major”
events (size R4 or R5), whereby the gray areas themselves mark the
most probable range for these size classes.

Avalanche models like the Voellmy-model (Voellmy, 1955) and the
PCM-model (Perla et al., 1980) introduce a notable velocity de-
pendency of the retardation. Energy consideration can provide some
constraints for the parameter choice of these models and yield an ex-
pression for the mean retarding acceleration (see also discussion in
Gauer, 2014),

= +a
g

μ x
S

ca H .ret
sc

1

1
2

(102)

In the case of a PCM-type model, a2 ≡ D/M and for a Voellmy-type
model a2 ≡ g/ξ h. D/M is a lumped friction parameter whereas in the
Voellmy-type model the flow height, h, occurs explicitly and ξ is the so-
called turbulent friction parameter. Here, we will also use the ob-
servation that ≳ ∼U U gH π2 /sc

2 2 2 from which follows that the factor

≳c 0.2 (or using the approximation ≈U U0.812
max for which c≈ 0.33

yields).
First of all, Eq. (102) implies that the choice of the parameter for the

Coulomb friction part and for the velocity dependent part—in the
Voellmy- as well as in the PCM-type model—is not independent. Sec-
ondly, looking at Fig. 11, typical values of a g/ret range between 0.25

Fig. 10. Upper panel, velocity (blue line) of a mass block moving with a constant
Coulomb friction along a cycloidal track (black line, ϕ0= 45°) and reaching the “valley
bottom”. The green-dotted line marks the β-point, and the dash-dotted red line and the
dashed magenta line depict the αm- and αm–σ-points according to (1). The lower panel
shows the Coulomb friction factor, μ (red dashed line), and the corresponding apparent
retarding acceleration, =a μ g ϕcosreta (blue line). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Typical geometrical relations for cycloidal and parabolic tracks or their (rough) approximations.

Parameter Cycloid Parabola

β ≈ 0.42ϕ0+ 6.8° ≈ 0.72ϕ0− 1.4°
ΔHe/Hsc = −1 ϕ

ϕ
sin2 1
sin2 0

= −1 ϕ
ϕ

tan2 1
tan2 0

S1/ΔHe =
+ϕ ϕ
2

sin 0 sin 1
≈ − −0.8 3.5

ϕ
ϕ

ϕ
2.3

sin 0

tan(0.5 1)
tan2 0

S1/x1 ≈ 1.37− 0.37cosϕ0+ 0.17tanϕ1 ≈ 0.89+0.27tanϕ0+ 0.15tanϕ1

x1/ΔHe = + − +
−

ϕ ϕ ϕ ϕ
ϕ ϕ

(2 1 sin(2 1)) (2 0 sin(2 0))
2(sin2 0 sin2 1)

=
+ϕ ϕ
2

tan 0 tan 1

=a g/ret
He

S
Δ

1
= 0.5(sinϕ0+ sinϕ1) ≈ 1.1− 0.95cosϕ0+ 0.37tanϕ1

=μ He
x

Δ
1

≈ 0.02+ 0.9sin(0.5ϕ0)+ 1.05sin(0.5ϕ1) = 0.5(tanϕ0+ tanϕ1)

Table 2
α-β approximation with ϕ0 and β-angle as reference for a cycloidal and parabolic track,
respectively. Here, αc is the “Fahrböschungswinkel” to the low point.

Reference Cycloid Parabola

ϕ0 tanαc=sin(0.5ϕ0) tanαc=0.5tanϕ0

ϕ0 αc ≈ 0.42ϕ0+ 2.2° αc ≈ 0.78ϕ0− 7.8°
β-angle αc ≈ 0.97β− 4.6° αc ≈ 1.1β− 6.4°
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and 0.7 depending on the mean slope angle. Therefore, the order of
magnitude for a2Hsc should be ≲ 1. That means a2 should scale with Hsc

and follow a2 ∝ 1/Hsc. This deliberation is in accordance with the re-
quirement for the maximum velocity of these models that

