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1 Introduction

Understanding of unsaturated slope stability during rainfall infiltration is of critical importance
in many parts of the world (e.g. southern Europe, Brazil, HongKong) where the hot climate
give rise to extensive areas with unsaturated soils. On one hand, the unsaturated state actually
improves slope stability in dry or partial saturation condition because the existence of suction
(i.e. negative pore pressure) raises the soil strength compared with its saturated state. On the
other hand, the diminish of the unsaturated condition due to, for example, wetting process by
rainfall can lead to a reduction of the soil shear strength because of a reduction in suction and,
possibly, a rise in positive pore water pressure. Both these effects directly contribute to desta-
bilising unsaturated slopes. If porosity varies considerably in the soil mass, an extra level of
complexity is added because the wetting front no longer migrates in a smooth and regular pat-
tern over time as in a domain with uniform porosity. Instead, water follows atypical preferential
paths causing uneven reduction of suction and, possibly, build-up of positive pore pressure in
the soil masses. A soil element experiencing large suction loss might reach the failure condition
earlier or under lower stresses than other neighboring elements experiencing a limited suction
reduction. The slip surface then preferably passes through these failed elements despite having
to follow an unusual shape. Heterogeneity of porosity can therefore alter the failure mechanism
of an unsaturated slope subjected to rainfall.

Stability of a slope can normally be assessed using an analytical solution (for simple infinite
slopes) or the traditional Limit Equilibrium Method (LEM) and/or the more advanced Finite
Element Method (FEM). The FEM is often employed to deal with complex slope problems such
as, for example, those having unusual geometries, subjected to complicated loading sequences,
undergoing progressive failure or showing heterogeneous material properties. The problem
considered in this study is rather complex and highly non-linear, hence the use of the FEM is
necessary.

When it comes to probabilistic investigation of slope stability, most of studies reported in liter-
ature assumed that the slope is fully saturated (or fully dried). In many cases, the investigations
focused on the spatial variability of shear strength, including undrained shear strength, or ef-
fective friction angle (¢") and/or effective cohesion (c¢’). Many past stochastic studies employ
the Monte-Carlo approach due to its conceptual simplicity and its capability of handling com-
plicated geometries and variability patterns without requiring over-simplified assumptions (e.g.
[1-4]). Some studies demonstrated that the influence of soil heterogeneity on stability depend
on various factors such as, for example, the slope characteristics (e.g. slope angle) or the com-
bination of input parameters (e.g. mean and standard deviation of the random soil property).



Several studies have integrated the random field theory and the finite element method to model
soil spatial variability. The method is often referred to as the "random finite element method"
[1,2,59].

Past studies on unsaturated slope stability are almost exclusively limited to homogeneous soils.
Griffiths and Lu (2005) [10] and Lu and Godt (2008) [11] devised a formula of suction stress
which takes into account both soil characteristics and infiltration rate. The suction stress was
then used to analytically predict the stability of an unsaturated slope in a steady seepage condi-
tion. A partially saturated slopes can also be analysed by the LEM in an uncoupled manner.
This usually involves an independent flow analysis to obtain the pore water pressure distribu-
tion assuming rigid soil behaviour under given hydraulic boundary conditions. This pore water
pressure distribution is then used as the groundwater condition to input into a subsequent limit
equilibrium analysis [12].

This study investigates the stability of an unsaturated slope with spatially varying porosity using
the random finite element method. The aim is to demonstrate the use of stochastic methods in
investigating the risk associated with unsaturated soil heterogeneity at different points in time
during and after a rainfall event. Particularly, the effects of soil variability (quantified by dif-
ferent values of the coefficient of variation) on the factor of safety of the slope are examined.

2 Methods

2.1 Slope geometry and boundary condition

This study investigates a slope is 10 m height, having an angle of 2:1 (or 26.6°) and resting on
a base of 20 m thickness (Fig. 1). The initial stress distribution is in equilibrium with gravity
(9.81 m?/s) while the initial pore water pressure distribution is in hydrostatic equilibrium with
the initial water table position at 5 m below the ground surface. The hydrostatic condition re-
sults in a maximum initial suction of approximately 150 kPa at the crest (AB) which falls in the
low end of the prevalent surface suction range of semiarid or arid environments such as in
Australia [13].
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Figure 1: Slope dimensions, geometry and boundary conditions (scale in metre)

The slope is subjected to a rainfall event which extends continuously over 10 days after which
the rainfall is terminated but the simulation was continued for another 355 days. The stability
of the slope is assessed at different times both during and after the rainfall as explained in detail
in subsequent sections. Rainfall is assumed to infiltrate into the slope through boundaries AB,



BC and CD over the ten days. These boundaries (AB, BC and CD) then become impermeable
once the rainfall has stopped (i.e. day 10 onward). This means that there is no subsequent rain-
fall infiltration or evaporation at the ground surface, after the initial 10 days of rainfall. Bound-
aries DG, GO and OA are assumed to be impermeable both during and after the rainfall. The
factor of safety are estimated at 0, 0.5, 5, 10, 15, 20, 100, 365 days from the starting time.

