
Proceedings of the XVII ECSMGE-2019  
Geotechnical Engineering foundation of the future  
ISBN XXX-X-XXXX-XXXX-X 

© The authors and IGS: All rights reserved, 2019  
     doi: 17ecsmge-2019-Y-XXXX 
 

 

IGS 1 ECSMGE-2019 - Proceedings 

Landslide displacement prediction based on wavelet 
transform and long short-term memory neural network 
Prédiction des déplacements utilisant transformation en ondelettes et 

réseau neuronal longue mémoire à court terme  
Beibei Yang 

China University of Geosciences, Wuhan, China 
Norwegian Geotechnical Institute, Oslo, Norway 

Zhongqiang Liu, Suzanne Lacasse, and Farrokh Nadim 
Norwegian Geotechnical Institute, Oslo, Norway 

  
ABSTRACT:  The prediction of landslide displacement is a key component of an early warning system to 
mitigate landslide risk. Most of the models for landslide displacement prediction are static models. Yet, landslides 
move dynamically. This paper proposes a novel dynamic model combining the wavelet transform and the 
multivariate long short-term memory neural network to predict landslide displacement. In the Three Gorges 
Reservoir Area (TGRA) in China, step-wise landslides have been observed. One such step-wise landslide, the 
Baijiabao landslide, was used as case study for this paper. The cumulated displacement was decomposed into a 
trend displacement, a periodic displacement and noise using the wavelet transform. The periodic displacement 
was predicted by the multivariate long short-term memory (LTSM) neural network considering various causal 
factors. For comparison, the static multivariate support vector machine (SVM) model and univariate LSTM 
model were also implemented. The results demonstrate that the multivariate LSTM model achieved higher 
prediction accuracy than the multivariate SVM and univariate LSTM models, and that the method is preferable 
for predicting the displacement of step-wise landslides in general, and for the TGRA in particular. 
 
RÉSUMÉ:  La prédiction de l'étendue des glissements de terrain constitue un élément important pour la reduction 
du risque. La majorité des modèles existants pour glissements sont de nature statique. Un glissement se déplace 
cependant de manière dynamique. Cet article propose un nouveau modèle dynamique qui allie une transformation 
en ondelettes des signaux avec une analyse par réseau neuronal 'longue mémoire à court terme' (LSTM) avec 
multivariables. Autour du barrage "Three Gorges" en Chine, on a observé nombres de glissements "par étapes", 
dont le glissement de Baijiabao. Les déplacements cumulatifs sont composés d'une partie "trend" et une partie 
périodique. Le déplacement périodique a été modelé avec le réseau neuronal LSTM, considérant la précipitation 
et la variation du niveau du réservoir. Des comparaisons sont aussi faites avec un modèle statique, le modèle 
SVM (machine à vecteurs de support avec multi.variables) et un modèle univariable LSTM. Les résultats 
démontrent que le modèle LSTM avec multivariables fait un bien meilleur modelage que les deux autres modèles, 
et que cette méthode est préférable pour la prédiction des déplacements des glissements en général, et en 
particulier pour les glissements "par étapes" dans la région du barrage Three Gorges.  
 
Keywords: Step-wise landslide; Wavelet transform; Long short-term memory neural network; Displacement 
Prediction; Three Gorges Reservoir: Landslide; dam 
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1 INTRODUCTION 
Landslides are a common geological hazard in 
China, especially in the Three Gorges Reservoir 
Area (TGRA) (Lian et al 2015). They can cause 
massive casualties and significant losses and 
damage to property. An accurate prediction of 
landslide displacement would help mitigate 
losses and contribute importantly to early 
warning systems (Huang et al 2017). 

