
 

REPORT 
 

SP8 - Soil Parameters in Geotechnical 
Design (GEODIP) 
CPTU CORRELATIONS FOR CLAYS 

 

DOC.NO. 20150030-13-R 
REV.NO.  0 / 2019-02-20 
 



   

 

Neither the confidentiality nor the integrity of this document 
can be guaranteed following electronic transmission. The 
addressee should consider this risk and take full responsibility 
for use of this document. 
 
This document shall not be used in parts, or for other purposes 
than the document was prepared for. The document shall not 
be copied, in parts or in whole, or be given to a third party 
without the owner’s consent. No changes to the document 
shall be made without consent from NGI. 
 
Ved elektronisk overføring kan ikke konfidensialiteten eller 
autentisiteten av dette dokumentet garanteres. Adressaten 
bør vurdere denne risikoen og ta fullt ansvar for bruk av dette 
dokumentet. 
 
Dokumentet skal ikke benyttes i utdrag eller til andre formål 
enn det dokumentet omhandler. Dokumentet må ikke 
reproduseres eller leveres til tredjemann uten eiers samtykke. 
Dokumentet må ikke endres uten samtykke fra NGI. 



 

NORWEGIAN GEOTECHNICAL INSTITUTE Main office Trondheim office T 22 02 30 00 BIC NO. DNBANOKK ISO 9001/14001 
NGI.NO PO Box 3930 Ullevaal St. PO Box 5687 Torgarden F 22 23 04 48 IBAN NO26 5096 05 01281 CERTIFIED BY BSI 
 NO-0806 Oslo NO-7485 Trondheim NGI@ngi.no ORGANISATION NO. FS 32989/EMS 612006 
 Norway Norway  958 254 318MVA  
 
p:\2015\00\20150030\leveransedokumenter\rapport\20150030-13-r\20150030-13-r.docx 

Project  

Project title: SP8 - Soil Parameters in Geotechnical Design (GEODIP) 
Document title: CPTU CORRELATIONS FOR CLAYS 
Document no.: 20150030-13-R 
Date: 2019-02-20 
Revision no. /rev. date:  0   
  

Client  

Client: Norwegian Research Council (NFR) 
Client contact person: Anders Solheim  
Contract reference: Strategic Project (SP8) 
  

for NGI  

Project manager: Jean-Sebastien L'Heureux 
Prepared by: Marco D'Ignazio, Anders Lindgård, Priscilla Paniagua 
Reviewed by: Jean-Sebastien L'Heureux, Tom Lunne 
 

 
 
 
  

http://www.ngi.no/
mailto:ngi@ngi.no


 

p:\2015\00\20150030\leveransedokumenter\rapport\20150030-13-r\20150030-13-r.docx 

Document no.: 20150030-13-R 
Date: 2019-02-20 
Rev.no.:  0 
Page: 4  

Summary 

As part of the R&D project GEODIP-SP8, a multivariate high-quality database of 
sensitive clays consisting of laboratory strength and consolidation test results, index 
parameters and CPTU parameters was established. The present report evaluates, with 
the help of multiple regression analyses, possible correlations among measured CPTU 
parameters (e.g. excess pore pressure, ∆u, net cone resistance, qnet, and effective cone 
resistance, qe), undrained shear strength from CAUC tests (suC) and some basic clay 
properties (e.g., OCR, plasticity) included in the database. 
 
The first part of the report presents the collected data points and it discusses sample 
quality. Then, correlations based on simple and multivariable linear regression analyses 
are proposed for undrained shear strength, overconsolidation ratio and preconsolidation 
stress. The goodness of the established correlations established is checked for seven test 
sites in Norway. Finally, recommendations for engineering practice are given based on 
the outcomes of this study. 
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1 Introduction 

1.1 Background 

All building and construction works require reliable and proper selection of geotechnical 
design parameters. A thoughtful choice of the most appropriate investigation method is 
likely to result in improved understanding of soil behaviour and, therefore, in more cost-
effective and sustainable solutions for the construction, transport and energy sectors. 
The geotechnical community in Norway and abroad agrees that there is a need for better 
understanding of the behaviour of sensitive clays in order to improve geotechnical 
design practice, with the scope of making it more innovative, and to reduce risks related 
to the occurrence of more or less catastrophic events (e.g. landslides, excavation failure). 
 
NGI has carried out several studies on characterization of sensitive clays and on effect 
of sample quality on the choice of geotechnical design parameters. In particular, the use 
of high-quality block samples (Ø250mm) over the more traditional Ø54mm or Ø72mm 
seemed to ensure better sample quality (e.g. Lunne et al. 1997; Lunne et al. 2006; 
Karlsrud and Hernandez-Martinez 2013), which is mainly reflected in the higher 
measured undrained shear strength (su), higher inferred preconsolidation pressure (p'c) 
and higher measured soil stiffness (both drained and undrained). 
 
Geotechnical design in sensitive clay areas in Norway is mainly based on piezocone 
(CPTU) test results. CPTU parameters are usually derived based on empirical 
correlations against parameters established through soil sampling and laboratory testing. 
For instance, cone factors for undrained shear strength (Nkt, N∆u, Nke) can be correlated 
with OCR, plasticity and/or sensitivity (Karlsrud et al., 2005). The quality of the 
empirical correlations is directly linked to the quality of the tests used to calibrate such 
models. Besides NGI's decades of experience, examples of how the use of high-quality 
samples resulted in improved and more cost-effective CPTU-based design are also 
presented in the literature (e.g., Lunne and Powell, 2007; Robertson et al., 2009; 
L'Heureux et al. 2018).  
 
To follow up on this the NGI funded the strategic R&D project SP8-GEODIP. The work 
presented in this report constitutes part of the SP8-GEODIP project and it focuses on the 
determination of correlations for CPTU parameters based on block samples data of 
sensitive clays. 
 
1.2 Objectives and scope of work 

One of the main activity of the SP8 project has been to establish a multivariate high-
quality database of sensitive clays consisting of laboratory strength and consolidation 
test results, index parameters and CPTU parameters. A full overview of the database is 
presented in NGI report 20150030-02-R and the database can be found as an Excel file 
on the following path:  
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P:\2015\00\20150030\DP-1-Database_work\High-quality-database-clay-APP  
 
The aim of this report is to evaluate, with the help of multiple regression analyses, 
possible correlations among measured CPTU parameters (e.g. excess pore pressure, ∆u, 
net cone resistance, qnet, and effective cone resistance, qe), undrained shear strength from 
CAUC tests (suC) and some basic clay properties (e.g., OCR, plasticity). 
 
The first part of the report presents the collected data points and it discusses sample 
quality. Then, correlations based on simple and multivariable linear regression analyses 
are proposed for undrained shear strength, overconsolidation ratio and preconsolidation 
stress. The goodness of the established correlations established is checked for seven test 
sites in Norway. Finally, recommendations for engineering practice are given based on 
the outcomes of this study. 
 
 
2 Effects of sampling method and block sampling 

Sample disturbance may occur during drilling, sampling, transportation, storage or 
preparation for testing. Any sample of soil being taken from the ground, transferred to 
the laboratory and prepared for testing will be subject to disturbance. The mechanisms 
associated with the disturbance may be classified as follows (Clayton et al. 1982): 

1. Changes in stress conditions 
2. Mechanical deformation 
3. Changes in water content and void ratio 
4. Chemical changes 

A reduction in total stresses will inevitably occur at some point during the sampling 
process. For instance, making a borehole reduces the total stresses at its base, using 
sampling tubes with inside clearance reduces the lateral total stresses and extrusion of 
the soil specimen will usually bring the total stresses in all directions to zero. 
 
The choice of sampling method strongly influences the sample quality (Berre et al. 2007; 
Lunne et al. 2006; Lunne and Andersen 2007). Each sampling method trigger different 
mechanisms leading to sample disturbance as classified above. For the purpose of this 
study, only data obtained using the Sherbrooke block sampler (Lefebvre and Poulin 
1979) are considered.  
 
The Sherbrooke block sampler was developed and tested at Sherbrooke University, 
Quebec, Canada during the period 1975-1978 (Lefebvre and Poulin 1979). This sampler 
allows carving of cylindrical blocks with diameter and height of 250 mm and 350 mm 
respectively. Karlsrud et al., (2012) describes the practical aspects of block sampling.  
 
