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Abstract

Despite the importance of peatlands as carbon reservoirs, a reliable methodology for the
detection of peat volumes at regional scale is still missing. In this study we explore for the
first time the use of Airborne Electromagnetic (AEM) to detect and quantify peat thickness
and extension of two bogs located in Norway, where peat lays over resistive bedrock. Our
results show that when calibrated using a small amount of field measurements, AEM can
successfully detect peat volume even in less ideal conditions, i.e. relatively resistive peat over
resistive substrata. We expect the performance of AEM to increase significantly in presence
of a conductive substratum without need of calibration with field data. The organic carbon
content retrieved from field surveys and laboratory analyses combined with the 3D model of
the peat extracted from AEM allowed us to quantify the total organic carbon of the selected

bogs, hence assessing the carbon pool.

Plain Language Summary

Wetlands hide a secret. We may know them for their beauty and valuable ecological services
but the real treasure of these environments is hidden underground. It is the carbon pool that
these ecosystems build every day, inch by inch, subtracting carbon dioxide from the
atmosphere and storing it underground. This process forms a dark soil extremely rich in
organic matter that we call “peat”. Peatlands around the world store almost the same amount
of carbon that is present in the atmosphere. The problem is that, spoiling peat, the carbon is
released as carbon dioxide and we have less carbon stored underground and more greenhouse
gasses in atmosphere. The first step we should take in order to protect peatlands is to find
effective- methodologies to map them. In this study, we use an instrument carried by a
helicopter that allows us to explore under the soil surface. We show for the first time that this
technology, called airborne electromagnetics, can be used to quantify the peat stored
underground in boreal peatlands. Thanks to this methodology, we can now map large areas
and calculate the amount of carbon stored in peatlands, which is the first step towards

implementing better conservation policies.
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1 Introduction

The conservation of peatlands is one of the main measures indicated by the
Intergovernmental Panel on Climate Change (IPCC) to mitigate climate change [IPCC,
2014]. Peatlands, in fact, are extraordinary deposits of organic carbon and their protection is
of key importance in order to avoid emissions due to degradation [Turetsky et al. 2015;
Ballhorn et al. 2009; Page et al. 2002]. Peat is a mixture of organic material produced by
wetland plants and accumulated in the soil when continuously or cyclically anaerobic
conditions are present for long periods. Peatlands can be found over a wide range of latitudes,
in tropical, to temperate, to (sub)polar climates, It is estimated that globally about 2-3% of the
land surface is covered by peatlands, storing 500-700 Gt of carbon, i.e. likely exceeding the
carbon content of the terrestrial vegetation globally (~560 GtC) and almost equaling the size
estimated for the atmosphere carbon pool (~850 GtC) [Turetsky et al. 2015]. Unfortunately,
the uncertainty affecting our best estimates of the size of the peatland carbon pool is
significant, mainly due to inaccurate estimates of their volume and ecological characteristics

[Joosten 2010].

Despite the urgent need for a precise quantification of peat deposits from the local to the
regional scale, the number of studies dealing with this topic is extremely limited. Remote
Sensing (RS) has been employed for this task, making use of satellite and airborne laser
instruments and radar sensors [e.g. Ballhorn et al. 2011], as well as a combination of these
techniques with multispectral sensors [Rudiyanto et al. 2018; Draper et al. 2014] and
mathematical models [Jaenicke et al. 2008]. However, classic RS does not provide direct
information on the nature of the underground characteristics; hence, it has been exclusively
used to provide input to approximate models of peatland thickness. A new approach is
needed, making optimal use of limited field information and using remotely sensed data that

allow the detection of belowground soil characteristics.

Some ground geophysical methods have been shown to be extremely effective in detecting
peat deposits, both laterally and in depth. Ground penetrating radar (GPR) has been proven to
be the most reliable and precise method to detect peat thickness [Comas et al. 2015; Slater
and Reeve 2002; Warner et al. 1990]. Ground electrical resistivity mapping has been also
found successful in several applications [Kowalczyk et al. 2017; Comas et al. 2015; Elijah et
al. 2012; Boon et al. 2008]. Induced polarization (IP) imaging is another viable method
because of the chargeability of peat [Comas and Slater 2004; Slater and Reeve 2002]. Even

though peat usually is electrically more resistive than the substrate (often clays), ground
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geophysical measurements have shown that there are several examples of peat over resistive
unit, both in tropical environments [Comas et al. 2015] and in northern European countries
[Kowalczyk et al. 2017; Boon et al. 2008]. Ground geophysics, however, is usually applied to
relatively small areas (order of magnitude of ~1 km2) and it is extremely difficult to perform

in flooded ecosystems like wetlands/peatlands.