Physical models and data-based models have 
been proposed to predict landslide displacement 
(e.g., Jiang et al 2011; Li et al 2018). Data-based 
models are often preferred because they are 
simpler, can give accurate predictions and 
involve lower costs (Corominas et al 2005; Zhou 
et al. 2018). Du et al (2013) predicted the 
displacement of colluvial landslides in the TGRA 
with a back propagation neural network (BPNN). 
Miao et al (2018) applied a support vector 
machine (SVM) model with multi-algorithm 
optimization to predict landslide displacement. 

The above prediction models implement 
different algorithms, but all use static models, 
treating landslide displacement as a static 
regression problem (Yao et al 2015). Landslides, 
however, evolve as dynamic processes (Qin et al 
2002). Dynamic predictors, establishing relations 
between landslide displacement at different times, 
should prove more suitable than static models. 

Recurrent neural networks (RNN) have been 
used earlier to construct dynamic predictors (e.g. 
Han et al 2004; Yao et al 2015). The long short-
term memory neural network (LSTM) is an 
improved version of the RNN, and has been used 
earlier to predict the displacement of landslides 
in the TGRA (Xu and Niu 2018). 

In the TGRA, the velocity of the landslide 
displacements increased during heavy rainfall 
and reservoir water level fluctuation and 
decreased during periods with less external 
loading (Miao et al 2014). The accelerating and 
decelerating movements resulted in step-wise 
accumulated displacement versus time (Fig. 1). 

To predict the displacement of step-wise 
landslides, the displacement was decomposed 

into components (e.g. Huang et al 2017). To do 
this decomposition, several time series methods 
are available, such as the moving average (MA) 
(Miao et al 2018), the empirical mode 
decomposition (EMD) (Xu and Niu 2018) and 
the wavelet transform (WT) methods (Zhou et al 
2018). The latter WT method can decompose 
time series measurements into components of 
different frequencies, and also remove system 
noise effectively. 
 

 
Figure 1. Evolution of step-wise landslide 
 

The approach in this paper combines the WT 
method and the LSTM neural network to predict 
the displacement of the Baijiabao landslide: 

1) WT was used to remove the system noise 
from the measured displacement sequence 
and was then used to decompose the 
displacement into a trend and a periodic 
component. 

2) The LSTM models were applied to predict 
the trend and periodic components.  

To verify the performance of the new model, 
the latter part of the displacements of the 
Baijiabao landslide were predicted and compared 
with the measurements. The multivariate LSTM 
results were also compared with displacement 
predicted with a static multivariate support vector 
machine (SVM) model and a univariate LSTM 
model. The goodness of each prediction was 
compared quantitatively, using the root mean 
square error (RMSE), mean absolute percentage 
error (MAPE) and relation coefficient (R). 
Details of those statistical indices can be found 
elsewhere (Zhou et al 2018). 
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2 PROPOSED MODEL 

2.1 Time series decomposition 
The displacement was decomposed into three 
components: a trend, a periodic and system noise 
component. The long term displacement, 
controlled by 'internal' geological conditions such 
as lithology, geological structure and progressive 
weathering, was the trend component. In the 
TGRA, the displacement on the short-term was 
influenced by two 'external' factors: rainfall and 
reservoir water level. This short term 
displacement was the periodic component (Zhou 
et al 2018). Additionally, the system error always 
exists during deformation monitoring process. 
The cumulated displacement time series (D) was 
then: 

 
𝐷𝐷 = 𝑇𝑇 + 𝑃𝑃 +𝑁𝑁 (1) 

 
where T is the trend displacement, P is the 
periodic displacement, and N is the noise from 
system error of monitoring. 