= − ∼U
gH a H

ϕ μ ϕ1 sin cos 1
2

,
sc sc

m m
max

2 (103)

where − tanϕm is gradient of the track where maximum velocity is
reached. Both requirements and the runout observations of avalanches
suggests that the velocity dependency might be lower than commonly
proposed and that the retardation is either dominated by a rather
constant aret or by Coulomb friction. The latter is in line with sugges-
tions by Ancey and Meunier (2004). Both conditions, Eqs. (102) and
(103) are necessary but not sufficient to determine an unique set of

parameters {μ, a2}, but they show their interrelation as well as the
dependency of the parameters on the steepness of the track. For ex-
ample, for an avalanche reaching the low point on cycloidal track,
numerical simulations suggest that the combination

= −μ a H ϕ{ ; } {0.22; 1.7 sin 0.73} as well assc2 0 (104)

= −μ a H ϕ{ ; } {0.62 sin 0.14; 0.25}sc2 0 (105)

may provide reasonable results. Similarly, the combinations

= − +μ a H ϕ{ ; } {0.22; 3.2 cos 3} orsc2 0 (106)

= −μ a H ϕ{ ; } {0.47 tan 0.07; 0.25}sc2 0 (107)

give suitable approximations for a parabolic track. As indicated above,

Fig. 11. Contour plots of a g/ret (full lines) and μ (dashed lines) depending on ϕ0 and ϕ1, which mark the start and stop position. Left panel shows the values for a cycloidal track and right
panel for a parabolic one. The black dotted line marks the ϕ1 angles corresponding to the β-point and dashed-dotted line the one to the αm-point according to Eq. (1). The gray-shaded area
gives the respective± σ-range. The lower panels show the same as above except with β instead of ϕ0 as reference.

Table 3
Overview of scaling parameters Umax, U , U2, and ta.

Cycloid Parabola

Parameter Constant aret Coulomb friction Constant aret Coulomb friction

U
gHsc
max

2

= ⎛
⎝

− ⎞
⎠

1 ϕ
ϕ

sin 1
sin 0

≈ ⎛
⎝

⎞
⎠

+ −ϕ ϕ
ϕ

0.044 0.9 0 0.92 1
sin 0

≈ + − −Φ Φ1.05 0.16tan 0.15tan 1.1 Φ
Φ1 0

tan 1
tan 0 = ⎛

⎝
− ⎞

⎠
1 ϕ

ϕ
tan 1
tan 0

U
Umax

= 2/π ≈ 2/π ≈ 2/π ≈ 2/π

U
U

2

max

≈ 0.81 ≈ 0.81 ≈ 0.81 ≈ 0.81

ta
π Hsc g2 /

= 1/sinϕ0 ≈ × −+ Φ Φ(1 0.28sin tan )Φ
Φ

(0.77 0.22 cos 0)
sin 0

0 1
≈ 0.52+0.81 cotϕ0+ 0.43 tanϕ1 ≈ + ϕ

ϕ
(0.41 0.58 cos 0)

sin 0
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this kind of velocity dependency introduces a scale dependency of the
friction parameter a2. For more discussion on this topic, we refer to
(Gauer, 2013, 2014).

Table 3 provides an overview of the obtained scaling relations for
Umax, U , U 2, and ta with respect to the track type and to the assumed
friction model, either constant aret model or Coulomb-friction.

Fig. 12 gives an illustration of the dependency of Umax and ta on ϕ0

and ϕ1 for the two track types. The corresponding friction parameter
are shown in Fig. 11. Roughly speaking, both models can provide quite
similar results. There are, however, some subtle difference regarding
the behavior with respect to the track type. One may say, the Coulomb
frictional model on a parabolic track reflects the scaling behavior of a
constant aret model on a cycloid. That is, the Coulomb model on a
parabola is almost isochronous like the constant aret model on a cycloid,
and the velocity scalings show similar tendencies. Although, for similar
conditions, the Coulomb frictional model tend in many cases to reach
slightly higher velocities. This is also reflected in Fig. 13, which shows a
contour plot of Umax directly versus α- and β-angle for a parabolic track.
This parametrization might be more familiar for practitioners. Again,
all runouts with α in the gray area or to the right of it reflect large or
“major” events (size R4 or R5). Like the probability decreases to ob-
serve runouts to the right of the gray area, decreases the probability to
observe corresponding high velocities likewise.