Block sampling is an excellent method of ensuring that the soil remains unaffected by 
shear distortions during sampling, but samples obtained in this way may not, due to 
swelling, have the same effective stresses as those in the ground. This should be 
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accounted for using appropriate reconsolidation procedures. The NGI believes this 
sampler gives the highest quality samples available (Lunne et al. 2006).  
 
 
3 CPTU database of sensitive clays 

3.1 Basic parameters 

The database consists of 61 block samples data points collected from 17 sites from 
Norway and the well-investigated Bothkennar soft clay site from UK. Some of the data 
have been already presented in Karlsrud et al. (2005) and Karlsrud and Hernandez-
Martinez (2013) and exploited to derive correlations for anisotropic strength and 
stiffness of sensitive clays and CPTU correlations. More recent block samples data from 
the soil investigation for the construction of the new highway E16, from Nybakk to 
Slomarka, are also included (NGI report 20150030-08-R), in addition to block samples 
collected at Skatval and Koa in Trøndelag. For more information and updates about 
NGIs block samples database the reader is referred to NGI reports 20150030–02–R and 
20150030–08–R. 
 
Some of the parameters contained in the database are: 

 qt: corrected cone tip resistance 
 qnet: net cone tip resistance, qt – p0, where p0 is the total overburden stress 
 u2: pore pressure measured during cone penetration 
 u: u2 – u0, where u0 is the hydrostatic pore pressure 
 suC: peak undrained shear strength from anisotropically consolidated triaxial 

compression (CAUC) tests. Tested specimen were reconsolidated to the in-situ 
stress state. 

 p'c: inferred preconsolidation stress from constant-rate-of-strain (CRS). Values 
are interpreted according to Karlsrud (1991) and Karlsrud and Hernandez-
Martinez (2013). Janbu (1969) method was also used for p'c interpretation 
control. 

 p'0: in-situ vertical effective stress 
 OCR: overconsolidation ratio, = p'c/p'0 
 w: natural water content 
 PI: plasticity index 
 St: sensitivity measured from Fall Cone test 

Clay content
 
The basic statistics of the abovementioned soil parameters are summarized in Table 3.1.  
 
Soil properties were measured from specimens collected down to a maximum depth of 
22 m. The clay properties cover a wide range of plasticity index, with PI varying between 
4 (low plastic) and 49 (very high plastic), a wide range of water content (w = 28 – 72%), 
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a wide range of sensitivity (St) values (St = 2 – 240). The OCR ranges from 1 to 6.25, 
while the clay content varies between 21 and 64.5%. 
 
Table 3.1 Statistics of the basic parameters in the database 

Variable n Mean COV Min Max 
qt (kPa) 61 644.80 0.32 220 1115 
qnet (kPa) 61 469.51 0.32 169 760.3 
u2 (kPa) 61 442.70 0.36 150 788 
∆u (kPa) 61 362.68 0.38 122 693.3 
su

C (kPa) 61 47.50 0.41 15.3 100.8 
p'c (kPa) 61 209.80 0.55 47.46 475 
p'0 (kPa) 61 96.15 0.54 22.6 227 
OCR 61 2.40 0.52 1 6.25 
w (%) 61 42.58 0.31 27.9 72.2 
PI (%) 61 19.83 0.61 4 49 
St 59 37.96 1.59 2 240 
Clay content (%) 56 40.93 0.25 21 64.5 

 
 
3.2 Evaluation of sample disturbance  

Evaluation of sample disturbance is an important task in geotechnical engineering and 
the topic has been given much attention. This has led to several criteria for assessment 
of sample quality (e.g. Lunne et al. 1997; Donohue and Long 2007; Karlsrud and 
Hernandez-Martinez 2013). In this work, the change in void ratio relative to the initial 
void ratio, ∆e/e0, is used to evaluate sample disturbance according to NGF publication 
no. 11 (NGF 2013) (Table 3.2).  
 
Table 3.2 Criteria for sample quality after NGF (Norwegian Geotechnical Society, 2013) 

OCR ∆e/e0 

1-2 <0.04 0.04-0.070 0.070 - 0.140 > 0.14 
2-4 <0.03 0.03-0.050 0.050 - 0.100 > 0.10 
4-6 <0.02 0.02-0.035 0.035 – 0.070 > 0.07 
Quality 1: Very good to excellent 2: Good to fair 3: Poor 4: Very poor 

 
 
Figure 3.1 illustrates the normalized change in void ratio from CAUC tests on samples 
from the different test sites. It is evident that the normalized change in void ratio tends 
to increase with increasing depth for all samples. This tendency has also been observed 
by Amundsen et al. (2016) for low plasticity clays. Despite the increasing ∆e/e0 with 
depth, data points fall within sample quality categories 1 and 2 (Table 3.2), as shown in 
Figure 3.2 (which also takes OCR into account). Therefore, the collected data points are 
considered of high-quality. 
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Figure 3.1 Normalized change in void ratio (∆e/e0) from CAUC tests on block samples versus 
depth for different sites. 

 

 
Figure 3.2 Normalized change in void ratio (∆e/e0) from CAUC tests versus over-consolidation 
ratio OCR for different sites. 
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4 CPTU results and correlations 

4.1 Definition of CPTU factors considered 

Measured cone tip resistance (qt) and excess pore pressure (∆u or u2) are the most 
frequently used parameters in CPTU correlations for undrained shear strength (e.g. 
Karlsrud et al. 2005). Different cone factors are used to correlate the measured 
parameters to the laboratory undrained shear strength. In the international literature, the 
reference undrained shear strength is sometimes measured in other tests than CAUC 
(e.g., field vane test, DSS). At NGI, suC has been used as reference for over 25 years. 
 
The corrected cone tip resistance qt is related to CAUC traxial undrained shear strength 
(suC) by means of the cone factor Nkt, as: 
 

𝑁𝑁𝑘𝑘𝑘𝑘 =
𝑞𝑞𝑡𝑡 − 𝑝𝑝0
𝑠𝑠𝑢𝑢𝐶𝐶

=
𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑢𝑢𝐶𝐶

 

  
The measured excess pore pressure is related to suC by means of the cone factor N∆u, as: 
 

𝑁𝑁∆𝑢𝑢 =
𝑢𝑢2 − 𝑢𝑢0
𝑠𝑠𝑢𝑢𝐶𝐶

=
∆𝑢𝑢
𝑠𝑠𝑢𝑢𝐶𝐶

 

 
The combination of cone resistance and excess pore pressure can be also related to suC 
by means of the cone factor Nke, as: 
 

𝑁𝑁𝑘𝑘𝑘𝑘 =
𝑞𝑞𝑡𝑡 − 𝑢𝑢2
𝑠𝑠𝑢𝑢𝐶𝐶

 

 
Other commonly used factors for CPTU correlations are the pore pressure factor, Bq, 
and the normalized net cone resistance, Qt. These parameters are defined as: 
 

𝐵𝐵𝑞𝑞 =
𝑢𝑢2 − 𝑢𝑢0
𝑞𝑞𝑡𝑡 − 𝑝𝑝0

 

 
𝑄𝑄𝑡𝑡 =

𝑞𝑞𝑡𝑡 − 𝑝𝑝0
𝑝𝑝′0

=
𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝′0

 

 
Several authors have proposed relationships between cone factors and soil parameters. 
For instance, Karlsrud et al. (2005) established CPTU correlations for undrained shear 
strength of Norwegian clays. Karlsrud et al. (2005) grouped cone factors based on St: 
St<15 and St>15. Nkt was observed to increase with increasing OCR and, for St>15, also 
with PI. N∆u was, on contrary, observed to decrease with increasing OCR. Nke was 
reported to linearly decrease with increasing Bq. 
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For normally to slightly overconsolidated clays from Sweden, Larsson et al. (2007) 
suggested Nkt to increase with increasing liquid limit and N∆u to decrease with 
decreasing liquid limit. 
 
Low et al. (2010) attempted to correlate, based on a database of onshore as well as 
offshore clays from different sites around the world, cone factors to soil parameters such 
as PI, St, strength anisotropy and rigidity index, Ir (G50/suC). No clear correlations for 
cone factors could be observed.  
 
4.2 Undrained shear strength correlations 

Figure 4.1 and Figure 4.2 show the net cone resistance (qnet) and the excess pore pressure 
(∆u = u2-u0) against the measured undrained shear strength from triaxial compression 
tests (suC). Based on these figures, the measured suC seems to better correlate with ∆u 
than with qnet (lower scatter and, therefore, higher coefficient of determination, r2). 
 