2.2 Wavelet transform 
Wavelet transform (WT) is an analysis method 
for signal processing, which provides efficient 
localization in both time and frequency domains 
(Daubechies 1990). The approach includes two 
classes of transformation: continuous wavelet 
transformation (CWT) and discrete wavelet 
transformation (DWT). The DWT was selected 
to decompose the landslide displacement time 
series because of less time-consuming and easier 
to implement. The DWT was defined as follows: 

 
𝐷𝐷𝐷𝐷𝑇𝑇𝑦𝑦(𝑚𝑚,𝑛𝑛) = 2−

𝑚𝑚
2 ∫ 𝑠𝑠(𝑡𝑡)𝜎𝜎∗(2−𝑚𝑚𝑡𝑡 − 𝑛𝑛)+∞

−∞ 𝑑𝑑𝑡𝑡 (2) 
 

where m is the scaling constant; n is the 
translating constant (an integer); 𝑠𝑠(𝑡𝑡)  is the 
landslide displacement time series; and 𝜎𝜎∗(𝑥𝑥) is 
the complex conjugate function. 

The DWT algorithm had a set of high-pass and 
low-pass filter to extract an "approximation" 

sequence and a "detail" sequence. The approxi-
mation sequence represented low-frequency 
displacement and reflected the trend component. 
The detail sequence contained high-frequency 
displacement and reflected the periodic component. 

2.3 Long short-term memory neural network 
Long short-term memory neural network is an 
improved verion of recurrent neural network 
(RNN) proposed by Hochreiter and Schmidhuber 
(1997). Traditional RNN cannot handle long-
range relationships because of problems with 
vanishing gradient and exploding gradient. The 
LSTM can overcome these drawbacks. 

The LSTM neural network is composed of an 
input layer, a (or several) hidden layer(s) and an 
output layer. The units in the hidden layer are 
related to the others from one time step to the 
other. The basic unit of the hidden layer is its 
memory block consisting of an input gate, a 
forget gate, an output gate and a memory cell 
(Fig. 2). The 'Input gate' controls the flow of input 
activations into the memory cell. The 'Forget 
gate' controls whether the information from the 
previous time step is remembered or forgotten. 
When the 'Forget gate' is open, information from 
the previous time step is passed along to the next 
time step; when the 'Forget gate' is closed, all the 
information from the previous time step is 
forgotten before the next time step. The 'Output 
gate' controls the flow of output activations into 
other blocks or to the final results (Xu and Niu, 
2018). 
 

 
Figure 2. Architecture of LSTM neural network 
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For an input sequence x=(x1, x2,…, xT), the 
output sequence y=(y1, y2,…, yT) is obtained from 
time t=1 to time T through iteration of the 
following equations (Fan et al, 2014): 

 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝐷𝐷𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝐷𝐷ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝐷𝐷𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥)   (3) 
 
𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝐷𝐷𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝐷𝐷ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝐷𝐷𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥)(4) 
 
𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 tan ℎ (𝐷𝐷𝑥𝑥𝑐𝑐𝑥𝑥𝑡𝑡 + 𝐷𝐷ℎ𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐)  (5)                                   
 
𝑂𝑂𝑡𝑡 = 𝜎𝜎(𝐷𝐷𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 +𝐷𝐷ℎ𝑥𝑥ℎ𝑡𝑡−1 +𝐷𝐷𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥)(6) 

 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 tanℎ  (𝑐𝑐𝑡𝑡)                                         (7) 
 
𝑦𝑦𝑡𝑡 = 𝐷𝐷ℎ𝑦𝑦ℎ𝑡𝑡 + 𝑏𝑏𝑦𝑦                                           (8) 
 

where 𝑖𝑖𝑡𝑡, 𝑓𝑓𝑡𝑡, 𝑜𝑜𝑡𝑡 and  𝑐𝑐𝑡𝑡 are the values of the input 
gate, forget gate, output gates and memory cell in 
the memory block at time t; 𝑏𝑏𝑥𝑥, 𝑏𝑏𝑥𝑥, 𝑏𝑏𝑥𝑥 and  𝑏𝑏𝑐𝑐 are 
their corresponding bias values; 𝐷𝐷𝑥𝑥  are the 
weights between input nodes and hidden nodes; 
𝐷𝐷ℎ  are the weights between hidden nodes and 
cell memory; 𝐷𝐷𝑐𝑐 are the weights connecting 
memory cell to output nodes; 𝜎𝜎  is the sigmoid 
activation function; tan ℎ  is the hyperbolic 
tangent function mapping data to [-1, 1]; and ℎ𝑡𝑡 
is the hidden state, containing information about 
the history of earlier elements in the series. 

