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Abstract A large rockslide was released from the inner Askja caldera into Lake Askja, Iceland, on 21 July
2014. Upon entering the lake, it caused a large tsunami that traveled about ~3 km across the lake and
inundated the shore with vertical runup measuring up to 60-80 m. Following the event, comprehensive
field data were collected, including GPS measurements of the inundation and multibeam echo soundings
of the lake bathymetry. Using this exhaustive data set, numerical modeling of the tsunami has been
conducted using both a nonlinear shallow water model and a Boussinesg-type model that includes
frequency dispersion. To constrain unknown landslide parameters, a global optimization algorithm,
Differential Evolution, was employed, resulting in a parameter set that minimized the deviation from
measured inundation. The tsunami model of Lake Askja is the first example where we have been able to
utilize field data to show that frequency dispersion is needed to explain the tsunami wave radiation pattern
and that shallow water theory falls short. We were able to fit the trend in tsunami runup observations
around the entire lake using the Boussinesq model. In contrast, the shallow water model gave a different
runup pattern and produced pronounced offsets in certain areas. The well-documented Lake Askja tsunami
thus provided a unique opportunity to explore and capture the essential physics of landslide tsunami
generation and propagation through numerical modeling. Moreover, the study of the event is important
because this dispersive nature is likely to occur for other subaerial impact tsunamis.

1. Introduction

The Askja central volcano is located in the Northern Volcanic Zone of Iceland. The main caldera was formed
in an eruption at the end of the last Ice Age 10,000 years ago. An explosive eruption in March 1875 led to
the formation of an inner caldera, which over the next 40 years gradually subsided and filled up with water
to form Lake Askja [Hartley and Thordarson, 2012]. The lake covers an area of 11 km? and has a maximum
depth of approximately 220 m, a typical depth between 150 and 200 m at the center of the basin and an
average depth of 114 m. To the south and east, it is bounded by steep talus slopes rising over 350 m above
the lake water level while the northern and western sides are defined by 60 m high cliffs. The 60 m deep
Viti explosion crater formed during the 1875 eruption on the northeast shore of the lake. A map of Askja is
shown in Figure 1. A large rock avalanche was released from the southeast margin into Lake Askja on 21
July 2014. The release zone was located from 150 to 370 m above the water level and the main scarp mea-
sured 800 m long. The volume of the rockslide deposit is estimated to be 20 X 10° m?, of which 10 X 10°
m® was deposited in the lake and caused the water level to be raised by over half a meter. Upon entering
the lake, the rockslide had a width of approximately 550 m and caused a sizable tsunami that traveled
across the lake in 1-2 min (based on numerical modeling) and inundated the shores around the entire lake.
The vertical runup varied considerably depending on the alongshore position but measured several tens of
meters in many places. Lake Askja is a popular tourist destination and is visited by tens of thousands of tou-
rists every year. During the peak of summer, it can be expected that over a day between 100 and 200 peo-
ple visit Askja. As luck would have it, the event occurred near midnight when no one was in the area.

A similar event occurred in British Columbia, Canada, in December 2007 when a 3 X 10° m® landslide
entered Chehalis Lake, a popular tourist destination, and generated a tsunami that inundated the shoreline
up to 38 m above the lake level [Roberts et al., 2013; Lawrence et al., 2013; Wang et al., 2015]. Had the event
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Figure 1. (left) The Askja caldera. (right) Overview of Lake Askja after the rockslide. The hillshade is based on bathymetric data gathered through a Multibeam survey conducted by the
University of Iceland, and topographic data from an aerial survey by the Ludwig-Maximilians-Universitat Miinchen (courtesy of the IsViews project, www.isviews.geo.Imu.de). The thick
dark line marks the outline of the rockslide. Measured inundation is shown with a red line and numbers indicate the measured inundation heights at selected points.