CPTU correlations for Norwegian clays have previously been established by Karlsrud 
et al. (2005); both for the overconsolidation ratio (OCR) and for estimation of undrained 
shear strength.  
 
In Figure 4.3, the measured cone factor Nkt is compared to the correlations by Karlsrud 
et al. (2005) for Nkt as a function of OCR and sensitivity. The data points show high 
scatter and it seems difficult to identify a reasonable statistical trend between Nkt and 
OCR.   
 
Similar considerations can be done by looking at the relationship between N∆u and OCR 
(Figure 4.4). Even though the suggested regression line shows N∆u decreasing with 
increasing OCR, in agreement with Karlsrud et al.'s (2005) correlations trend, the 
calculated coefficient of determination (r2) is rather low. 
 
A fairly good agreement is found between Nke and the Bq parameter, as shown in Figure 
4.5. The calculated regression line agrees with the Karlsrud et al.'s (2005) relations, 
accompanied by r2 = 0.81, which is considerably higher than r2 in Figure 4.3 and Figure 
4.4. However, this approach must be carefully used, as Nke is very sensitive to small 
changes in Bq. 
 
Correlations between Nkt, N∆u and Bq are not presented, since, as pointed by Karlsrud et 
al. (2005), these would only be representative of how the measured excess pore pressure 
vary with undrained shear strength. 
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Figure 4.1 Net cone resistance (qnet) against CAUC undrained shear strength su

C. 

 

 
Figure 4.2 Excess pore pressure (∆u) against CAUC undrained shear strength su

C. 
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Figure 4.3 Nkt against overconsolidation ratio, OCR.  

 

 
Figure 4.4 N∆u against overconsolidation ratio, OCR. 
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Figure 4.5 Nke against Bq. 
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Figure 4.6 Nkt against plasticity index, PI. 

 

 
Figure 4.7 N∆u against plasticity index, PI. 
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Figure 4.8 Nke against PI. 

 
The dependency of cone factors on sensitivity (St) was discussed in Karlsrud et al. 
(2005). Karlsrud et al. (2005) and Karlsrud and Hernandez-Martinez (2013) proposed a 
boundary between low sensitive and high sensitive clays at St = 15. 
 
No marked dependency could be observed between N∆u or Nke on St. Therefore, these 
relations are not shown in this report. On the other hand, Nkt seems to show a dependency 
on St for St > 30, as shown in Figure 4.9. For high sensitive to quick clays, Nkt appears 
to linearly decrease with increasing St. 
 

0 20 40 6010 30 50
Plasticity index, PI (%)

0

4

8

12

N
ke

 [-
]

Block samples data Regression

Nke = 2.19 + 0.12·PI, r2=0.42



 

p:\2015\00\20150030\leveransedokumenter\rapport\20150030-13-r\20150030-13-r.docx 

Document no.: 20150030-13-R 
Date: 2019-02-20 
Rev.no.:  0 
Page: 18  

 
Figure 4.9 Nkt against sensitivity, St. 

 
In order to obtain improved expressions for cone factors of sensitive clays, multivariable 
linear regression analyses were performed to evaluate the interdependence of Nkt, N∆u, 
Nke and clay parameters (e.g. OCR, PI, St…) to maximize the r2 of the correlations. Only 
the equations showing the best fit, in terms of calculated r2, to the database are presented 
in this report.  
 
For Nkt, the multivariable regression analysis did not show any remarkable improvement 
in the calculated r2. The highest r2 were measured for equations [1] and [2], suggesting 
a linear dependency between Nkt and PI and Nkt and St (only for St > 30). 
 
[1]   𝑁𝑁𝑘𝑘𝑘𝑘 = 7.95 + 0.13 ∙ 𝑃𝑃𝑃𝑃  r2 = 0.40 

 
[2]   𝑁𝑁𝑘𝑘𝑘𝑘 = 10.5 − 0.011 ∙ 𝑆𝑆𝑡𝑡  r2 = 0.57, for St > 30 

 
No clear dependency could be observed between N∆u and the basic clay parameters 
included in the database. The linear regression analyses indicated N∆u constant and equal 
to 7.50 (equation [3]) to give the highest r2 = 0.83. This is remarkably higher than the r2 
for Nkt from equations [1] and [2]. 
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[3]   𝑁𝑁∆𝑢𝑢 = 7.50    r2 = 0.83 

 
Unlike Nkt and N∆u, Nke seems to correlate with different parameters. As shown in 
equation [4], Nke can be linearly correlated to Bq, OCR and PI. The multivariable 
regression analysis resulted in a notably higher calculated r2 than in Figure 4.8. 
 
[4] 𝑁𝑁𝑘𝑘𝑘𝑘 = 14.3 − 12.1 ∙ 𝐵𝐵𝑞𝑞 − 2.6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑂𝑂𝑂𝑂𝑂𝑂 + 0.027 ∙ 𝑃𝑃𝑃𝑃  for Bq < 1.0       r2 = 0.91 

𝑁𝑁𝑘𝑘𝑘𝑘 = 6.4 − 3.3 ∙ 𝐵𝐵𝑞𝑞 − 2.6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑂𝑂𝑂𝑂𝑂𝑂 − 0.015 ∙ 𝑃𝑃𝑃𝑃  for Bq ≥ 1.0       r2 = 0.82 

 
A multivariable regression analysis was also performed directly between undrained 
shear strength results from CAUC tests as a function of qnet, ∆u and the natural water 
content, w (equation [5]). Results show a strong linear trend with r2 close to unity.  
 
[5]   𝑠𝑠𝑢𝑢𝐶𝐶 = 0.10 ∙ 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛0.26 ∙ ∆𝑢𝑢0.74 ∙ 𝑤𝑤−0.26   r2 = 0.91 

 
4.3 Correlations based on the SHANSEP framework 
Karlsrud and Hernandez-Martinez (2013) proposed correlations for anisotropic 
undrained shear strength of Norwegian clays based on the SHANSEP framework (Ladd 
and Foott 1974) and engineering judgement. In particular, they observed a dependency 
between the normalized undrained shear strength (suC/p'0), the OCR and the natural water 
content. 
 
For the database presented in this work, the following best fit equation was found: 
 
[6]   𝑠𝑠𝑢𝑢

𝐶𝐶

𝑝𝑝′0
= 𝑆𝑆 ∙ 𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚 = 0.32 ∙ 𝑂𝑂𝑂𝑂𝑂𝑂(0.20+1.17∙𝑤𝑤)   r2 = 0.80 

 
Given that suC = qnet/Nkt or suC=∆u/N∆u, one can substitute these definitions into equation 
[6] and obtain equations [7] and [8]: 
 

[7]   𝑁𝑁𝑘𝑘𝑘𝑘 = 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝′0

∙ 1
𝑆𝑆∙𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚

= 𝑄𝑄𝑡𝑡
𝑆𝑆∙𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚

= 𝑄𝑄𝑡𝑡
0.32∙𝑂𝑂𝑂𝑂𝑂𝑂(0.20+1.17∙𝑤𝑤)  

 

[8]   𝑁𝑁∆𝑢𝑢 = ∆𝑢𝑢
𝑝𝑝′0

∙ 1
𝑆𝑆∙𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚

  

 
Equations [7] and [8] would, at first glance, indicate that Nkt, N∆u are inversely 
proportional to OCR. This would theoretically contradict what Karlsrud et al. (2005) 
proposed for Nkt, where Nkt increases with increasing OCR. However, the high measured 
Qt in OC soils is likely to result in higher Nkt at high OCR values. The theoretical trend 
suggested by equation [8] agrees with what proposed by Karlsrud et al. (2005). 
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It is recommended the application of Karlsrud (1991) and/or Janbu (1969) methods for 
pc' and OCR determination. 
 
Figure 4.10 shows a comparison between measured and calculated Nkt values from 
equation [7], based on Qt, OCR (determined by either Karlsrud (1991) or Janbu (1969) 
methods) and w. Measured and calculated data points agree relatively well. This is an 
expected result considering that i) the qnet values in the database appear on both the 
measured and the calculated Nkt and ii) some of the data points contained in the database 
were already exploited by Karlsrud and Hernandez-Martinez (2013) to derive equation 
[6]. 
 

 
Figure 4.10 Measured Nkt against calculated Nkt from equation [6]. 

 
 
4.4 Preconsolidation stress and over-consolidation ratio 

Another fundamental parameter for engineering practice is the preconsolidation stress 
(p'c). This parameter is used to derive the overconsolidation ratio, OCR, which is used 
both for settlement calculations and to estimate undrained shear strength. 
 