Fig. 14 shows the velocity of a mass block moving with a constant
retarding acceleration along a cycloidal track. The retarding accelera-
tion is in the way chosen that the mass block stops at the β-point (which

Fig. 12. Top row, contour plots of maximum velocityU gH/ /2scmax for constant aret (full lines) and Coulomb friction (dashed lines). Bottom row, comparison of travel time t π H g/( 2 / )a sc

for constant aret (full line) and Coulomb friction (dashed line). The left panels show the comparison for a cycloidal track and right panels for a parabolic one. The black dotted line marks
the ϕ1 angles corresponding to the β-point and dashed-dotted line the one to the αm-point according to Eq. (1). The gray-shaded area gives the respective± σ-range.

Fig. 13. Contour plots of U gH/ /2scmax for constant aret (full lines) and Coulomb friction

(dashed lines) depending on the runout angle α. As a reference, the β-points (dotted line),
αm-points (black dashed-dotted line) and the± σ range (gray shaded area) according Eq.
(1) are shown (for explanation see Lied and Bakkehøi, 1980). The black line marks the
low point (i.e. αc) and the fat black line marks the “release area”.
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is close to the αm+ σ -point), the αm-point, or at the αm− σ -point. In
these cases, the corresponding maximum velocity U g H/ scmax range
between 0.54 and 0.68.

4. Comparison to measurements and observations

In this section, we briefly discuss how the derived scaling behavior
relates to real observations and measurements from avalanches,
whereby we mainly focus on dry-mixed avalanches as these often
combine a relative long runout and high velocity. To make the con-
nection, we qualitatively compare avalanche measurements of runout
and front-velocity with results from the scaling analysis. Thereby, we
use a more descriptive or exploratory statistics approach; focus of this
paper is not a detailed inferential analysis of avalanche data. One re-
mark in advance, avalanche size class R5 considers by definition rare
events. This causes that more often than not measurements and direct
observations of avalanches are tending to be biased by smaller sizes.

At first, Fig. 15 presents several proposed α-β model relationships
for various mountain regions, which involve a wide range of drop

heights. In addition both relations, the one for the cycloid and the one
for parabola (see Table 2 or Eqs. (23) and (77)) are included. Despite
the variety of the data sets and the difference between idealized and
real avalanche tracks (e.g. the track in Ryggfonn is neither ideal para-
bola nor cycloid), the data are in reasonable accordance with the given
scaling. As indicated in Fig. 11, where the gray shaded area marks
the± σ range of runout observations according to the α-β model (1),
the choice of αc as a reference for the comparison might be a rather
conservative but reasonable. According to Fig. 11, αc, representing the
low point of the parabola or cycloid (i.e. ϕ1= 0), might by closer
αm− σ than to αm. This is also reflected in Fig. 15.

In the case of avalanches, it is worthwhile to note that due to the
strong dependency of the α-angles on the steepness of the respective
avalanche path, the sole mentioning of the α-angle as a characteristic
for the runout length is actually little informative. Only the connection
with a characteristic of the track such as the β-angle provides a suffi-
cient reference to relate α-values to extraordinary events. An exception
might be, if α-angles of a specific path/release area are compared to
each other. In Fig. 15, this is indicated for avalanches at Ryggfonn with
different return periods.

One further remark, Lied and Bakkehøi (1980) argued for choice of
the β-point: “The 10° point was chosen because it seems to correspond to the
lowest value of the dynamic friction coefficient,μ, in avalanche snow (μ ≈
tan10°) . The exact value ofμis not known and is unimportant here. The
main reason for choosing 10° is that at slope angles around this value, it
seems likely that retardation sets in.” This is still a common misconcep-
tion, although the simple calculations above suggest and avalanche
measurements (Gauer, 2014; Sovilla et al., 2010) show that (almost) all
avalanches already start to decelerate on much steeper slopes. On the
other hand, most major avalanche events surpass the β-point and they
come to rest below this point, as the α-β model implies.

Fig. 16 illustrates the comparison of measured front-velocities from
major avalanche events in various tracks with simple mass block cal-
culations. For details on the measurements, we refer to (Gauer, 2012,

Fig. 14. Velocity of a mass block moving with a constant retarding acceleration along a
cycloidal track (gray dashed line; ϕ0= 40°) and reaching 1) the β-point (cyan dashed
line), 2) αm-point (red dashed line), and 3) αm-σ-point (magenta dashed line). The cor-
responding maximum velocities are marked with a •. Note, the velocity here is scaled by

gHsc . (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 15. Comparison of proposed α-β relations for several mountain ranges (data adapted
from McClung and Mears, 1991; Wagner, 2016, and references therein). The gray-shaded
area marks± σ-range corresponding to the Norwegian relation (1). In addition, α values
from avalanches at the Ryggfonn test-site are shown.