not occurred during off-season, it would almost certainly have resulted in injuries and loss of lives as the
lake is surrounded by numerous campsites. There are many other well-documented events in the last cen-
tury that bear witness to the great destructive power of rockslide-induced tsunamis. The largest known sub-
aerial landslide-induced tsunami occurred in Lituya Bay, Alaska in 1958, with a maximum inundation of
524 m above sea level [Fritz et al., 2009; Miller, 1960; Mader and Gittings, 2002; Weiss et al., 2009]. Not long
after that, in 1963, a gigantic rockslide into the Vajont reservoir in northern Italy generated a 250 m high
wave that overtopped the dam. The flood wave travelled downvalley completely destroying several villages
and killing almost 2000 people [Ghirotti, 2012; Kiersch, 1964; Miller, 1964, 1968]. In Norway, narrow fjords
bounded by steep mountains create an environment of significant tsunami hazard which has led to some
of the largest natural disasters in the country’s history. During the last century, the 1934 Tafjord as well as
the 1905 and 1936 Loen events devastated several villages along the shores of Storfjorden and Lake Loen
and caused the loss of 174 lives [Harbitz et al., 1993, 2014; Furseth, 1985, 2009; Jorstad, 1968]. In 1971, a
100,000 m? rock avalanche plunged into Yanahuin Lake in Chungar, Peru, creating a tsunami that washed
up to 30 m elevation above the lake level. Several hundred people were killed and most of the surface facili-
ties of the Chungar mine demolished [Plafker and Eyzaguirre, 1979]. More recently, in 2007, 10 people were
killed after an earthquake triggered hundreds of subaerial landslides along the shores of the Aysén fjord
(Chilean Patagonia), of which several entered the fjord and generated a series of tsunamis with a maximum
runup of several tens of meters [Naranjo et al., 2009; Sepdlveda et al., 2010; Hermanns et al., 2014]. Freundt
et al. [2007] give several additional examples of devastating lake tsunami events triggered by volcanic activ-
ity or instability of volcanic formations.

Extensive measurements of the Lake Askja rockslide deposits and its visible consequences have been con-
ducted by the Icelandic Meteorological Office (IMO), the Institute of Earth Sciences (IES) of the University of
Iceland (UI), the Institute of Geography at the University of Innsbruck (UIBK), and the Ludwig-Maximilians-
Universitat Muinchen (LMU). Shortly after the event, signs of the tsunami inundation around the lake were
surveyed with GPS and laser equipment and the change in water level was measured. A high-resolution dig-
ital elevation model (DEM) of the entire Lake Askja caldera was created from aerial photographs by stereo
photogrammetry based on an airborne survey conducted by the LMU team. High-resolution bathymetric
data were obtained through a multibeam sonar sounding survey by the IES and the IMO. In addition, aerial
photographs of the release area and surroundings were taken by Loftmyndir Ltd. in 2013 and 2014 and
DEMs of 5 m resolution before and after the slide have been compiled on the basis of those. Earthquakes
associated with the event have been analyzed and seismic modeling will be carried out to extract informa-
tion about the release mechanism and dynamics of the slide. Lastly, numerous photographs of the slide
area from before and after the event have been collected in addition to photographs of the release area
and runup area of the tsunami that were taken from an unmanned aerial vehicle shortly after the event.

GYLFADOTTIR ET AL.

MODELING THE 2014 LAKE ASKJA TSUNAMI 4111


http://www.isviews.geo.lmu.de

@AGU Journal of Geophysical Research: Oceans 10.1002/2016JC012496

Figure 1 shows a hillshade map of the combined bathymetry and topography of Lake Askja in addition to
the measured inundation around the lake.

Numerical tsunami models typically employ the shallow water approximation, whereby the Navier-Stokes
equations are reduced to two dimensions by assuming that the wavelength of the generated waves is very
long compared to the depth of the water. In the case of earthquake-triggered tsunamis, this is often an
appropriate assumption but it is most often not valid for landslide-induced tsunamis as shorter waves are
generated due to the landslide impact [Glimsdal et al., 2013; Levholt et al., 2015a]. In the shallow water
approximation, the phase velocity is independent of wavelength. In reality, however, frequency dispersion
leads to a spreading of the wave train. In this case, depth-averaged equations of the Boussinesq type
become more appropriate to describe the wave generation and propagation.

The Lake Askja tsunami provides a unique opportunity to explore and capture the essential physics of land-
slide tsunami generation and propagation through numerical modeling, given the exhaustive amount of
data to calibrate the model. The comprehensive documentation of the event in combination with the use
of a new Boussinesg-type model is rather unique. Making optimal use of the comparison between field
observations and runup simulations enabled us to delineate the physics of impact tsunamis without the
scale effects that are present in the laboratory.

The focus of the work presented here is manifold. First, to present the comprehensive field data including
landslide deposits and tsunami runup data. Second, to apply an optimization procedure to determine
unknown landslide parameters through comparison between measured and calculated inundation in an
inverse modeling approach. Third, to explore the importance of dispersion by comparing results from a
nonlinear shallow water (NLSW) model developed in GeoClaw [Berger et al., 2011] with results from an
extension to GeoClaw that includes dispersion, labeled BoussClaw [Kim, 2014; Kim et al., 20171.