Airborne Electromagnetic (AEM) has the potential of contributing to mapping peat, given its
ability to efficiently recover the 3D distribution of ground resistivity not only over vast areas,
but also those which are difficult to access. To the best of our knowledge, AEM has never
been specifically applied before for the retrieval and characterization of boreal peatlands. The
closest was Puranen et al. in 1999 who detected some peat deposits while mapping surficial
deposits in Finland with AEM, but no analysis of its volume was undertaken. Developments
of the AEM technology (better system monitoring and early time gates, e.g., Schamper et al.,
2014) in the last decade have pushed it towards high-resolution near-surface deposits
mapping (i.e. within the first 10 m of depth) [Skurdal et al. 2018], making it potentially
suitable for studying peatland characteristics, depth and extension. In this paper, we take
advantage of the presence of an AEM dataset that has been acquired on Norwegian bogs, and
we share our experiences in attempting peat mapping with AEM. As reported for other
peatlands [Kowalczyk et al. 2017; Comas et al. 2015; Boon et al. 2008], in this case we find a
resistive substrate underlying the peat. We explain how this scenario represents a challenge
for AEM; showing through simulations that in the more common case of peat over a
conductive substrate, AEM is more reliable and effective. We finally discuss the applicability
and limits of our approach. The peat volume retrieved using AEM is used to assess the

carbon pool currently available in the study site.

2 Study site and data collection

The study: site is located just under 200 km north of Norway’s capital Oslo, near a village
called Brottum (Ringsaker) (Fig. 1 and Fig. 1S of the Supporting Information). The area is
characterized by the presence of several small bogs on frequent bedrock depressions, at 300-
400 m above mean sea level. Wetlands are usually covered by a thick carpet of sphangnum
moss and surrounded by forested land. The peat thickness is variable, in many cases higher
than 1 m as indicated by the map of wetlands that was kindly provided by NIBIO —

Norwegian Institute of Bioeconomy Research. The map also shows the location of mires with
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weakly humified peat in the upper layer. The map (scale 1:10 000) was created by a
combination of field controls and air photo interpretation, and the peat depth was measured
using a simple 1 m auger. The technical accuracy of delineation was 2 to 10 m, and the
minimum mapping unit was 0.2 hectares. The maps were scanned in the 1990’s and
converted to digital format. The area is else dominated by moraine, and bedrock is composed
largely of early to late pre-Cambrian sandstone and some intermittent shales and limestone.
The characteristics of these geological structure is, by nature, highly spatially variable in

terms of composition and structure.

An AEM survey performed July/August 2015 is available on this study site. The data set was
collected as part of the InterCity Project (NGI, 2015; Pfaffhuber et al., 2016) and were kindly
provided by the National Norwegian Railroad Authorities (BaneNOR). The survey had used
the SkyTEM 304, a time-domain electromagnetic system suspended from a helicopter that
flies at less than one hundred meters above ground (the AEM system itself is kept at
approximately 30 m above ground). The transmitter and the coils where the current circulates
are mounted on an octagonal loop composed of lightweight composite tubes. In the
transmitter loop a strong current is ramped to about 100 amperes and then switched off very
rapidly (within 10°-10™* seconds). This impulse creates a strong magnetic field which in turn
induces eddy currents in the ground, which decay and penetrate deeper with time. A receiver
located on the same frame records the decay of the secondary field dB/dt, which, in turn,
carries the information about the electrical resistivity of the underground materials. After
elaborate data processing, inversion modeling provides a 3D resistivity model that explains

the measured decays within chosen uncertainty (Section 3)

The peat sampling field survey was performed along the SkyTEM flight lines. Two bogs
were selected and are visible in Fig. 1 (for detailed visualization, see Fig. 1S of the
Supporting Information). We selected these two sites because, based on the indication given
by the NIBIO’s map, the peat thickness was more than 1m. Moreover they were easily

accessible. Site 1 has an area of about 36 ha while Site 2 is smaller with an area of 9 ha.