Leroueil et al. (1995) proposed for Canadian clays an empirical correlation between p'c 
and qnet as: 
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As shown in Figure 4.11, Leroueil et al.'s (1995) correlation seems representative of the 
lower boundary of the measured data points. An updated relation between p'c and qnet 
for Norwegian clays is proposed as: 
 
[10]   𝑝𝑝′𝑐𝑐 = 0.04 ∙ 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛1.37  r2 = 0.66 

 
Data points in Figure 4.11 show a high scatter. This may suggest that p'c may depend 
also on other properties besides qnet. Hence, multivariable linear regression was carried 
out and the relation shown by equation [11] was obtained. A notable gain in r2 could be 
obtained with respect to equation [10] by including ∆u and w. 
 
[11]   𝑝𝑝′𝑐𝑐 = 2.18 ∙ 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛0.61 ∙ ∆𝑢𝑢0.54 ∙ 𝑤𝑤−0.65   r2 = 0.83 

 

 
Figure 4.11 Preconsolidation pressure p'c against qnet. 

 
A relationship between OCR and Qt was previously proposed by Mayne (1986) as 
follow:  
 
[12]   𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑘𝑘 ∙ 𝑄𝑄𝑡𝑡    
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Where an average value of k = 0.33 was recommended by Mayne (2005) for ϕ = 30o and 
rigidity index Ir = 100, with a range of 0.2-0.5. 
 
Karlsrud et al. (2005) also suggested the following relationship to evaluate OCR from 
CPTU test: 
 

[13]   𝑂𝑂𝑂𝑂𝑂𝑂 = �𝑄𝑄𝑡𝑡
𝑎𝑎
�
𝑏𝑏

    

 
Where a = 3, b = 1.2 for St<15 and a = 2, b = 1.11 for St > 15.  
 
Results from the high quality database show that there indeed exists a linear dependency 
between Qt and OCR (Figure 4.12). The best fit relationship obtained from this data is 
expressed by equation [14]: 
 
[14]   𝑂𝑂𝑂𝑂𝑂𝑂 = 0.20 + 0.39 ∙ 𝑄𝑄𝑡𝑡   r2 = 0.43 

 
Multivariable linear regression was used to improve the r2 of equation [14], resulting in 
equation [15]: 
 
[15]   𝑂𝑂𝑂𝑂𝑂𝑂 = 0.85 + 0.44 ∙ 𝑄𝑄𝑡𝑡 − 0.05 ∙ 𝑃𝑃𝑃𝑃   r2 = 0.63 

 

 
Figure 4.12 Relation between OCR and Qt. 
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5 Evaluation of CPTU correlations 

The correlations determined in Chapter 4 are evaluated and validated against block 
sample data points from four test sites in Norway located at Koa, Møllenberg (2 
locations), Nybakk-Slomarka (three locations) and Skatval. For these sites, available suC 
values from CAUC tests are used to validate the correlations. 
 
In addition to the equations in Chapter 4, CPTU correlations proposed by Karlsrud et al. 
(2005) (see Eqs. [16], [17], [18], [19] below) which are currently used in onshore 
practice, are included in the comparison. 
 
[16]   𝑁𝑁𝑘𝑘𝑘𝑘 = 7.8 + 2.5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 0.082𝑃𝑃𝑃𝑃 St < 15 

 
[17]   𝑁𝑁𝑘𝑘𝑘𝑘 = 8.5 + 2.5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 St > 15 

 
[18]   𝑁𝑁∆𝑢𝑢 = 6.9 − 4.0𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 0.07𝑃𝑃𝑃𝑃 St < 15 

 
[19]   𝑁𝑁∆𝑢𝑢 = 9.8 − 4.5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 St > 15 

 
5.1 Koa 

The clay at Koa site is a low-medium plastic clay. The plasticity index varies between 
7-13, with average water content of 30%. The sensitivity varies in the range 10 to 90. A 
CRS tests at 8.90 m depth indicate OCR = 3.70 – 4.0 according to different methods of 
interpretation.  
 
The samples collected at Koa are miniblock (Ø160 mm) samples since it was very 
difficult to access the area with the equipment for Sherbrook samples (Ø250 mm) 
(difficulties due to weather conditions at the time of sampling). The quality of the 
miniblock samples is similar to the quality of 72 mm samples for oedometer test data 
(that show quality 3). For CAUA data, the quality of miniblock samples is better (quality 
1) than the 72 mm samples (quality 2).  
 
As shown in Figure 5.1, equations [10] - [14] do not seem to capture the OCR measured 
from the available CRS test. This mismatch can be justified by the uncertainty in the 
ground water level at the site which influences the calculation of the effective in situ 
stresses. The best fit of equation [12] to the OCR data points is obtained for k = 0.50.  
 
Figure 5.2 shows the interpreted suC versus depth. CAUC tests at 5.36 m and 8.90 m 
depth are used to evaluate the different correlations. OCR from equation [12] is used as 
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reference OCR to evaluate equation [6]. Equation [4] is highly dependent on OCR and 
therefore shows high variation in the predicted suC values.  
 
Equations [1], [2], [16] and [17] seem to slightly underestimate suC by 10% or lower at 
8.90 m depth. On the other hand, equation [3], [5], [18] and [19] may overestimate suC 
in more than 10%. Equation by Karlsrud and Hernandez-Martinez (2013) and [6] 
slightly overestimate suC by 10% or lower.  
 
  

 
Figure 5.1 Interpreted OCR and variation of basic properties versus depth at Koa site. OGL: 
original ground level. 
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Figure 5.2 Interpreted su

C versus depth at Koa site. 
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5.2 Møllenberg 809 

The clay at Møllenberg 809 site is a low to medium plastic clay. The plasticity index 
varies between 5 and 15, with average water content of 30%. The sensitivity is in the 
range 3-18. A CRS test at 19.5 m depth indicates OCR = 1.47 – 1.84 according to 
different methods of interpretation.  
 
As shown in Figure 5.3, except for equation [11] that seems to overestimate OCR, the 
other proposed models for OCR seems to capture the OCR measured from the test. The 
best fit of equation [12] to the OCR data points is obtained for k = 0.38. 
 
Figure 5.4 shows the interpreted suC versus depth. CAUC tests at 12.9 m and 19.5 m 
depth are used to evaluate the different correlations. It must be highlighted that there is 
a mismatch of about 15 kPa between the in situ stress and the vertical consolidation 
stress in the test 12.90 m. Block sample database gives approx. 15 kPa lower in situ 
stress compared to CPTU interpretation sheet. Therefore, suC at 12.90 is expected to be 
higher than what measured. Based on that, higher weight is given to the CAUC test at 
19.5 m. Furthermore, OCR from equation [12] is used as reference OCR to evaluate 
equation [6]. 
 
Equations [1], [3], [4], [6], [16], [17], [18], [19] and by Karlsrud and Hernandez-
Martinez (2013) are able to predict quite accurately suC from the CAUC test at 19.5 m 
depth. On the other hand, suC at 12.9 m depth is under- and overestimate with the 
majority of the equations. A better agreement between the different models can be 
observed above 12 m. Equation [2] was not evaluated since St < 30. 
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Figure 5.3 Interpreted OCR and variation of basic properties versus depth at Møllenberg 809 
site. OGL: original ground level. 
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Figure 5.4 Interpreted su

C versus depth at Møllenberg 809 site. 
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5.3 Møllenberg 823 

The clay at Møllenberg 823 site is a low plastic clay. The plasticity index varies between 
5 and 8, with average water content of 38%. The sensitivity is about 200. CRS tests at 
9.2 m and 18.2 m depth indicate OCR = 1.50 – 2.0 and 1.40 – 1.78, respectively, 
according to different methods of interpretation.  
 
As shown in Figure 5.5, equations [10], [12], [14] seem to capture the OCR measured 
from the tests. The best fit of equation [12] to the OCR data points is obtained for k = 
0.45. 
 
Figure 5.6 shows the interpreted suC versus depth. CAUC tests at 9.2 m and 18.2 m depth 
are used to evaluate the different correlations. It must be highlighted that there is a 
mismatch of about 30 kPa between the in situ stress and the vertical consolidation stress 
in the test at 18.2 m. Block sample database gives approx. 30 kPa lower in situ stress 
compared to CPTU interpretation sheet. Therefore, suC at 18.2 m is expected to be higher 
than what measured. Based on that, higher weight is given to the CAUC test at 9.2 m. 
Furthermore, OCR from equation [12] is used as reference OCR to evaluate equation 
[6]. 
 