The paper is organized as follows: a description of the event and the data used for modeling is presented in
section 2. The numerical model is discussed in section 3, beginning with the block model of the landslide
(section 3.1). After that, the two numerical methods for modeling the tsunami are described, the NLSW
model developed in GeoClaw (section 3.2.1) and the Boussinesg-type extension to GeoClaw that includes
dispersion (section 3.2.2). The model setup is discussed in section 3.3. Finally, the modeling results are pre-
sented in section 4 and conclusions in section 5.

2. The Lake Askja Rockslide and Tsunami

2.1. The Event

The Askja landslide was released on the evening of 21 July 2014 from the southeast caldera wall. The land-
slide is one of the largest known rockslides since the settlement of Iceland in the ninth century A.D. It was
registered as tremor at IMO seismic stations near Askja and the data show that the event occurred at 23:24
local time. A signal was also detected by an infrasound array in the south of Iceland, at a distance of roughly
210 km. No one was in the area but a group located about 16 km ENE of the site witnessed a large plume of
smoke or vapor spreading rapidly and ascending up to the cloud cover.

The failure occurred along a known ring fault that is associated with the subsidence of the caldera [Hartley
and Thordarson, 2012]. Photographic evidence suggests that creeping in the source area started in 2007
and the vertical displacement between August 2007 and the 21 of July 2014 is estimated to have been at
least 25 m. Analysis of photographs shows that accelerating deformation of the landslide source area was
visible weeks prior to the event, as tension cracks within the mass and in the snow that covered part of the
mountainside. The photographs also indicated that the head crown of the landslide had started to form.

The landslide left behind a crescent shaped scarp within the caldera wall typical of a rotational block-
slide. Part of the material was left behind as Toreva-like slump blocks while part of it slid down into Lake
Askja. The depth of the failure plane is uncertain, making it difficult to determine the total volume of
material set in motion but it is estimated to have been about 20 X 10° m* based on field data (see sec-
tion 2.2.2).

Several factors contributed to the release of the slide. Movements on an active ring fault and changes in
crustal stress induced by long-term subsidence at the center of the Askja caldera due to pressure changes
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Figure 2. (left) The signs of the tsunami were clearly visible as black sand deposited on snow patches surrounding the lake. (right) The rise
in water level was estimated by comparing photographs from before and after the event. Photos: Sveinn Brynjélfsson.

in the magma chamber below have led to an increased instability in the southeast rim of the caldera [Sig-
mundsson et al., 2014]. However, the main factors believed to have triggered the release are geothermal
alteration and associated weakening of the bedrock along with snowmelt and heavy precipitation in the
days prior to the event.

Bathymetric data suggest that the sliding block had not undergone extensive disintegration when it
entered the lake, but that the degradation occurred during underwater movement. The landslide traveled
close to 2 km along the bottom of the lake and caused a large tsunami that travelled across the lake inun-
dating the shoreline up to an elevation of 60-80 m in places. The tsunami left behind clear evidence of the
inundation. Snow patches around the lake were blackened by deposition of sediments and severe erosion
was visible at several locations. The morning following the event, seiches on the lake were evident from the
sound of pumice rolling against the beach.

2.2. Data

2.2.1. Maximum Inundation

Figure 1 shows the measured inundation on a hillshade of an elevation model of the area after the land-
slide. The maximum inundation was measured by tracing the sediment deposits on snow patches around
the lake. These are shown in a photograph in Figure 2. In places that were easily accessible, the inundation
lines were traced with GPS measurements. Elsewhere, Leica VECTOR rangefinder binoculars were used to
pinpoint inundation traces. In addition, signs of erosion or sediment deposition from high-resolution aerial
photographs were used to fill in the gaps.

2.2.2. Lake Water Level and Submerged Rockslide Volume

The rockslide deposited a 2.1 km long and on average 600 m wide tongue on the bottom of the lake result-
ing in a rise of the lake water level. To quantify the magnitude of the change in water level, photographs
showing selected rocks and cliffs at the lake level from shortly before and 2 weeks after the event were
obtained. From the photographs, notable features such as fractures were identified and their position above
the preslide and postslide water level measured, as shown in Figure 2. Using accurate GPS measurements
of the water level to estimate the change over the time period from shortly after the event to the time of
the latter set of photographs, the change in water level caused by the landslide was estimated as
0.65* 0.2 m. As the lake has an area of 11.7 km? this corresponds to a submerged landslide volume of
7.5 +2 X 10° m® or approximately 10 + 3 X 10° m? of landslide debris on dry land with 30% porosity. Since
the moving submerged landslide will contain a substantial amount of entrained air over the short time of
propagation on the lake bottom, we opt to use the latter value of 10 X 10° m*® in model computations
of the waves induced by the landslide.