2.2 Hydraulic and mechanical models

The van Genuchten (1980) [14] and van Genuchten and Nielsen (1985) [15] water retention
curve and permeability function are selected because they can represent the soil hydraulic be-
haviour in a simple and numerically stable way. Details of the selected hydraulic constitutive
relationships can be found in Le ez al ( 2015) [9]. The values of hydraulic parameters for the
water retention curve and the permeability function are shown in Table 1. The main parameters
are the reference saturated permeability, ks, the reference air entry parameter, seo, the water
retention curve gradient, m and the parameter controlling the dependency of water retention
behaviour on porosity, 7. In addition, the model requires input values of the maximum and
minimum saturation, Ss and S, the reference porosity ¢ and the water density pw. The values
of the constitutive parameters are selected to be at around the middle of the likely range for
each parameter in order to avoid overly large or small input parameters and, hence, possible
unrepresentative or unrealistic results. For example, an extremely low permeability (i.e. very
small ks0) would result in the rainfall having no effect on slope stability because water would
not have sufficient time to infiltrate into the unsaturated soil domain. The rainfall intensity is
assumed to be at 43.2 mm/day.

The extended Mohr - Coulomb model for unsaturated soils is selected to model failure behav-
iour [16]. The values adopted for the mechanical parameters are also shown in Table 1. These
values are kept constant throughout the study. The typical property values of a clay are selected
for the strength parameters (c’, ¢ and ¢”) and the elastic parameter, i.e. Young modulus (E) and
Poisson ratio (V).

Table 1: Values of hydraulic and mechanical soil parameters

Hydraulic Mechanical

Symbols Units Values Symbols Units Values
m 0.2 E kPax 10° 100
n 5 v 0.3
Po 0.333 @' © 20
kso m/s 107 c' kPa 5
Seo kPa 20 © 18
Ss 1 Ps kg/m’ 2700
Sr 0.001

The Factor of Safety (FoS) in the FEM is defined by relating the actual soil strength to the
failure strength. In particular, the FoS is estimated in the FEM by inducing slope failure through
a numerical process called shear strength reduction. This involves incrementally and continu-
ously reducing the values of the shear strength parameters until instability is initiated. For un-
saturated soil, Equation (1) is adopted in this study to conduct the shear strength reduction
process which involves incremental reduction of tan¢g’, ¢’ and tang’ [9, 17].
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2.3 Random variable and random finite element method

Porosity is probably one of the most easily observed soil parameters which exhibit spatial var-
iability. The variability characteristics of porosity have been investigated in a few studies (e.g.
[18, 19]). In unsaturated soils, porosity variability leads to heterogeneity in the water retention
behaviour and permeability of the soil [9, 20, 21]. During a rainfall event, infiltrated water is
thus likely to follow unusual preferential flow paths in a porosity heterogeneous slope. There-
fore, those soil elements subjected to an earlier or larger infiltration will loose the cohesive
component of strength contributed by suction earlier than other soil elements or by a more
substantial amount. This non-uniform strength reduction causes variation in the overall factor
of safety.

In this study, the heterogeneity of porosity in each realization is created by generating first a
random field of void ratio (e). Note that each "realization" refers to a deterministic distribution
of porosity generated during Monte Carlo simulation. The e random field is modelled by a log-
normal distribution which ensures that the generated random values are always positive. The
values of ¢ calculated using ¢ = e/(1+e) are therefore always bounded between 0 and 1 as re-
quired. The values of mean u(e) and correlation length d(e) are kept constant at 0.5 and 8 m,
respectively. A range of coefficient of variation, COVe, between 0.1 and 1.6 are considered.
This results in the corresponding values of u(¢) and COV 4 as presented in Table 2. As the COV.
increases at a constant u(e), the u(¢) decreases while the COVy increases. The largest value of
COVy are larger than the upper bound of the usual COVy range which can be found in, for
example, Phoon et al (1999) [19] and Le et al [18]. The selection of such large values are to
demonstrate the influence of porosity more clearly and to consider the extreme situation where
such a large variability in porosity is possible (e.g. in fill materials).