Fig. 16. Range of front-velocities, U g H/ sc , along the track for a compilation of mea-

surements from various (major) avalanches. Blue line shows the mean, the blue dash lines
the± σ-range and the red dashed line the maximum observed velocity. The red dots mark
the maximum of the different measurements whereby the marker size indicates the EAWS
size. The black line represents a “mean path” geometry and the gray shaded area the
envelope of all geometries. As a reference, the β-point, αm and αm-σ are shown (for ex-
planation see Lied and Bakkehøi, 1980). In addition, the velocity distribution is given for
a simple mass block model with constant aret (dashed magenta line) along a cycloidal
track (dashed gray line; ϕ0 ≈ 47°) and with Coulomb friction (dotted magenta line) along
a parabolic track (dotted gray line; ϕ0 ≈ 40°). The inset shows the variation of the
measured maximum front-velocities, U g H/ scmax (mea), and the distribution of the ex-

pected maximum velocity for the cycloid (cyc) and the parabola (para) corresponding to α
∼ N(αm,σ2). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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2013, 2014). To facilitate a comparison, the path geometries are scaled
by the fall height Hsc and the velocity as U g H/ sc . Then the mean of
the observed velocities and their standard deviations are calculated at
each point along the track. Similarly, an averaged path profile is cal-
culated, which could be regarded as a kind of “standard path”. The
presented data comprise avalanche tracks with drop heights between
120 m and 1220 m. The EAWS size might be best expressed as

= ⌊ ⌉ −VEAWS log ( ) 1,Dep10 (108)

where VDep is the volume of the deposit. Thus, an increase of one EAWS
size corresponds to an increase in volume of a factor of the order of 10.

For the simulation, the “mean path” was either fitted to a cycloid or
to a parabola. The friction parameters were chosen in that way that the
mass block stopped at the low point of the track (at αc), which is ac-
tually longer as one would expect from the α-βmodel. Along the cycloid
we present a run with constant retarding acceleration, aret/g ≈ 0.37,
and along the parabola one with Coulomb friction μ ≈ 0.42. As ex-
pected from the choice of the friction parameters the maximum velocity
is slightly above the measured ones, nonetheless the simulations are in
accordance with the measurements. As example, for the cycloidal fit, ϕ0

≈ 47° and the expected ϕ1 ≈ 5.3° corresponding to the mean α-angle
according to Eq. (1). Now, using Eq. (36) provides ≈U gH/ 0.62scmax ,
which is in agreement with the measurements. The inset shows an ex-
tended comparison between the measured maximum front-velocities
and the expected maximum velocities according to the variation σ of
the expected αm-angles. The comparison is done for a cycloid and a
constant aret model as well as for a parabola and a Coulomb model by
using a Monte-Carlo approach and assuming a normal distribution α ∼
N (αm,σ2). By keeping in mind that the measurements are probably
biased to smaller relative sizes and their tracks are not idealized, the
accordance between measurements and models is surprisingly good.

Also the comparison of the range of measurements in Fig. 16 with
our example in Fig. 14, which shows calculations for the same cycloid,
supports that the scaling is consistent with our measurements.

Finally, Fig. 17 depicts an extended collection of observed max-
imum front-velocities of dry-snow/dry-mixed avalanches from various
sites around the globe. Data originate, among others, from Ryggfonn

(□), Vallée de la Sionne, Lukamanier, Col de Lautaret (△,⊳), Rogers
Pass (★), and Takahira (⋄). References to the data can be found in, e.g.,
(Gauer, 2012, 2013, 2014, and references therein) as well as in (Shoda,
1966; Gubler et al., 1986; Schaerer, 1973; McClung and Schaerer, 1983;
Schaerer and Salway, 1980; Eybert-Berard et al., 1978; LaChapelle and
Lang, 1980; Nettuno, 2004). Sites from where a series of measurements
are available are marked separately. The measurements were done with
various methods such as timing between know points, filming, or
RADAR measurements. In contrast to the data in Fig. 16, not in all
cases, the front-velocity was followed along the whole profile, which
can cause a slight underestimation of the real maximum value. Also, not
all of these avalanches are major events relative to the path (i.e. size R4
or R5); or roughly spoken, not all of those avalanches surpassed the β-
point.