2.2.3. Bathymetry Before and After the Landslide

Low-resolution single beam soundings of Lake Askja were carried out in 1963 [Rist, 1975]. High-resolution
bathymetry data for Lake Askja were first compiled from multibeam echo soundings in 2012 and the
results used to construct a bathymetric map with 2 m horizontal resolution [Fridriksson, 2014]. Weather
conditions deteriorated during the survey, which had to be aborted before it was completed, leaving an
area in the southeastern part of the lake uncovered. This is precisely the region where the landslide
entered the lake.
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Shortly after the landslide in 2014, a second multibeam survey was conducted by the IES. The interpretation
of the data resulted in an extremely detailed bathymetry model showing clearly the landslide deposit on
the lake bottom (Figure 1). This data set forms the basis of the bathymetry model used in the numerical
modeling of the tsunami. The regions with rockslide deposits were filled in with data from 2012 where pos-
sible. The average thickness of the deposits as revealed by the multibeam survey is roughly 8 m. In the
southeast part where no data are available, the deposits were removed from the DEM by moving elevation
contours back by up to 10-15 m and interpolating the results onto a grid. The topography around the lake
was then stitched to the bathymetry model using a digital elevation model based on aerial photographs
from 2013. The final resolution of the terrain model used for the numerical modeling is 5 X 5 m.

3. Numerical Model

3.1. Block Velocity Model

The primary purpose of the present investigation was to use the tsunami observations in combination with
numerical tsunami models to provide first order understanding of the landslide speed, tsunami propagation
and inundation pattern. Given the various uncertainties in question, a simple block model approach was
used to describe the motion of the rockslide. At time t = 0, the block enters the lake with initial velocity Uy
and travels along the lake bottom influenced by gravity, buoyancy, bed friction, and pressure drag. The
motion of the rockslide center of mass (CM) in the lake is described by

du .
(my+0my) - =(mi=py, Vi)g(sin g —pu cos §)
M
1
- E,owchU2 ,

where m is the rockslide mass, dm, is the added mass, U represents the center-of-mass speed, p,, is the
water density, V,, is the volume of the rockslide in the lake, ¢ the angle of incline, u is the Coulomb friction
coefficient, Cy4 is the pressure drag coefficient, and A is the surface area of the block perpendicular to the
direction of motion. Using m,; = p,V,, where V; is the volume of the rockslide and p, its density, om; = C,p,\Virs
with C,, the added mass coefficient, and dividing through by p,,V,, equation (1) can be rewritten
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Setting y = p/pw and L = V,,/V,, equation (2) becomes

(@71
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A simple finite difference scheme can be devised for the rockslide velocity model. Setting the time deriva-
tive as a forward difference dU/dt=(U"*'—U'") /At, and linearizing the squared velocity term by U? = U U/

for equation (3) we have
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Rearranging, we obtain an equation giving the speed at time step / + 1 in terms of the speed at the previ-
ous time step / and known coefficients
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3.2. Tsunami Model

3.2.1. Nonlinear SWE

The numerical model describing the Lake Askja tsunami was set up using GeoClaw [Berger et al., 2011],
which is a part of the Clawpack package [LeVeque, 2002], a collection of numerical methods to solve hyper-
bolic partial differential equations describing, e.g.,, wave motion. GeoClaw is an extension to Clawpack
where the solution methods from Clawpack are adapted to solving the shallow water equations, which
describe flow where the water depth is small in comparison with the lateral length scale.

To solve the shallow water equations, GeoClaw uses high-resolution Godunov-type methods that solve a
Riemann problem at each interface between grid cells. These methods have an advantage in that they allow
for discontinuous solutions, e.g., shock waves, which often arise in flow problems. The topography is dealt
with using a variant of the f-wave scheme, in which topography source terms are incorporated directly into
the Riemann problem. Furthermore, the Riemann solver is designed to deal robustly with dry states, both
wetting of dry cells as well as the drying of wet cells. For details on the solution algorithms, see LeVeque
[2002] and Berger et al. [2011].

3.2.2. Dispersive Boussinesq Model

The employed dispersive tsunami model is based on a modified set of the Boussinesq equations proposed
by Schaffer et al. [1993] and Schaffer and Madsen [1995]. We coin this model BoussClaw. BoussClaw contains
the dispersion terms only in the momentum equations, which simplifies the numerical implementation
while maintaining the dispersion relation for waves of shorter wavelengths. Moreover, the equations are
written in conservative form. The Boussinesq equations by Schaffer et al. [1993] and Schaffer and Madsen
[1995] can be rearranged with an operator splitting scheme into the shallow water equations part and the
dispersion terms. The shallow water equations are first solved using a high-resolution finite volume method
and subsequently the dispersion terms are taken into account using a finite difference scheme. In the pre-
sent application of the model, a wave breaking criterion is chosen based on the ratio of wave height to
water depth, n/H. If /H > 0.8, the set of governing equations is switched to the shallow water equations. A
more detailed description of the governing equation and numerical implementation is given in Kim et al.
[2017].