Equations [1], [2], [6], by Karlsrud and Hernandez-Martinez (2013), [16], [17], [18] and 
[19] are able to predict quite accurately suC from the CAUC test at 9.2 m depth. If the 
CAUC test at 18.2 m had been consolidated to the correct in situ stresses, equations [1], 
[2], [5] and [6] would have been able to predict quite well suC. Equation [4] 
underestimate suC for both depths, since it is highly dependent on OCR. 
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Figure 5.5 Interpreted OCR and variation of basic properties versus depth at Møllenberg 823 
site. OGL: original ground level. 
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Figure 5.6 Interpreted su

C versus depth at Møllenberg 823 site. 
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5.4 Nybakk-Slomarka C2371 

The clay at Nybakk-Slomarka C2371 site is a low-medium plastic clay. The plasticity 
index varies between 7 and 20, with water content of 25-40%. The sensitivity reaches 
values greater than 200. CRS tests at different depths indicate OCR = 2.2 – 5.2, 
decreasing with increasing depth, according to different methods of interpretation.  
 
As shown in Figure 5.7, equations [10], [13], [14], [15] seem to underestimate the OCR 
interpreted from CRS test. Below 10 m depth, eq. [11] captures fairly well the CRS test 
results. The best OCR fit is obtained using equation [12] with k = 0.55. 
 
Figure 5.8 shows the interpreted suC versus depth. CAUC tests at three different depths 
are used to evaluate the different correlations. The OCR from equation [12] is used as 
reference OCR to evaluate equation [6]. 
 
Overall, equations [6] and those by Karlsrud and Hernandez-Martinez (2013) give the 
best fit to the data points. Equation [1] seem able to capture the suC down to 11 m depth. 
Below 11 m, equations [18] and [19] also capture suC from CAUC. Equation [4] 
underestimate suC before 14 m depth and after that it shows strong variations due to the 
highly dependency on OCR that it shows. The clay at this site is sensitive with St > 15 
from ca. 14 m. This can explain the observed jump in the estimation of undrained shear 
strength from 11 m to 15 m with some of the correlations. 
 
L'heureux et al. (2018) presents results of empirical correlations between CPTU 
parameters, the undrained shear strength and the overconsolidation ratios for this clay 
(Rakkestad clay) based on regression analyses on a local database. A better match with 
the relationships based on the block sample correlations was obtained in that study. 
Karlsrud et al. (2005) relationships seemed to underestimate the OCR of Rakkestad clay. 
The differences were significant throughout the profile. Differences were also observed 
in the case of the interpreted undrained shear strength where developed equations seem 
to capture the laboratory values at depths over 11 m. Below this depth, they 
underestimate the value for undrained shear strength obtained from a block sample.  
 
Comparing the correlations presented in this report with the ones proposed by L'heureux 
et al. (2018) can be concluded that: 

 OCR correlations from L'heureux et al. (2018) estimate better the laboratory 
values, and 

 suC correlations from this report (Equation [6]) seem to better capture the 
laboratory values. 
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Figure 5.7 Interpreted OCR and variation of basic properties versus depth at Nybakk-Slomarka 
C2371 site. OGL: original ground level. 
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Figure 5.8 Interpreted su

C versus depth at Nybakk-Slomarka C2371 site. 
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5.5 Nybakk-Slomarka C2411 

The clay at Nybakk-Slomarka C2411 site is a low-medium plastic clay. The plasticity 
index varies between 11 and 18, with average water content of 35%. The sensitivity 
ranges between 15 and 20. CRS tests at different depths indicate OCR = 2.9 – 5.3, 
decreasing with increasing depth, according to different methods of interpretation.  
 
As shown in Figure 5.9, equations [10], [14], [15] seem to underestimate the OCR 
interpreted from CRS test. Equations [11], [12], [13] capture fairly well the CRS test 
results. The best fit of equation [12] to the OCR data points is obtained for k = 0.55. 
 
Figure 5.10 shows the interpreted suC versus depth. CAUC tests at three different depths 
are used to evaluate the different correlations. The OCR from equation [12] is used as 
reference OCR to evaluate equation and [6]. Overall, equations by Karlsrud and 
Hernandez-Martinez (2013), [6], [16], [17] give the best fit to the data points. The other 
equations overestimate suC.  
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Figure 5.9 Interpreted OCR and variation of basic properties versus depth at Nybakk-Slomarka 
C2411 site. 
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Figure 5.10 Interpreted su

C versus depth at Nybakk-Slomarka C2411 site. 
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5.6 Nybakk-Slomarka C2284 

The clay at Nybakk-Slomarka C2284 site is a medium plastic clay. The plasticity index 
varies between 15 and 24, with water content of 40-50%. The sensitivity ranges between 
8 and 20. CRS tests at different depths indicate OCR = 1.22 – 2.1, decreasing with 
increasing depth, according to different methods of interpretation.  
 
As shown in Figure 5.11, equations [10], [13], [15] seem to underestimate the OCR 
interpreted from CRS test. Equations [11], [12], [14] capture fairly well the CRS test 
results. The best fit of equation [12] to the OCR data points obtained from Karlsrud and 
Hernandez-Martinez's (2013) method is obtained for k = 0.47. 
 
Figure 5.12 shows the interpreted suC versus depth. CAUC tests at three different depths 
are used to evaluate the different correlations. The OCR from equation [12] is used as 
reference OCR to evaluate equation [6]. 
 
Overall, equations [4] and [6] give the best fit to the data points. Some other equations 
over- and underestimate suC by ±10%. 
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Figure 5.11 Interpreted OCR and variation of basic properties versus depth at Nybakk-Slomarka 
C2284 site. 
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Figure 5.12 Interpreted su

C versus depth at Nybakk-Slomarka C2284 site. 
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5.7 Skatval 

The clay at Skatval site is a low to medium plastic clay. The plasticity index varies 
between 7.5 and 17, with average water content of 34%. The sensitivity varies between 
4 and 70. CRS tests between 5 and 8 m depth indicate OCR = 1.86 – 3.10, according to 
interpretation method by Janbu (1969). Other interpretation methods for p'c were not 
tested for this site.  
 
As shown in Figure 5.13, equation [10] seems to slightly underestimate the OCR, while 
the other equations are able to better predict the test results. In particular, the OCR from 
Janbu's method is captured by equation [12] for k = 0.45. 
 
Figure 5.14 shows the interpreted suC versus depth. CAUC tests at four different depths 
are used to evaluate the different correlations. The OCR from equation [12] is used as 
reference OCR to evaluate equation [6]. 
 
Equations by Karlsrud and Hernandez-Martinez (2013), [2], [6] [16], [17], [18], [19] 
seem able to predict quite accurately suC from the CAUC tests below 5 m depth. The 
equations spread over a range of 30-35 kPa below 12 m depth. The CAUC test at 4.55 
m depth could not be captured by any of the tested correlations.  
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Figure 5.13 Interpreted OCR and variation of basic properties versus depth at Skatval site. 
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Figure 5.14 Interpreted su

C versus depth at Skatval site. 
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5.8 Tiller-Flotten TILC01 

The clay at Tiller-Flotten site is a low to highly plastic clay. The plasticity index varies 
between 6 and 35, with average water content of 45%. The sensitivity varies between 10 
and 250. CRS tests between 8 and 17 m depth indicate OCR = 1.8 – 2.9, according to 
interpretation method by Janbu (1969).  
 
The Tiller-Flotten site has non-hydrostatic conditions. The sensitive clay layer, at Flotten 
goes from about 7-20 m depth. There is still clay under with some coarse material layers 
(20-33 m depth) and clay under this layer. The upper layer (0-7 m) is not-sensitive clay 
with a dry crust in the first meters. 
 
As shown in Figure 5.15 equation [10], [11], [14] and [15] are able to better predict the 
test results before 13 m depth. After that, the equations overestimate the OCR with the 
exception of equation [14]. Equation [13] overestimate the OCR values from 7 m and 
deeper. The OCR from CRS tests is captured by equation [12] for k = 0.44. 
 
Figure 5.14Figure 5.16 shows the interpreted suC versus depth. CAUC tests at seven 
different depths are used to evaluate the different correlations. The OCR from equation 
[12] is used as reference OCR to evaluate equation [6]. 
 