Despite the variety of measurement methods and the variety of
tracks, most of which are not perfect parabolas, and despite the varia-
tion of ambient conditions and sizes (drop height as well as volume),
the data are in general accordance with the proposed scaling behavior,
especially with the model with aret=const. For a pure Coulomb model,
one would by trend expect slightly higher velocities (see Fig. 13). This
can also be seen in the inset b). It shows the variation of the measured
maximum front-velocities, U g H/ /2scmax (m), and the distribution of
the corresponding maximum velocities for a model with constant aret
(a) and a Coulomb model (C) on a parabola with α and β values cor-
responding to the measurements. As in Fig. 16, here too, the mea-
surements tend to be slightly below the model values for the idealized
tracks.

5. Conclusions

In this paper, we studied the scaling behavior of a simple avalanche
model along idealized tracks and compared the results with a wide
range of avalanche observations and measurements regarding runout
distance and maximum front-velocity. For major events, we found

∼U g H /2scmax . The corresponding travel time of the avalanche front
∼t H2av sc (in s), however, it is depending of the mean slope angle. On

a shallower track avalanches take longer. Admittedly, our mass block
model and the idealization of real avalanche tracks as smooth 2-di-
mensional cycloids or parabolas is a huge oversimplification; no ava-
lanche path is perfect a cycloid nor parabola, which makes a one-to-one
comparison difficult. Nonetheless, this first order approximation re-
produces a series of observations and measurements on dry-mixed
avalanches surprisingly well. Therefore, the scaling can provide prac-
titioners with a useful first guess on the expected velocity of dry-mixed
avalanches. Wet-snow avalanches will probably behave differently as
measurements suggest (e.g. Gauer and Kristensen, 2016; Steinkogler
et al., 2014). The consistency between model and observations/mea-
surements suggests, firstly, a strong dependency of the apparent re-
tardation on the mean steepness of the track, for which the β-angle
might be a proxy. Secondly, the contributions of snow erosion (Gauer
and Issler, 2004; Sovilla et al., 2006), snowpack properties (Steinkogler
et al., 2014), or the avalanche size (Gauer et al., 2010; Gauer, 2016) to
the retardation seem to be of second order. That does not mean these
effects are not important; they are determining the return period of the
actual runout distance in a specific avalanche path. Therefore, the
particular snowpack properties and the relative avalanche size may
matter.

Our results are in line with those of Ancey (2005), although, he
focused his analysis on only seven avalanche tracks with total fall
heights between 1000 m and 1900 m and a mean β≈ 25° (σ=4.3°). He
also did not include velocity measurements in his analysis.

Our scaling analysis does not provide direct insight of the rheology
of (dry-mixed) avalanches. Nonetheless, it can provide constraints to it;
that is, combined observations on, S1, Umax, and ta will give indication
on the flow behavior. In any case, the velocity scaling and the

Fig. 17. Scaled maximum front-velocities U gH/ /2scmax (color coded) of dry-mixed

avalanches: compilation of measurements from various sites around the globe. As re-
ference, the β-points (dotted line), αm-points (black dashed line) and the± σ range (gray
shaded area) according Eq. (1) are shown (for explanation see Lied and Bakkehøi, 1980).
The blue lines show the expected maximum front-velocities with aret=const. on a
parabolic track. The fat black line marks the “release area”. Marker size indicates the
avalanche size following the EAWS size classification. Inset a) shows the cumulative
distribution of Hsc to give an impression of the underlying data. Inset b) shows the var-
iation of the measured (m) maximum front-velocities, U g H/ /2scmax , and the corre-

sponding distribution of the maximum velocity for a model with constant aret (a) and a
Coulomb model (C) on a parabola.
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dependency of the retardation on the mean slope angle needs to be
reflected in avalanche models.

The indicated scaling behavior also implies that conclusions drawn
from avalanche measurements originating from a limited number of
paths (test-sites) need to be interpreted with care as long as no further
cross-comparisons between different avalanche paths (test-sites) have
been undertaken, which could uncover possible underlying scaling re-
lations. But also results from small-scale granular and snow-slide tests
need to be interpreted taking into account avalanche measurements,
observations, and the presented scaling.
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