3.3. Combined Rockslide and Tsunami Model Setup

The rockslide is defined as a block of fixed width with a triangular (wedge-shaped) longitudinal cross sec-
tion, see Figure 3. Geoclaw reads the time-dependent landslide geometry in gridded form for each time
step and adds it on top of the bed topography. To create the files for GeoClaw, the center-of-mass landslide
speed profile is calculated by the model described in section 3.1 given a set of values of the parameters
describing the rockslide. The part of the landslide that was deposited on land (roughly half of the volume)
is neglected and the part which entered the lake is modeled as a wedge-shaped block starting with an ini-
tial speed Uy with the front at the lake level. The subaerial motion is therefore simplified, but as a great part
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Figure 3. Example center-of-mass speed profile for a rockslide of volume 10 X 10° m?, width 550 m, initial thickness 30 m, and initial
speed 40 m/s. The drag coefficient is set to 1.0 and the added mass coefficient to 1.0. The Coulomb friction coefficient is set at 0.18 which
leads to an underwater runout of 1950 m. The speed profile is shown with a thick dotted line along with a cross section of the measured
bathymetry, a simplified slope used in the calculation of the CM speed, and a profile of the model rockslide.
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of the landslide volume was deposited at the base of the rotational failure plane about 500 m from the lake
water level, we believe the simplification not to be too severe. The deposit can be seen clearly in the hillside
profile in Figure 3 as a plateau. While the slide it partially submerged, 1 in equation (3) grows from 0 to 1. In
the speed profile calculation, the wedge-shaped landslide travels down a simplified slope, not the actual
terrain, as shown in Figure 3. The local incline is calculated at the location of the CM.

Most of the rockslide parameters are determined from the available field data and the description of the
event. The width (550 m) and runout distance (approximately 1950 m) of the rockslide is reasonably well
determined from the high-resolution bathymetry. Therefore, for each set of parameter values, the Coulomb
friction (1) was adjusted so that the horizontal runout of the rockslide in the lake was 1950 m. The value
varies between 0.15 and 0.2 for the majority of rockslide configurations. The rockslide density is unknown
and a value of p; = 2000 kg/m? is used in all simulations. Values for the added mass C,, and the form drag
Cy4 were both set to unity. We acknowledge, however, that both of these parameters are subject to uncer-
tainty. For a further discussion related to these parameters we refer to Watts [1998]. Finally, the shape of
the deposits revealed by the multibeam survey shows that the slide path was restricted to a direction of
300-310°N.

The remaining parameters needed to constrain the landslide model are the thickness and speed of the slide
as it hit the shoreline. These cannot easily be determined by the field data and therefore an optimization
procedure was applied to obtain the most likely values of these, as described in the next subsection. Rough
estimates can, however, be made to guide the optimization. The distance from where the rotational failure
plane ends to the shoreline is about 600 m and the detailed DEM shows that the slide entered the lake with
a width around 550 m. To fit the rockslide into this area, it would have been about 30 m thick when it
crossed the shoreline. The impact speed is difficult to estimate due to the uncertainty inherent in the fric-
tional parameters. Assuming only Coulomb friction and gravitational acceleration leads to impact speeds
ranging from 20 to 50 m/s for a value of the friction coefficient ranging from x = 0.15 to 0.3.

Figure 3 shows an example velocity profile for the rockslide block model for the parameter values described
above and a simplified bathymetry profile.

3.4. Slide Parameter Sensitivity and Optimization

Due to the uncertainty inherent in the parameters describing the rockslide dynamics, an inverse modeling
approach was adopted to determine optimal parameters that best describe the runup of the tsunami. For
the NLSW model, the best fit parameters were determined by a grid search whereby the model was run
repeatedly for different combinations of parameters. For the Boussinesq model, a global optimization algo-
rithm was employed. A set of initial simulations were carried out to obtain a rough idea of likely rockslide
parameter ranges. Three parameters were varied: the angle of impact 0, the impact speed Uy, and the rock-
slide thickness at impact d. From these simulations, it became clear that varying the angle in the range of
300°-310° (approximately NW) had limited effect on the goodness of fit. Therefore, in the following, only
the impact speed and slide thickness were included in the optimization and the angle of impact fixed at
303°. The quality of fit (objective function) was estimated by the sum of squares of the error (SE), i.e., sum-
ming the squared differences between measured and calculated inundation elevation at regularly spaced
points around the lake