The field sampling survey was performed between August the 20" and August the 26™, 2017.
In the field, a set of measurements were carried out in order to 1) measure the thickness of the
peat layer, and 2) collect samples of peat in several points located along the SkyTEM flight
lines. A total of 19 sampling locations were selected along the SkyTEM flight lines and
located in the field using a DGPS Trimble GeoXH 3.5G. The coring activity was performed
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using a peat corer with an auger for wet/waterlogged soils with diameter of 2.5 cm and length
of 50 cm. Even if the use of a simple push probe would have allowed a faster survey with the
collection of numerous measurements, Parry et al. (2014) shows that this method may lead to
a 35% error on average of peat thickness estimation, hence we avoided it. The soil auger was
pushed into the peat using length extensions until the transition from peat to the substrate was
determined, and a small sample of the substrate was collected to precisely determine the peat
thickness and the type of substrate. One single replicate of coring was performed in case we
reached the peat bottom. A maximum of 3 replicates were performed at about 2-4 m of
distance one from the other in case the peat bottom was not reached with the first attempt.
Despite the several attempts, in 4 out of the 19 sampling locations we were not able to reach
the transition surface due to the presence of rocks or roots that prevented the perforation. In
one instance, peat depth exceeded the length (8.5 m) of our auger/sampling equipment.. The peat
depth in the remaining 14 sampling locations (where we reached the bottom) varied between

1.41 m and 5.81 m.

Peat samples of 2.5 x 50 cm were collected at each location: one sample was collected
between 50 cm and 100 cm (shallow sample), and the second between 250 cm and 300 cm
(deep sample, which was collected only when the peat layer was deep enough). The samples
were put in plastic bags and a vacuum pump was used in order to eliminate the air inside the
bags and limit the decomposition of organic matter. At the end of each day, the samples were
refrigerated and kept in this condition until the laboratory analyses were performed the

following week.

All samples were characterized by organic material at early stage decomposition with
recognizable plant fibers. No significant change in the decomposition stage was noticed at
different depths. In the locations where we reached the substrate, we were able to collect 2-3

cmoof it. In most cases it was formed by clay, often mixed with gravel.

3 Materials and Methods
3.1 Laboratory analyses

A total of 31 samples were collected at the 19 coring locations. The lab analyses were

performed right after the completion of the field survey, in the week of 28 August - 4
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September 2017, with the purpose of determining the dry bulk density (BD) and the soil
organic matter content (SOM). The samples were put in the oven at 105° C for 44 hrs
(constant weight was obtained comparing the weight of the samples after 30 hrs and 44 hrs).

The BD was calculated dividing the mass of the dry sample (g) by its volume (cm”).

The SOM was determined performing the Loss Of Ignition (LOI). The LOI procedure
determines the amount of ash contained in samples, and subtracting it from the weight of the
original samples, we determine the amount of organic matter. See the Supporting Information

for details.

The SOM obtained with the LOI does not only include carbon, so in order to calculate the
total Organic Carbon present in the two study sites and exclude the other organic substances,
we averaged the SOM content and applied a conversion factor of 1/1.724 in line with
previous studies [Nelson and Sommers, 1996]. The Organic Carbon Content by Soil Volume
was finally calculated multiplying the Organic Carbon content by the BD.

3.2 Airborne Electromagnetic data processing

Mapping the relatively resistive peat over the more resistive basement is a difficult task for
EM methods, be it airborne or ground. All the information regarding peat will be stored in the
very early times of the transient, and it is possible that, in places, there won’t be enough
resistivity contrast between substrate and peat to resolve the latter. Moreover, if the peat layer
is very thin, it might not be resolved by AEM at all. Further details about the limits of using

AEM to detect peat over a resistive substrate are included in the Supporting Information.