Equations [4], [16] and [17] seem able to predict quite accurately suC from the CAUC 
tests. The other equations seem to overestimate the test values after 7 m where the 
sensitive layer starts. 
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Figure 5.15 Interpreted OCR and variation of basic properties versus depth at Tiller-Flotten 
TILC01 site. 
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Figure 5.16 Interpreted su

C versus depth at Tiller-Flotten TILC01 site. 

 
5.9 Tiller-Flotten TILC18 

The clay at Tiller-Flotten site is a low to highly plastic clay. The plasticity index varies 
between 6 and 35, with average water content of 45%. The sensitivity varies between 10 
and 250. CRS tests between 8 and 17 m depth indicate OCR = 1.8 – 2.9, according to 
interpretation method by Janbu (1969).  
 
The Tiller-Flotten site has non-hydrostatic conditions. The sensitive clay layer, at Flotten 
goes from about 7-20 m depth. There is still clay under with some coarse material layers 
(20-33 m depth) and clay under this layer. The upper layer (0-7 m) is not-sensitive clay 
with a dry crust in the first meters. 
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As shown in Figure 5.17 equation [14] is able to better predict the test results, while the 
other equations overestimate the OCR. The OCR from CRS tests is captured by equation 
[12] for k = 0.44. 
 
Figure 5.14Figure 5.18 shows the interpreted suC versus depth. CAUC tests at seven 
different depths are used to evaluate the different correlations. The OCR from equation 
[12] is used as reference OCR to evaluate equation [6]. 
 
Equations [1], [4], [16] and [17] seem able to predict quite accurately suC from the CAUC 
tests. The other equations seem to overestimate the test values. 
 
 
 

 
Figure 5.17 Interpreted OCR and variation of basic properties versus depth at Tiller-Flotten 
TILC18 site. 
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Figure 5.18 Interpreted su

C versus depth at Tiller-Flotten TILC18 site. 

 
5.10 Onsøy ONSC01 

The clay at Onsøy site is a medium to highly plastic clay. The plasticity index varies 
between 19 and 45, with average water content of 58%. The sensitivity varies between 
10 and 47. CRS tests between 7 and 15 m depth indicate OCR = 1.2 – 1.9, according to 
interpretation method by Janbu (1969).  
 
As shown in Figure 5.19, the correlations are spread and equation [10] and [11] are able 
to better predict the test results, while the other equations over- and underestimate OCR. 
Equations [13], [14] and [15] do not seem to capture the test values. The OCR from CRS 
tests is captured by equation [12] for k = 0.38. 
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Figure 5.20 shows the interpreted suC versus depth. CAUC tests at six different depths 
are used to evaluate the different correlations. The OCR from equation [12] is used as 
reference OCR to evaluate equation [6]. 
 
Equations [5] seem able to predict quite accurately suC from the CAUC tests before 14 
m depth. After that, equation [6] tends to approach to the test values. The other equations 
seem to underestimate the test values. 
 

 
Figure 5.19 Interpreted OCR and variation of basic properties versus depth at Onsøy ONSC01 
site. 
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Figure 5.20 Interpreted su

C versus depth at Onsøy ONSC01 site. 

 
5.11 Discussion 

Sections 5.1 to 5.10 have presented the application of the correlations established in 
Section 4 to ten different clay sites in Norway. Figure 5.21 and Figure 5.22 show a 
summary of the accuracy in the prediction of OCR and suC with the different equations. 
Based on this study, it seems that: 

1) For OCR: 
 Equations [12] and [14] for OCR can fairly well capture the OCR of the tested 

sites with differences of maximum 10%. This was observed in 60% and 46% 
of the cases, respectively. 
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 Equation [11] for pc' can also fairly well capture the OCR of the tested sites with 
differences of maximum 10%, based on the available test results. This was 
observed in 43% of the cases. 

 The fitting of equation [12] shows a variation of k between 0.44 – 0.47. The sites 
were a higher or lower k value had to be used were considered as "difficult to 
fit" to the OCR from laboratory tests. 
 

2) For suC: 
 The best fit to the test results were found to be equations [4], [6], [16], [17]. The 

difference respect to the laboratory values are up to 10% in more than 55% of 
the cases evaluated. 

 While Eq. [1], which defines Nkt as a function of PI, seemed to work relatively 
well, Eq. [6] and by Karlsrud and Hernandez-Martinez's (2013), which define 
suC as a function of OCR, seemed, in general, more robust. However, the 
equation by Karlsrud and Hernandez-Martinez's (2013) over predicted the 
laboratory values with more than 20% in 32% of the cases evaluated.  

 The accuracy of the equations sowing "the best fit" are, nevertheless, dependent 
upon the reliability of the modelled OCR, water content and plasticity index 
profile. 

 

 
Figure 5.21 Summary of accuracy in the prediction of OCR with the different equations. 

 
Figure 5.22 Summary of accuracy in the prediction of su

C with the different equations. 
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5.11.1 Comparison between SHANSEP based equations: equation [6] and 
Eq. by Karlsrud and Hernandez-Martinez's (2013) 

While the r2 of Eq. by Karlsrud and Hernandez-Martinez's (2013) is unknown, Eq. [6] 
showed a relatively high r2 of 0.80. A comparison between the two equations is made in 
Figure 5.23, Figure 5.24 and Figure 5.25. For OCR = 1, equation by Karlsrud and 
Hernandez-Martinez's (2013) suggests that the normalized strength (S) increases with 
increasing water content, while S is constant and equal to 0.32 according to eq. [6] 
(Figure 5.23). Larsson et al. (2007) suggested S = 0.33 (constant) for triaxial 
compression strength of Swedish clays.  
 

 
Figure 5.23 Normalized su

C vs water content for OCR = 1. 

 
According to Figure 5.24, the exponent m varies between 0.6 and 0.85 from eq. by 
Karlsrud and Hernandez-Martinez's (2013), while m = 0.35 – 1.15 from eq. [6], for w = 
10% – 80%. Larsson et al. (2007) suggested m = 0.8 for Swedish clays. D'Ignazio et al. 
(2016) reported m ≈ 0.76 for Finnish clays.  
 

 
Figure 5.24 SHANSEP exponent vs water content. 
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Figure 5.25 illustrates the different normalized suC/p'0 predicted by eqs.by Karlsrud and 
Hernandez-Martinez's (2013) and [6]. For water content of 30 to 50%, which is typically 
observed for Norwegian sensitive clays, the equations predict almost the same strength 
for OCR < 3. For higher OCR values and for w < 30% and w > 50%, such differences 
become more significant. This is mainly due to the different range of m values predicted 
by the two equations. Even though the m range suggested by eq. Karlsrud and 
Hernandez-Martinez's (2013) seems more in line with the values which are commonly 
observed for clays, eq. [6] resulted in slightly more accurate predictions of suC for the 
ten test sites analysed. 
 
 

 
Figure 5.25 Normalized su

C vs water content for different OCR values. 

 
5.11.2 Other equations recently proposed by Mayne & Peuchen (2018) 

Mayne & Peuchen (2018) prepared a database study of 62 clays tested by in-situ 
piezocone and laboratory triaxial tests with 407 high-quality CAUC triaxial tests. 
Piezocone soundings with qt, fs, and u2 matched as same elevations at CAUC data. Five 
categories of soil data were studied: (a) soft-firm onshore clays; (b) soft offshore clays: 
(c) sensitive clays; (d) overconsolidated clays; (e) fissured clays. The following 
equations are proposed: 
 

 
 

 
 

 
 
 
The equations were applied to data from Tiller-Flotten site and the results are presented 
in Figure 5.26.  
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Figure 5.26 Application of Mayne & Peuchen (2018) equations to Tiller-Flotten data (Mayne & 
Peuchen, 2018) 

 
 
6 Recommendations for engineering practice 

The results and the analyses presented in this report have highlighted the difficulties in 
obtaining reliable correlations and modelling strength and deformation parameters from 
CPTU. In the Norwegian geotechnical practice, correlations by Karlsrud & Hernandez-
Martinez (2013) and Karlsrud et al. (1995) are mostly used to establish engineering 
parameters (i.e., OCR, suC from cone factors). Even though Karlsrud et al. (1995) 
suggested different sets of correlations for clays with St < 15 and St > 15, such a 
distinction could not be observed from the data presented and analysed in this study. 
 