SE:ZN: (hl(meas)_hl(calc)>2 ‘
i=1

An initial grid search approach revealed that the structure of the sum of squares of the error (SE, see above)
in parameter space is complex and some testing with gradient-based minimization procedures, such as the
Levenberg-Marquardt algorithm, was unsuccessful as such procedures tended to get stuck in local minima.
Therefore, a global optimization algorithm was employed to scan the parameter space. The Differential Evo-
lution (DE) algorithm [Storn and Price, 1997] was chosen and the implementation from the scipy.optimize
package used. DE is a relatively simple scheme which utilizes few control variables to guide the minimiza-
tion. Based on a series of tests, it has been proven to have good convergence properties in comparison
with other minimization algorithms. It is a Stochastic direct search method, starting from a random genera-
tion of parameter vectors, new trial vectors are formed by perturbing a target vector from the existing
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population. The tsunami model is run with the trial vector of parameters and if the resulting objective func-
tion is lowered the trial vector replaces the target vector.

4, Results

4.1. NLSW Model Results

Using the GeoClaw NLSW model, the Askja landslide was simulated for a range of values of each parameter
to obtain rough bounds on the values which best describe the measured inundation. The parameters that
were varied were the impact speed U, in the range 15-45 m/s and the rockslide thickness at impact d in
the range 20-45 m. Other parameters were kept fixed at w=550 m, 0=303°, C,=1.0, C4=10,
p1=2000 kg/m3, and V ;=10 X 10° m3. The measured and model-calculated maximum inundation for all
parameter sets is shown in Figure 4 as a function of angle with respect to the center of the lake, with 0°
starting from the east coast and going in a counterclockwise direction. For most of the shoreline, the model
parameters can be adjusted to capture the inundation reasonably well. However, this is not the case for the
northern shore where the calculated inundation is in most cases significantly higher than the measure-
ments, on average by a factor of 2. Only parameter sets with a low velocity (15-25 m/s) lead to inundation
that is close to the measurements along the northern shore, yet typically 5-10 m above measured inunda-
tion. For the few parameter sets where the inundation along the north coast is closer to the measurements,
the fit worsens elsewhere along the shore, especially close to the point of impact.

4.2. Boussinesq Model Results

The Boussinesq model discussed in section 3.2.2 was applied to investigate whether the discrepancy
between the measured and NLSW model-calculated inundation along the northern shore of Lake Askja can
be attributed to dispersion.

A grid refinement test was initially carried out to determine a reasonable resolution in terms of accuracy
and computational efficiency for the Boussinesq model. The model was run for fixed grid spacings of 12, 20,
and 40 m and the wave heights at a number of gauges compared. Running the simulations on finer grid
resolutions produced instabilities. The relative difference in height of the first peak between the 20 and
40 m grids compared with runs with a 12 m grid was typically between 5 and 12%, smallest for offshore
gauges, increasing toward the shoreline. For the runup height, the relative error for the 20 m grid is 13%
compared to the 12 m reference grid. We found this inaccuracy, despite clearly significant, acceptable for
the following reasons: The computations in the optimization procedure with a grid spacing below 20 m
leads to prohibitively long runs. The fluctuations of the observed runup alongshore is sensitive to the source
parameters and we are mostly concerned with hindcasting the overall trends. To this end, the present accu-
racy was sufficient for us to distinguish the quality of data fit for the Boussinesq model from the NLSW
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Figure 4. Maximum inundation calculated by the NLSW model for parameter sets 15 < Uy <45 m/s, 20 <d <45 m, 0 = 303°, and w = 550 m. The angle is calculated with respect to the
center of the lake with 0° starting from the east coast and going in a counterclockwise direction. The results are filtered using a 15-point median filter. Measured inundation is shown
with a thick black line and calculated inundation with thin grey lines. Blue line shows the results with the lowest deviation from measured inundation, for landslide parameters 0 = 303°,

Up=15m/s,and d =35 m.
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Figure 5. Optimization results for parameter ranges 15 < Uy <45 m/s, 20 <d <45 m,

w =550 m, and 0 = 303°. The colored points give the value of the objective function for
each model run. Two optimization runs are included in the figure. The maximum calculat-
ed objective function was 351.785 and the minimum 80.220, but the color range is clipped
to values from 89.000 (dark blue) to 115.000 (dark red) to show the location of the mini-

mum more clearly.