Table 2: Parameters of porosity (¢) random field corresponding to different input values of COV, and u(e) = 0.5

cov. | 0.1 0.2 0.4 0.8 1.6
u(@ | 0333 0330 0323 0300  0.256
COVy | 0067 0.132 0254 0456  0.720

The same mesh of 1515 quadrilateral (squares or parallelograms) elements is employed con-
sistently in every realization to eliminate undesired variations associated with mesh discretisa-
tions (Fig. 1). This mesh was shown to produce a reliable estimate of the factor of safety of
homogeneous slope, which remained essentially unchanged for finer discretisations [9]. For
each realisation, a random field with a grid of square cells is first generated with one random
value allocated to each cell. A mapping process is then performed which involves superimpos-
ing the random field on the mesh. The superimposition allows to search and assign each finite
element the random value from the cell having centroid closest to the centroid of the element.
Each square element, and the vast majority of parallelogram elements, has an area of 1 m?, with
a few exceptions in the centre of the mesh. The relatively uniform sizes and similar shapes of
the mesh elements ensure marginal discrepancy (caused the mapping procedure) between the
variability characteristics of the random finite element mesh and the underlying random field.



An exemplary comparison between the statistics of the random variable mapped onto the mesh
and the theoretical statistics is shown in Figure 2. The figure demonstrates that the probability
density functions of both random field e and the mapped values of e on the finite element mesh
are reasonably consistent with the theoretical probability distribution function (pdf) calculated
from the input y(e) and COVe. The consistency however tends to deteriorate with increasing
input COV.. The corresponding random values of ¢ follows a pdf that appeared to be skewed-
left and confined between 0 and 1.
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Figure 2: Histogram of a sample realization of random porosity mapped onto the mesh (FEM(@)) and the pdf of
associated void ratio (FEM(e)), of the underlying random void ratio field (RF(e)) and of the theoretical distribu-
tion generated from input parameters (Target(e))

3 Results and Discussions

3.1 Statistical characterisations

The main outputs of the Monte Carlo analysis in this study are the FoS. In order to be considered
reliable, the statistics of the FoS should be stable with the number of realizations (i.e. do not
change with more realizations). The convergences of the u(FoS) and o(FoS) are assessed by
plotting the evolution of mean with increasing number of realizations as, for example, shown
in Figure 3. Individual data points and 95% confidence interval are also represented on these
figures to indicate the range of variability, hence fluctuation of o(F0S). The u(FoS) converges
rather quickly after around 60 realizations. The 95% confidence interval also becomes relatively
narrow after 60 realizations. A difference of approximately 0.06 is observed between the lower
and upper bounds at this point indicating the stabilization of o(FoS). The FoS for individual
realizations however spread over a reasonably wide range from just above 1 to just below 2
which is caused by the variation in suction distribution between individual realizations. Note
that Figure 3 shows variation of data corresponds to 5 days of continous rainfall. Inspection of
the results show that the FoS at this time (5 days) tends to be most varied. For other times, the
convergence can be achieved with a lower number of realizations than 60.
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Figure 3: Convergence of FoS with the number of realizations (5 days, u(e)= 0.5, COV, = 0.8, 0(e) = 8 m)

Various techniques including visual observation of histograms, probability plots and chi
squared goodness of fit tests are used to find the most suitable pdf to represent the distribution
of the FoS data. It is found that the histograms of the FoS can be described reasonably well by
the log-normal distribution function. As an example, the FoS histograms with their fitted log-
normal pdfs at different times are shown in Figure 4 for different times.
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Figure 4: Histograms (bars) with the fitted log-normal distribution function (continuous line) of FoS at different
times during the rainfall (u(e)= 0.5, COV, = 0.8, O(e) = 8 m)

3.2 Failure mechanism during and after rainfall

A sample realization of random porosity is illustrated in Figure 5. The porosity values were
calculated from the associated random field of e (COV.= 0.8 and f(e) = 8 m) and mapped onto
the finite element mesh (Fig. 5). The porosity value of the elements ranges between 0.05 to 0.75
which is a slightly large range compared with the typical range of porosity variation within a
single domain of this size. The inclusion of such a large variation ranges is however considered
reasonable in this study to highlight the effects of heterogeneity.