Moreover, in Norwegian engineering practice it is further common to use the SHANSEP 
method to establish the undrained shear strength profile at a given site (i.e., 𝑠𝑠𝑢𝑢𝐶𝐶 𝑝𝑝′0⁄ =
𝑆𝑆 ∙ 𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚). A new equation (i.e. Equation [6]) proposed in this report and the ones 
proposed by Karlsrud et al. (1995), seemed to provide the best fit to the site-specific data 
from the ten sites used to evaluate the correlations, as long as the OCR and index 
properties (w, IP) profiles were properly modelled. This result agrees with the 
fundamental concept expressed by SHANSEP: the undrained shear strength of clays 
strongly depends on OCR (or pc'), as also concluded by Larsson et al. (2007) and 
D'Ignazio et al. (2016) for Swedish and Finnish clays, respectively. 
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Given the evaluation of the equations performance in predicting actual values of 
undrained shear strength and OCR (and pc') and the quantitative evaluation of r2, the 
following new equations are recommended to estimate suC and OCR: 
 

i. Correlations for undrained shear strength, suC: 

a.  𝑁𝑁𝑘𝑘𝑘𝑘 = 14.3 − 12.1 ∙ 𝐵𝐵𝑞𝑞 − 2.6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑂𝑂𝑂𝑂𝑂𝑂 + 0.027 ∙ 𝐼𝐼𝐼𝐼 for Bq < 1.0  r2 = 0.91  (4) 

 𝑁𝑁𝑘𝑘𝑘𝑘 = 6.4 − 3.3 ∙ 𝐵𝐵𝑞𝑞 − 2.6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑂𝑂𝑂𝑂𝑂𝑂 − 0.015 ∙ 𝐼𝐼𝐼𝐼        for Bq ≥ 1.0   r2 = 0.82  (4) 

b. 𝑠𝑠𝑢𝑢𝐶𝐶 = 0.32 ∙ 𝑝𝑝0ʹ ∙ 𝑂𝑂𝑂𝑂𝑂𝑂(0.20+1.17∙𝑤𝑤)  r2 = 0.80 (6) 

c.  𝑠𝑠𝑢𝑢𝐶𝐶 = 0.10 ∙ 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛0.26 ∙ ∆𝑢𝑢0.74 ∙ 𝑤𝑤−0.26  r2 = 0.91 (5) 

d. 𝑁𝑁𝑘𝑘𝑘𝑘 = 7.95 + 0.13 ∙ 𝐼𝐼𝐼𝐼  r2 = 0.40 (1) 

 
ii. Correlations for overconsolidation ratio, OCR: 

a. 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑘𝑘 ∙ 𝑄𝑄𝑡𝑡 with k = 0.44-0.47 (12) 

b. 𝑂𝑂𝑂𝑂𝑂𝑂 = 0.20 + 0.39 ∙ 𝑄𝑄𝑡𝑡 r2 = 0.43 (14) 

c. OCR from Original Ground Level (this equation implies curve fitting)   

d. σ𝑝𝑝′ = 2.18 ∙ 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛0.61 ∙ ∆𝑢𝑢0.54 ∙ 𝑤𝑤−0.65 r2 = 0.83 (11) 

 
One should be aware that in order to estimate OCR to be used in these equations, the 
CPTU data should be calibrated to obtain the best fit to the inferred OCR or pc' values 
from good quality oedometer test results. However, previous studies (Karlsrud & 
Hernandez-Martinez, 2013 and Karlsrud et al., 1995) and the new OCR correlations 
suggest that the determination of OCR from CPTU test is far more uncertain than the 
direct prediction of suC from the CPTU measurements. In practice, one should estimate 
OCR by interpreting CPTU tests from the direct CPTU correlations, combined with 
estimating pc' from what it is assumed the stress history and the present vertical effective 
stresses; also, by the estimated pc' value by assessing the highest level of past sea bottom 
level, and a reasonable ageing factor due to creep of typically 1.3–1.5. Needless to say, 
the quality of the retrieved samples is the main factor that will determine the goodness 
of the interpretation of the CPTU data. 
 
Despite the high quality of the samples, high scatter (r2 < 0.7) was observed for some of 
the equations that compare cone factors and basic soil parameters. In addition to the 
natural variability of soil properties, another possible reason is that even though the 
accuracy of CPTU probes, especially in terms of the capacity to measure low values, has 
improved over the past decades, the results can vary among the different manufacturers 
(Lunne et al. 1986; Sandven, 2010; Lunne et al. 2018) this can affect the correlation 
results. In addition, the large variability may be due to the fact that none of the measured 
CPTU parameters can be expected to relate solely to suC, pc' and OCR. Stiffness of the 
clay as well as stress-strain relations to a level of strain of several hundred percent are 
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likely to have an effect. There is not at present a soil model that can capture the post-
peak behaviour to such large strains, and experience does not demonstrate a type of 
modelling that can predict this correctly. For example, the strain path method may give 
a reasonable picture of strain levels, but requires a soil model that can predict reliably 
stresses at very large strain levels. There is not even have laboratory data to cover this 
yet. 
 
The correlations presented in this report should be used purely in absence of site-specific 
data or as a comparison tool when limited data is available. When site-specific data is 
available, it is further recommended to adjust the equations here proposed, by tuning the 
regression coefficients, to get the best estimate of OCR or pc' and suC profile. For 
example, equation [5] shows the highest coefficient of correlation. However, for the 
example presented in this report, it overestimates the measured undrained shear strength 
by 15%–35%. 
 
Usually the CPTU data is used as the basis for establishing design strengths without 
having any laboratory tests on high quality block samples. For validation, one should 
compare the obtained CPTU-based engineering parameters with some empirical 
correlations (i.e. SHANSEP correlations provided good estimates of OCR can be 
obtained). When having some high quality block sample results, one will always have 
both odometer and triaxial and/or direct shear tests. Then, these can also be used to guide 
the selection of the complete strength profiles. Therefore, establishing design profiles 
for pc' and suC is in practice a fairly complex evaluation where engineering judgement is 
always needed. 
 
In general, the equations proposed and tested in this report seem to work best for low to 
medium plasticity clays. For high plasticity clays, the equations including IP can still be 
applied, however, it is recommended to control the results by the recommended 
equations. In single cases, the other correlations presented in this report might also work, 
one should always when possible compare to good laboratory data. The correlations 
presented here do not substitute sampling. 
 
Finally, with this report, the authors want to remark the importance of establishing site 
specific correlations when assessing geotechnical parameters from CPTU tests. In soft 
and sensitive clays, it is also particularly important that the correlations are established 
from large diameter samples of very high quality. For example, for a road project 
presented by L'Heureux et al. (2018), the development of empirical correlations between 
CPTU parameters and the undrained shear strength and the overconsolidation ratios for 
the clay show up to 40 % increase in undrained shear strength when compared to 
previously established CPTU correlations for Norwegian clays, or to correlation based 
on laboratory tests performed on 72 mm samples. This lead to large economic savings 
for the project. 
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7 Conclusions and recommendations for future work 

This report presents the work conducted to establish correlations for engineering 
properties of sensitive clays from CPTU based on a high-quality block samples database 
of Norwegian clays. A multivariate high-quality database of sensitive clays consisting 
of laboratory strength and consolidation test results, index parameters and CPTU 
parameters was firstly established. Then, simple as well as multiple regression analyses 
were used to evaluate possible correlations among measured CPTU parameters (e.g. 
excess pore pressure, u, net cone resistance, qnet, and effective cone resistance, qe), 
undrained shear strength from CAUC tests (suC) and basic clay properties (e.g., OCR, 
plasticity, sensitivity). The target was to establish correlations characterized by high 
coefficient of determination (r2). However, the final recommendation of which 
equations to use in practice was based on the performance of the equations in predicting 
high quality laboratory values of OCR and suC. 
 
Despite the goodness of the correlations established in this study, the reference dataset 
is still characterized by high scatter. Therefore, these correlations should be used purely 
in absence of site-specific data or as a comparison tool when limited data is available. 
 
The validity of the established correlations for the engineering parameters (i.e. suC and 
OCR or pc') was checked for ten test sites in Norway where block samples data was 
available. The validation process showed that the most reliable assessment of suC is 
achieved when using the SHANSEP framework associated with the best estimate OCR 
profile extrapolated from the CPTU measurements. This well reflects the strong relation 
that the undrained shear strength of sensitive slightly overconsolidated clays has with 
OCR. This has been observed for several clays around the world, including Sweden and 
Finland. Based on these considerations, the article addresses some practical 
recommendations to assess engineering parameters from CPTU and laboratory tests. 
 