dure using Differential Evolution
(see section 3.4) was employed
to determine the optimal land-
slide parameters. For the rock-
slide speed and thickness, the
optimization was run with the
bounds 15<Uy<45 m/s and
20<d<45 m. The results are

shown in Figure 5. The lowest deviation from measured inundation is obtained for the parameter ranges
30 < Uy <35 m/s and 34 <d <37 m. The model-calculated maximum inundation for a rockslide model with
parameters in the best fitting range, 0 = 303°, Up = 30.9 m/s and d = 35.5 m, w = 550 m, is shown in Figure 6
along with the measured inundation and the best fitting NLSW model. Overall, the fit is very good and the
improvement for the northern shore compared with the NLSW results is notable. More concretely, the objective
function for the best fitting NLSW model (160.809) is a factor of 2 higher than that of the Boussinesq model and
97% of the model runs with the dispersive model had a lower objective function than the best fitting NLSW
model. We also note that while the solution obtained using the Boussinesq model is following the main runup
trend alongshore, the NLSW solution seems to provide a more even distribution. This suggests that the Boussi-
nesq model is the only one being able to capture the radiation pattern due to the rockslide source and the
NLSW model is not able to produce the correct inundation pattern even if the rockslide parameters are adapted
to fit the observations. To this end, we note that, if the best fit landslide parameters from the Boussinesq model

300

Inundation height [m]
S
S

S shore
W shore

N shore
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Figure 6. Maximum inundation calculated using the Boussinesq model for the best fitting rockslide model, with Uy = 30.9 m/s, d = 35.5 m, w = 550 m, and 0 = 303°, are shown with a
blue line. Measured inundation is shown with a thick black line. A light grey broken line shows the results for the best fitting NLSW model (see Figure 4) and a dark grey dotted line the
results of the NLSW model for the best fitting parameters in the Boussinesq model.
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Figure 7. Wavefields at t = 60 s for the (left) NLSW and (right) Boussinesq models with rockslide parameters Uy = 30.9 m/s, d = 35.5 m, w = 550 m, and 0 = 303°. Locations of gauges
where wave heights are registered during simulations are shown on the right along with a line showing the cross section used in Figure 8. Coordinates on x and y axes are Easting and
Northing, respectively, in the ISN93 geodetic reference system.

are used as input to the NLSW model, the NLSW model provides severe offsets compared to the observations
(see Figure 6).

Along the southern and southeastern shore, close to the point of impact, the Boussinesq model does not
fully capture the extreme peaks of the measured inundation found in narrow gullies. Yet in most cases, the
peaks appear in the model results but are not as pronounced as the measured inundation. Also, it must be
kept in mind that the uncertainty in the measured data is greatest in this region.

The main reason why the NLSW model cannot capture the inundation pattern on the northern shore
becomes clear upon examination of the form of the first wave crest in the two models. The water surface at
time t = 60 s after impact is shown in Figure 7 for both the NLSW and Boussinesq models. As expected, the
frontal wave crest in the NLSW model is very sharp and reflections off the coastline near to the impact site
are clearly defined. The wavefield in the Boussinesq model is more diffuse due to frequency dispersion. This
is also clear from the transect in Figure 8 where the shape of the leading wave for both models is shown. In
the Boussinesq model, frequency dispersion acts to spread out and reduce the wave height of the first
crest.

The variations in water level off the northern (gauge 3) and Viti (gauge 21) shores are shown in Figure 9. At
gauge 3, the first wave is large and followed by a train of smaller amplitude waves. The maximum inunda-
tion on the northern shore is therefore caused by the leading wave, which has a significantly higher ampli-
tude in the NLSW model compared to the Boussinesq model. In contrast to this, the situation at the Viti
shore, illustrated by the water level at gauge 21 in Figure 9, is typical of most of the shoreline where the

Surface elevation [m]

0 200 400 600 800 1000 1200 1400
Distance along section [m]

Figure 8. The leading wave for NLSW (light grey) and Boussinesq (dark grey) models for a rockslide model with Uy = 30.9 m/s, d = 35.5 m,
w =550 m, and 0 = 303°. The transect is from t = 60 s along the line shown in Figure 7. The location of the leading wave is roughly halfway
between gauges 9 and 32 (see Figure 7).
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Figure 9. Variations in water level at gauges 21 and 3 for NLSW (light grey) and Boussinesq (dark grey) models for a rockslide model with

Uo =30.9 m/s, d=355m,w=550m, and 0 = 303°. See Figure 7 for gauge locations.

maximum inundation is caused by later arrivals thus masking the effects of dispersion on the amplitude of

the leading wave.