The changes in failure mechanism during and after a rainfall event due to the changes in suction
and pore water pressure distribution are shown in Figure 6 (corresponding to porosity distribu-
tion shown in Fig. 5). The pore water pressure distributions are highly irregular at intermediate
times from 5 to 20 days (Fig. 6). The FoS are lower while the sliding masses are also smaller
(Fig. 6) at these times compared with other times. Conversely, the beginning (0 — 0.5 day) and
the end (100 — 365 days) of the simulation period display less variability in the pore water
pressure distribution and higher FoS. The area and depth of the failure masses at these times
(0-0.5 or 100-365 days) are however significantly larger than at intermediate times (5-20 days).



The rise of the water table at the end of the simulation compared to the initial condition causes
not only a drop in the FoS but also a reduction in the sliding mass size.

Porosity
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Figure 5: A typical realization of porosity distribution (transformed from the random void ratio field with u(e) =
0.5, COV,= 0.8, 8(e) =8 m)
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Figure 6: Evolution of pore water pressure contours and slip surfaces at different times during and after the
rainfall (corresponding to the porosity distribution in Figure 5, u(e) = 0.5, COV, = 0.8, 6(e) = 8 m)

3.3 Influence of porosity variability on Factor of Safety

The variation of the u(FoS) and COVFos at various COV. show very similar patterns over time
(Fig. 7). The u(FoS) decreases over the rainfall (day 0 to 10). The lowest u(FoS) occurs unani-
mously at 10 days just before then rainfall stops. From day 10 to day 365, infiltration is no
longer occurring leading to the recovering of the u(FoS) (Fig. 7a). The assumption of imper-
meable vertical and bottom boundary after the rainfall leading to accumulation of water in the
soil domain. Consequently, the FoS long after the rainfall has stopped (i.e. 365 days) is lower
than the initial FoS (i.e. 0 day). The COVros is almost the same after half a day of rainfall, then
increases from day 0.5 to day 5, peak at day 5 for most cases (except COVe = 0.1). The COVros
then decrease from day 5 to day 20 and fluctuate within a small range after 20 days (Fig. 7b).



The porosity heterogeneity within the soil domain increase with increasing COV. leading to the
increasing variability in both stresses distribution (induced by soil overburden weight and de-
gree of saturation heterogeneity) and pore water pressure distribution (induced by permeability
heterogeneity). The former leads to the differences in yu(FoS) and COVros between different
input COV. at the initial time step because there is no infiltration so far at this point. The latter
exacerbates these differences during the rainfall as can be seen, for example, by the wider dis-
tances between data points at 5 days (Fig. 7). As the degree of variability becomes higher (i.e.
COV. increases), the lowest values of the FoS tend to become smaller because the “weakest”
slip surface can have lower strength. This leads to the slight decreases in u(FoS) (except at 100
and 365 days) and the significantly increases in COVros over the whole simulation period.
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Figure 7: Variation of (a) u(FoS) and (b) COVry,s of the FoS over time at various COV. (u(e) = 0.5, O(e) = 8 m)

The value of probability of failure (Pr) calculated from the above u(FoS) and COVros are pre-
sented against time and COVe, assuming a log-normal distribution function governing the FoS
data (Fig. 8). The results consistently show the increasing risk of failure with increasing COVe
(Fig. 8). For all the values of COV. investigated, the Prgenerally increases over the rainfall and
peaks at 10 days then decreases from 10 days onward (Fig.8a). Some fluctuations at extremely
small Pr values causing deviations from this general trend occur early in the rainfall (0.5 days)
or close to the end of the simulation period (100 and 365 days). These fluctuations are likely
due to the sensitivity of the very small values of Psto the u(FoS) and COVFros. Note that the
vertical axis in Figure 8b has been scaled to limit between 1 and 107'? hence some data points
representing Pr< 1071 are not presented in this figure.
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4 Conclusions

This study has demonstrated the use of probabilistic method to evaluate the factor of safety and
probability of failure of a heterogeneous unsaturated slope subjected to rainfall infiltration. It
shows that the combination of the finite element method and the random field theory can be
powerful and is capable of dealing complex problem which is highly variable in time and space.
By using Monte-Carlo analysis, variability of porosity has been shown to significantly influence
the mean and coefficient of variation of the factor of safety through its influence on the unsatu-
rated flow. Increasing variability of porosity leads to lower mean value but higher coefficient
of variation of the factor of safety. Both of these effects lead to higher probability of failure.
Over time, the risk of slope keeps dropping and reaches the lowest at the end of the rainfall,
then recovers after the rainfall stops. The study highlights that both time and space are important
factors to be taken into account in dealing with wetting of unsaturated slopes.
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