SkyTEM is a comprehensive system that collects electromagnetic data as well as navigation
data, which are pre-processed and then integrated in the inversion that associates the
electrical resistivity to the dB/dt (time derivative of the secondary magnetic field) signal and
hence allows to differentiate the underground geological structures. The settings of the
SkyTEM system can be fine-tuned prior to the survey in order to maximize the capability of
the sensor to detect the target of interest. In our case, the system was setup for a purpose
(geotechnical applications) other than the detection of peatlands, and was selected by the
owner of the dataset in 2015. The specific configuration settings are summarized in Table 1S

of the Supporting Information.
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For the SkyTEM data processing, we used Aarhus Workbench which is a proprietary
software developed by Aarhus GeoSoftware (2018). Please refer to the Supporting
Information for a detailed description of the applied procedure. The wide presence of
infrastructures (pipes, power lines, railways, etc.) forced us to remove from the dataset large
portions of data. A digital elevation model (DEM) of the area was downloaded from the
Norwegian National Mapping Authority website (https://hoydedata.no/Laserlnnsyn/ ) and

provided as input in the inversion as well as the maps of railways, streets, power lines.

Based on the several corrections and deletions, and considering the location of the majority of
the wetlands as well as of our two study sites, we selected a smaller area to perform the
inversion (compare Fig. 1S and 3S of the Supporting Information). Since the type of
regularization chosen in the inversion plays an important role in the details of the output
model, several types were tested: smooth and sharp, multi- and few-layered (Vignoli et al.
2017) spatially constrained inversions (SCI, Viezzoli et al., 2008). The best results in terms of
data misfit and correlation with the distribution of wetlands provided by the NIBIO’s map
were obtained with multilayered Spatially Constrained Inversion with L2 norm, loose vertical
constraints and moderate lateral constraints. Field measurements and the NIBIO’s wetland
distribution map were used only to compare results and not as extra a-priori input to the
inversion. Results obtained with other attempted inversions are discussed in the Supporting
Information. Moreover, in order to generalize the applicability of the suggested methodology
to the case of peatlands over conductive substrates, we include in the Supporting Information

modelling results, sensitivity analysis and a detailed discussion.

3.3 Mapping the peat thickness and uncertainty calculation

The results obtained from the AEM data analysis were used to determine the presence and
extension of peat soils within a study area of 19 km?, both horizontally and vertically. This
area surrounds the two study sites where the field surveys were performed and includes
several other peatlands as reported by the NIBIO map. The resistivity of the peat-substrate
interface corresponding to the field points was spatially variable. Linear methods such as
using a constant threshold resistivity were therefore deemed insufficient. We used an
Artificial Neural Network (ANN) to interpret peat thickness and location and hence retrieve
the interface between the peat and the substrate. Specifically, we used a supervised multi-

layer perceptron, a type of ANN from the Python module scikit-learn with two hidden layers.
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The network was trained (i.e. fitted) with the peat thicknesses recorded at the field locations
during the surveys, with the network weighting parameters being optimized by the limited-
memory Broyden—Fletcher—Goldfarb—Shanno solver (which is a stochastic gradient-descent
algorithm). The optimization equation aimed to not only minimize the mismatch between
predictions and training data but also to minimize the variance (specifically, the L2 norm) of
the network weights. This second term helps prevent overfitting. The relative weight of the
second term was tuned manually to the lowest possible value such that the data fit was good

but no obvious prediction artifacts were present.

Given that at 5 of the 19 sampling locations we did not manage to reach the peat bottom due
to the presence of roots and other materials that prevented the perforation, only the remaining
14 field locations were considered. We also added 28 points homogenously distributed across
the study area with zero peat thickness. These interpretations of zero peat thickness were
based on the NIBIO map and visual interpretation performed on a Sentinel-2 image. This
added information was found to be fundamental in order to train the algorithm to distinguish
between peatlands and non-peatlands areas. Several ANN configurations were considered,
changing the number of SkyTEM layers used to feed the model (13, 18 and 30 layers) and
introducing a variable number of points with no peat (0, 6, 14, 28 points) located across the
study area (see the Supplementary Information for details). In order to verify the accuracy of
the prediction of the ANN method, a leave-one-out cross validation analysis was used to
compare the measured and the simulated thicknesses (2000 runs). We computed the average
of the residuals and the root mean square error in order to evaluate the uncertainty associated

with the predictive method.