Figure 10 shows the evolution of the surface elevation at three different points near the point of impact. At
the closest point (gauge 11), the NLSW and Boussinesq surface elevations are at first more or less identical.
Further afield (gauge 10), the NLSW and Boussinesq solutions begin to differ, with the NLSW wave being
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Figure 10. Variations in water level at gauges 9, 10, and 11 for a rockslide model with Uy = 30.9 m/s, d = 35.5 m, w = 550 m, and 6 = 303°

for the NLSW (light grey) and Boussinesq (dark grey) models.
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shorter and slightly higher. Close to the basin center (gauge 9), a striking difference between the two mod-
els is evident, the NLSW model overestimates the wave height by a factor of 1.4. The difference can be
attributed to frequency dispersion, as the main wave generation does not take place between gauges 9
and 10. This is further demonstrated by an estimate of the dispersion time [Glimsdal et al., 2013]
__6ht
= ﬁ7

where h is the water depth, t is the propagation time, g is the gravitational acceleration, and T is a mea-
sure of the initial wave period. Based on a number of examples, Glimsdal et al. [2013] found that disper-
sive effects become significant for t > 0.1. First, we assume that most of the wave generations have taken
place at gauge 11, and that t measures the dispersion from this point on. From Figure 10, we estimate
the initial wave period for the pronounced leading peak of the wave system to be roughly 10 s (i.e., dou-
ble the width of the peak in the NLSW model). A typical water depth between gauge 11 and 10 is
h =100 m, and the wave propagation time for the front is 13 s, which gives us T = 0.79 for the propaga-
tion to gauge 10, which indicates a strong effect of dispersion. The long periodic tail is not subject to
strong dispersion.

5. Conclusions

A large rockslide was released from the southeast margin of the inner Askja caldera into Lake Askja in the
highlands of Iceland on 21 July 2014. Upon entering the lake it caused a large tsunami that traveled across
the lake in 1-2 min and inundated the shores around the entire lake with vertical runup measuring up to
60-80 m. Following the event, comprehensive field data were collected, including GPS measurements of
the inundation around the lake and multibeam echo soundings of the entire lake bathymetry. This exhaus-
tive data set along with a new Boussinesg-type tsunami model provided a unique opportunity to calibrate a
numerical model of the event to explore the effects of dispersion on the wave generation and propagation
of landslide-induced tsunamis.

The effect of frequency dispersion for landslide-induced tsunamis has long been acknowledged. The
spatial and temporal scales governing the importance of dispersion for tsunamis was systematically
studied by Glimsdal et al. [2013], and analyzed in particular for submarine landslides by Lavholt et al.
[2015a]. Dispersion is known to be important for tsunamis originating from rockslides in fjords [Harbitz
et al., 2014; Lavholt et al., 2015b]. Furthermore, Lovholt et al. [2008] demonstrated that the radiation pat-
tern from dispersive waves may be expected to be fundamentally different from shallow water waves.
However, the present well-documented example has enabled us to show for the first time, combining
information from field data with numerical models, that the dispersive model gives a clearly different
tsunami wave radiation pattern compared to a shallow water model. As a consequence, we conclude
that dispersive effects are crucial in reproducing the observed runup of the Lake Askja tsunami, and
that a shallow water model leads to large artificial offsets. Moreover, the study of the event is important
because this dispersive nature most likely will occur for other subaerial impact tsunamis as well. The
reason for this difference is primarily related to the leading wavefront in the two models. When disper-
sion is not taken into account, the leading wave has a much higher amplitude than when dispersion
acts to spread out the wave energy. For the northern shore of Lake Askja, the first wavefront causes the
maximum inundation making its form in the model crucial to obtain a close fit to the measured data.
Elsewhere along the shoreline, reflections and edge waves may interfere and increase runup of the sub-
sequent waves.

A limitation in our study is that we do not take into account landslide deformation. Landslide deformation,
particularly during impact, will most likely provide a less unidirectional wave than the block.

The global optimization algorithm Differential Evolution (DE) proved to be a successful method to determine
the rockslide parameters used in the model while local gradient-based minimization was unsuccessful at
locating a parameter set with the minimum deviation from measured inundation. The great number of
objective function evaluations necessary to locate the minimum with the DE algorithm made it necessary
to fix the grid cell size to 20 m, which leads to a limitation on the accuracy of the obtained parameter values
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for the Boussinesq model. Still, the impact speed U, was constrained to an interval of 5 m/s and the thick-
ness d to 4 m, which considering simplifications made in the modeling of rockslide motion, must be consid-
ered an acceptable accuracy.
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