Future research work is recommended to improve further the practice of establishing 
strength and deformation parameters from CPTU as follows: 

 Investigate the relationship between CPTU parameters, p'c and su and the effective 
soil parameters (i.e., friction angle) 

 Evaluate existing analytical solutions based on cavity expansion theory and derive 
improved solutions to establish engineering parameters of sensitive clays  

 Collect additional high-quality laboratory data from different sites in Norway and 
abroad to increase both size and quality of the database and improve the correlations 
presented in this report 

 Use Machine Learning techniques to improve predictions of soil parameters from 
CPTU. This will, however, require a very large database (i.e., n > 1000 data points). 
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Appendix  A 
ANALYTICAL CPTU MODEL FOR SENSITIVE CLAY  
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A1 Background 

A hybrid analytical model for piezocone penetration in clays was developed from 
Spherical Cavity Expansion (SCE) theory and Critical State Soil Mechanics (CSSM), as 
detailed by Mayne (1991, 2005) and Chen & Mayne (1994). The SCE-CSSM 
formulation provides for separate evaluations for the yield stress ratio (YSR), which is 
a generalized name for the overconsolidation ratio (OCR), in terms of the net cone 
resistance and/or the measured excess porewater pressure. For structured and sensitive 
clays, a slightly modified SCE-CSSM solution has recently been presented by Agaiby 
& Mayne (2018) and applied to fit the CPTu results with available triaxial and 
consolidation data from the Canadian Test Site at Gloucester, Ontario. 
 
This modified analytical SCE-CSSM model for sensitive clays is applied to CPTu results 
at the Tiller-Flotten site in Norway to profile the undrained shear strength and yield 
stress ratio with depth. Input geoparameters include the value of friction angle at peak 
strength (Mc1) and also at large strains (Mc2) which correspond to the cone resistance 
(qt) and measured porewater pressure (u2), respectively. The model directly provides the 
value of undrained rigidity index (IR) that depends on the slope of (u2-σvo) versus qnet 
where qnet = qt - σvo = net cone resistance. 
 
A similar evaluation was also done for Skatval and Koa sites. 
 
 
A2 Modified SCE-CSSM for CPTu in sensitive clays 

In the recent derivations, three separate algorithms relate the YSR to normalized CPTu 
parameters: Q = qnet/σvo' and U* = Δu2/σvo', where qnet = qt - σvo = net cone resistance. 
and Δu2 = u2 - u0 = excess porewater pressure. These are expressed by the following: 
 

 
 
where Λ = 1 - Cs/Cc = plastic volumetric strain potential, Cs = swelling index, Cc = virgin 
compression index, IR = G/su = rigidity index, Mc = 6·sinφ'/(3-sinφ') = frictional 
parameter in q-p' space. The value of Mc1 is defined at peak strength (i.e., φ' at qmax) 
whereas Mc2 is the value at maximum obliquity (i.e., φ' when ratio σ1'/σ3' max). For 
insensitive clays, the value of Λ = 0.80, while for clays that are structured and/or 
sensitive, the value of Λ is higher, specifically: 0.9 < Λ < 1.  
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While Eq. [1] and [2] both depend on the IR of the clay, Eq. [3] is independent of the IR 
and obtained by combination of the first two formulations. 
 
A2.1 Undrained shear strength of clays 
With regard to CPTu, the undrained shear strength of clays is most often determined 
using the net cone resistance:  

 
  [4] 
 
where Nkt = cone bearing factor. In the SCE-CSSM formulation, the Vesić (1977) 
expression for Nkt is used and is given in terms of the undrained rigidity index:  
 
  [5] 
 
 
A2.2 Undrained Rigidity Index  
The SCE-CSSM formulation also provides the direct assessment of undrained rigidity 
index:  

  [6] 
 
where aq is found as the ratio of Δuσ = u2 - σvo to net cone resistance, qnet. The evaluation 
of aq is determined as the slope of the graph of Δuσ versus qnet, or alternatively by plotting 
(U*-1) versus Q as illustrated by Figure 1a  which determines a value of aq = 0.672 using 
the data from the Tiller-Flotten (TILC02) CPTu. Another means is to calculate this ratio 
with depth, as shown by Figure 1b. 
 

(a)  (b)  
Figure 1 Procedure to evaluate slope parameter aq from CPTu data at Tiller-Flotten clay site. 
 

 



 

p:\2015\00\20150030\leveransedokumenter\rapport\20150030-13-r\20150030-13-r_appendixa.docx 

Document no.: 20150030-13-R 
Date: 2019-02-20 
Rev.no.:  0 
Appendix: A, page 4  

The rigidity index depends on the undrained shear strength but at the same time IR is 
used to predict undrained shear strength (or Nkt). This issue is further discussed as 
follows: as to the rigidity index (IR) comes directly from the SCE-CSSM solution.   Just 
because the rigidity index is defined as ratio of shear modulus to shear strength there is 
no need to know su beforehand. IR can sees as an operational value.  For one, in SCE it 
really just says how big a zone of the clay goes plastic, since D/d = cube root of IR where 
D = size of plastic region and d = cone diameter.  Another way to think of IR is that it is 
the reciprocal of the reference value of shear strain.  It is our belief that this value is that 
taken at peak strength, qmax. That is the shear strain at failure (γs) is the reciprocal of 
IR.  By running a DSS it is desired to reach shear strength (su) at 1% strain. So this would 
give IR = 100 (which is the default value taken in many numerical studies, e.g. The & 
Houlsby, 1991).    
 
 
A3 Evaluation at Tiller-Flotten 

The modified SCE-CSSM equations where evaluated at Tiller-Flotten using two CPTU 
profiles: TILC02 and TILC18. The results are presented in Figure 2 and Figure 3. 
 
The Tiller-Flotten site has non-hydrostatic conditions. The sensitive clay layer, at Flotten 
goes from about 7-20 m depth. There is still clay under with some coarse material layers 
(20-33 m depth) and clay under this layer. We do not have samples after 33 m, we might 
use CPTU to check if the material is sensitive. The upper layer (0-7 m) is not-sensitive 
clay with a dry crust in the first meters. 
 
The friction angles used for Mc1 and Mc2 match well with a triaxial test from 9,18 m, 
where a ϕ' at qmax of 30 degrees and a ϕ' (M.O.) of 39 degrees are obtained.  
 
 

 
Figure 2 Results with TILC02. 
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Figure 3 Results with TILC18. 

 
 
A4 Evaluation at Skatval 

The modified SCE-CSSM equations where evaluated at Skatval using one CPTU 
profile: 607-5. The results are presented in Figure 4. In Mayne's approach, the hierarchy 
in identification of sensitive clays is when the estimated pc' = 0.6 qE < 0.33 qnet < 0.53 
∆u2. This is evident here for Skatval. For well-behaved clays like Bothkennar, all 3 
equations match well).  We get an IR = 91 using Mc1 and Mc2 for ϕ' = 22 o and 30o, 
respectively.   This gives good match with the suc but maybe under predicts for the CRS 
data. It seems that the CAUC and CRS may still be in the upper crust or transition to the 
lower softer (and more sensitive clay). In that case, maybe the unit weight drops lower 
in the depths from 10 to 32 m also. 
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Figure 4 Results with Skatval 607-5. 

 
 
A5 Evaluation at Koa 

The modified SCE-CSSM equations where evaluated at Koa using one CPTU profile: 
10. The results are presented in Figure 5. The evaluation for Koa site is done assuming 
a GWT = 1 m.   In this case, a reasonable fit with Mc1 and Mc2 corresponding to 28 and 
48 degrees, respectively, albeit the CAUC tests do not imply the latter. Also trying to 
match the reported range of OCRs from 2 to 4.   
 
An alternative would be to formulate by use of paired c' and ϕ', in place of Mc1 and 
Mc2. However, the IR evaluation would be more difficult, perhaps require iteration to 
find. Also, c' likely tracks with σp' = yield stress, so adds more iterations. 
 
The results and lab data at Koa are bit difficult to handle. At the time of sampling, it was 
very difficult to get the block samples. The GWT is very uncertain. Readings give very 
variable results and we might assume a GWT at 6 m depth. OCR values are not reliable 
due to the quality of the tests.  
 
 



 

p:\2015\00\20150030\leveransedokumenter\rapport\20150030-13-r\20150030-13-r_appendixa.docx 

Document no.: 20150030-13-R 
Date: 2019-02-20 
Rev.no.:  0 
Appendix: A, page 7  

 
Figure 5 Results with Koa 10. 
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