4 Results
4.1 Laboratory analyses

The BD of samples collected at Site 1 and at Site 2 are very similar (see Fig. 2Sa of the
Supporting Information). The values of samples collected at Site 1 vary from a minimum BD
of 0.017 g/cm3 of point SIP7(50-100) to a maximum BD of 0.092 g cm™ of point
S1P41(250-300). However, the large majority of samples have a BD between 0.03 and 0.07 g
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cm”. The variability is slightly smaller for samples collected at Site 2, where the minimum
and the maximum BD values are 0.013 g cm™ and 0.073 g cm™ respectively, and most
samples have BD values between 0.03 and 0.06 g cm™. Looking at the average BD values,
we notice that shallow samples collected at both sites have very similar BD values (S1gyw =
0.043 g cm™ and S24u = 0.044 g cm™), which are also extremely close to the average value
calculated for the deep samples of Site 2 (S2¢eep = 0.041 g cm™). A larger average BD is
instead calculated using the deep samples of Site 1, which give a BD value of 0.065 g cm™.

The values of the SOM content retrieved from the samples using the LOI are plotted in
Figure 2Sb of the Supporting Information. As we found for the BD, also in this case the
shallow samples collected at Site 1 and Site 2 and the deep samples collected at Site 2 show a
similar SOM content, with average values between 95.4 % and 97.4%. On the contrary, the
deep samples collected at Site 1 show a lower average SOM, equal to 92.7% (e.g. it is this
group of measurements that includes the lowest value, which is 82%). The overall average
SOM is 95.5% with a standard deviation of only 4%, (Tab. 2S of the Supporting

Information).

Finally, the average Organic Carbon Content (OCC) calculated for Site 1 is very similar to
the value obtained for Site 2 (Tab. 2S), with a total average of 55.4% if we consider all the

samples together, and a standard deviation of 2.3%.

The small variability of both SOM and OCC is shown in Tab. 3S of the Supporting
Information where we report the average and standard deviation values calculated for 35 %,

50%, 65% and 90% of the samples randomly chosen among the 31 samples.

The OCC by Soil Volume averaged for all samples is 0.0262 g cm™ (Tab. 2S of the
Supporting Information). This value corresponds to fibric peat and is in line with the
observations performed in the field (i.e. early stage of peat decomposition where recognizable

plant fibers dominate).

4.2 AEM data analysis results

Figure 1 shows the average resistivity map obtained for the interval 0-2 m of depth for the

two selected study sites. For a more comprehensive visualization of a larger portion of the
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study area, see Fig. 3S of the Supporting Information, which shows the average resistivity
maps obtained for the 0-2 m, 2-4 m, 4-6 m and 6-8 m depth intervals. The colors associated
with a range of resistivity that goes from 10 to over 1,000 Ohmm allow the visualization of
the horizontal resistivity distribution in the area. Fig. 1 clearly shows a qualitative agreement
between the presence of wetlands (polygons outlined in black), retrieved from NIBIO map,
and a resistivity range of about 100-300 Ohmm (orange-yellow colors in the figure). In order
to visualize its vertical distribution, we have selected transect A (black line in Fig. 1) and
transect B (white line in Fig. 1), which start inside the study Site 2, cross several field points
and SkyTEM soundings, intercept study Site 1 and end in the nearby lake. The vertical
visualizations of the resistivity distribution corresponding to the field points confirms the
correlation noted above, as we notice for the transects in Fig. 1 where the direct field
measurement of the elevation of the peat bottom from the cores is marked by short black
segments. The soundings collected on the two wetlands show a surface layer with resistivity
ranging approximately between 100-120 Ohmm at the top and 300-320 Ohmm at the bottom,
while below the bottom of the peatland the light/dark blue color denotes larger resistivity
values, typical of bedrock in the area. Although some clay samples were collected at the
bottom of a few coring locations during the field campaign, the high conductivity typical of
clay is not detected by the sensor. This may be because the potential clay layer is too thin to
be resolved by AEM. Soundings recorded on the lake show increasing resistivity proceeding
from the top to the bottom, while soundings collected in the territory between the two bogs

show surface resistivities larger than 300 Ohmm for both transects (Fig. 1).
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Figure 1.— Top panel: average resistivity map obtained for the interval 0-2 m of depth with
the two study sites crossed by Transect A (black line) and Transect B (white line). Central
and bottom panels: vertically electrical resistivity of the soundings recorded by the SkyTEM
sensor-along Transect A and Transect B. The black short segments indicate the elevation of

the peat bottom recorded in the field.

As mentioned in the introduction, accurate mapping the relatively resistive (~100 Ohmm)
peat over more resistive bedrock can be difficult task for electromagnetic methods, due to its
lower sensitivity in resistive domains, especially when resistivity increases monotonically
with depth. The positive qualitative results obtained nonetheless at the bog scale prompted us

to integrate the 3D resistivity model. We explored the resistivity values at the bottom of the
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direct sample coring sites. Fig. 2a shows the resistivity values at the closest SkyTEM
soundings (average distance = 8.7 m; max distance = 19.4 m) at a depth that corresponds to
the bottom of the field coring locations. From the plot, we notice that resistivities recorded at
the 14 locations are rather variable both within and between sites: they are generally lower at
Site 1 (blue dots) than at Site 2 (red dots). One of the 14 points falls more than 1.5 times the
interquartile range above the third quartile (orange lines in Fig. 2a) hence it can be considered

an outlier and will be excluded from our analyses.

A leave-one-out procedure was then used to calculate the accuracy of the ANN prediction
ability. The cross validation plot is visible in Fig. 2b, where the 45° slope line is also plotted
for reference as dotted line. From the plot we notice that most of the peat thickness values are
well predicted by the ANN, and this is valid also for the 28 no peat points (green dots in Fig.
2b) that fall very close to zero a part for two points where the ANN predicts 1.3 m and 2.8 m
instead of zero peat thickness. Considering the location where we could not reach the peat
bottom due to the limitations of our auger length (max 8.5 m), we notice that the ANN
predicts a 3.96 m thickness. In conclusion, we find that the ANN slightly underestimates peat
thickness, with an average residual of -0.14 m and a root mean square error of 0.93 m. These
values are calculated considering only the 13 field measurements where peat thickness is
greater than zero. If we also include the additional 28 points where peat thickness is known to

be zero, the average residual is 0.07 m and the root mean square error is 0.71 m.
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Figure 2— (a) Resistivity recorded along the SkyTEM soundings closest to the coring points
and corresponding to the bottom of the peat layer. The green, black and yellow dotted lines
indicate the first, second and third interquartile respectively of the resistivity values. The
orange dotted lines indicate the 1.5 time interquartile range above the third quartile or below
the first quartile. (b) Measured vs predicted peat thickness values, the dotted line has a 45°
slope.-For'both panels, blue dots correspond to the points collected within Site 1, red dots
correspond to points of Site 2 and green dots correspond to the 28 points with no peat.
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Synthetic modelling, included in the Supporting Information, clearly shows that, had the
substrate been more conductive (e.g., a thick clay layer), as it often is the case in peatlands in
other parts of the world (Comas et al. 2015), the peat bottom would have been delineated by
the AEM alone, with no need of using an ANN and constrain it based on boreholes.
However, we speculate that, since the ANN addresses the issue of spatial variability of
threshold resistivity too, not just the issue of poor resistivity contrast, the ANN would still

enhance the interpretation of peat thickness even where there is a more conductive substrate.

After determining the accuracy of the ANN in predicting the thickness at the measuring
points, we now discuss its accuracy in determining the horizontal extension of peatlands. Fig.
3 shows the map of the SkyTEM sounding points falling within the 19 km? study area and
colored based on the peat thickness retrieved with the ANN method. We notice that there is a
good qualitative correspondence with the areas present in the NIBIO map (green polygons in
Fig. 3) especially in the southern part of the study area. The territories in the north-east that
are erroneously classified as peatlands by the system correspond to a large estuary possibly
characterized by wet soils. Those in the north-west are located across the small river that

forms the same estuary.
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Figure 3= Map of the peatlands obtained with the ANN. Green polygons are wetland outlines
from the NIBIO map, while the large light-blue polygon is the lake. (Coordinate reference
system:-WGS 84 UTM 32N. Base map has been produced from a Sentinel-2 image).
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In order to quantitatively test the accuracy of the peatlands map, we produce a confusion
matrix with the sounding points with thickness larger than 0.05 m that we consider
“peatland” versus the peatland areas extracted from the NIBIO Institute map (Tab. 4S of the

Supporting Information).

In total we have 4635 sounding points within the study area. We notice that out of the 712
sounding points that should have been classified as “peatland” based on the NIBIO map, 558
were correctly allocated (that corresponds to 78%) while 154 points were classified as “non-
peatland™ (22 %). Looking at the 3923 soundings falling in the areas outside the peatlands,
1201 points were erroneously classified “peatland”, which corresponds to the 30.6 % of the
total, while 2722 points were correctly allocated as “non-peatland” (69.4 %). The overall
accuracy of the classification is 71 %. The Cohen’s k coefficient is 0.3, suggesting that even
if the overall accuracy obtained with the classification is acceptable, some soundings were

correctly classified by chance.

The peatland extension and thickness retrieved with this methodology allows one to estimate
the volume of peat stored in a specific site, and therefore to estimate its total organic carbon
content. In order to extract this information, first we interpolate using the ordinary kriging the
soil elevation and the peat bottom values retrieved at the SkyTEM sounding points in order to
extract the two surfaces, and then we subtract the second from the first to calculate the total
peat volume across the two study sites. We estimate that study Site 1 stores 1,218,482 m’ of
peat, and considering that the average OCC by soil volume that we determined equals 0.028 g
cm™, based on our calculations Site 1 contains 34 kt of organic carbon. Study Site 2 stores
291,035 m’ of peat with an average OCC by soil volume of 0.023 g cm™, for a total 6.7 kt of
organic carbon. As for the uncertainty associated with these estimates, the largest
contribution is due to the systematic underestimation of peat depth (i.e. -0.14 m) that
propagates into the volume calculation of the peat, which corresponds to - 4.1% for Site 1
and =4.9% for Site 2. Therefore, at Site 1 we underestimate the organic carbon content by

1.4 kt while at Site 2 the underestimation error is 0.3 kt.

5 Conclusions

Conservation actions targeted at avoiding potential greenhouse gas emissions from peatlands

require accurate assessment of the carbon stored in peatlands at the regional to the global
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scale and hence a reliable method to quantify peat thickness and volume is essential.
However, despite their importance, the accurate quantification of peatlands extension and
volume is still lacking. Airborne Electromagnetic has been used in this study to determine the
presence, thickness and extension of peat deposits in a Norwegian territory rich in wetlands.
We found that peat resistivity of bogs is variable, increasing from the surface to the bottom of
the bogs in the range 140- 315 Ohmm. Despite peat deposits are often located over clay
(which is characterized by extremely low resistivities), in this study the AEM did not detect
any significant conductive strata indicative of clay layers underneath the peats. On the
contrary, the resistivity of the bottom layers has been found to be higher than the resistivity of
the peat, corresponding to bedrock or moraine material. If an underlying layer of clay was
present, as suggested by some samples collected during the field survey, we speculate it was
too thin to be detected by the AEM system. However, further inspections are needed to
confirm this hypothesis. The lack of low resistivity layer that separates the peat deposits from
the deep geological structures strongly limited the effectiveness of AEM in accurately
determining the peat thickness on its own. Moreover, the resistivity of the peat-substrate
interface was spatially variable. To overcome these limitations, we used an Artificial Neural
Network (ANN) constrained with the thickness measurements of the peat from direct
boreholes sampling to simulate peat depth and extension. The accuracy obtained in
determining the peat thickness was tested against independent measurements, performing a
leave-one-out analysis. The resulted average residual is - 0.14 m, with RMSE of 0.93 m,
which we consider acceptable if compared to the average peat thickness measured in the area
which equals to 3.64 m. The methodology allowed us to also map the distribution of
peatlands across the entire 19 km? study area. We found a good agreement of the produced
map with the reference map provided by NIBIO, even though our methodology
overestimated the presence of peatlands within the study area, especially in its north part
where an estuary was mistakenly classified as peatland. The limited amount of field data used
to train and validate the peatland model probably represented the main limit in the detection
of the peat volume. Overall, final results allowed us to calculate the volume of the peat
deposits and the organic carbon content, showing that AEM data can be successfully used to
study peatlands at the regional scale and retrieve the organic carbon pool. We expect the
performance of AEM to peat volume mapping to increase significantly in presence of a
conductive substratum (see Supporting Information for simulation results that support this
conclusion). We also expect this methodology to be effective in other situations and regions

of the world. The main obstacles may be the high cost of the AEM surveys, the presence of
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infrastructures that interfere with the AEM signal and the limited number of field
measurements that is feasible to collect over large territories. Another limit may arise in
quantifying the carbon content in sites showing markedly different levels of peat
decomposition/soil organic matter content throughout the soil profile. In those cases AEM
may not provide high enough vertical and horizontal spatial resolutions to properly link the

variability of soil properties to electrical conductivity.
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