3 BAIJIABAO CASE STUDY 

3.1 Overview of the Baijiabao landslide 
The Baijiabao landslide occurred in the Zigui 
town on the west side of the Xiangxi River, a 
major tributary of the Yangtze River. The front 
part of the landslide was submerged in the 
reservoir water. Four GPS monitoring stations 
were installed on the ground surface of the 
landslide in late 2006. The displacement has been 
measured at one month intervals since then. 

Cao et al (2015) analyzed the time and spatial 
evolution of the Baijiabao landslide deformation. 
The analysis indicated that the Baijiabao 

landslide deformed as an entity. The monitoring 
data obtained from station ZG324 at the center of 
the landslide was used to establish the forecast 
model for the Baijiabao landslide. 
 

 
Figure 3. Rainfall, reservoir water level and cumulated 
displacement at ZG324, Baijiabao landslide (2007-2013) 

 
Figure 3 shows the monitored displacements at 

station ZG324 versus time, as well as the 
measured rainfall and reservoir water level. Each 
year, the cumulated displacement increased from 
May to September under reservoir water 
drawdown and heavy precipitation. The reservoir 
level started to rise in October and was held 
constant (175 m) until April. During that period, 
the precipitation was gentle and the landslide 
experienced only small displacements. The step-
wise increase in displacement was caused by 
seasonal rainfall and reservoir drawdown. 

3.2 Decomposition of time series 
In monitoring of surface displacement by GPS, 
noise cannot be avoided (Zhou et al 2018). The 
WT can remove system noises from the measured 
displacement time series. The noise was removed 
by the automatic one-dimensional denoising 
method in the wavelet toolbox of MATLAB. 

The decomposition of the displacement 
sequence was also done with the wavelet toolbox 
of MATLAB. The type of wavelet function used 
is significant for the decomposition of the 
landslide displacement series. The function of 
Daubechies 4 (where 4 is the vanishing moments) 
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was selected for this study. Figure 4 shows the 
displacement decomposition results. 

A total of 84 monitoring data from station 
ZG324 were available from January 2007 to 
December 2013. The first 72 data points, 
spanning from January 2007 to December 2012, 
are used to train the LSTM model, and the 
remaining data from January to December 2013 
are used to test the model (Fig. 4). 
 

 
Figure 4. Displacement decomposition at ZG324 

3.3 Prediction of trend displacement 
The trend displacement due to the 'internal' 
conditions (lithology, structure, weathering, etc.), 
increased monotonically (Du et al 2013). 

Some researchers have developed a prediction 
model of the trend displacement from the shape 
of the curve of displacement (Zhou et al 2016; 
Miao et al 2018). However, a single function may 
not be enough to fit the curve well (Yang et al 
2018). In this study, a univariate LSTM model 
describing the relationship between time and the 
trend displacement was used to predict the trend 
displacement. The model yielded a good 
prediction, as shown in Figure 5. The resulting 

values of RMSE, MAPE, and R were 1.7, 0.2%, 
and 1, respectively. 

 

 
Figure 5. Predicted and measured trend displacement 

3.4 Prediction of periodic displacement 

3.4.1 Factors influencing periodic displacement 
The periodic displacement at the Baijiabao 
landslide site was controlled by rainfall and 
reservoir water level. Consideration of the most 
important trigering factors is the key to a good 
prediction of the periodic displacement compo-
nent for a step-wise landslide. 

Based on the monitoring data (Fig. 3), rainfall 
and reservoir water level are the dominant factors 
inducing the step-wise displacement. Crozier 
(1986) suggested that the  state of evolution of the 
landslide is also an important factor affecting the 
dependence of the movement on the external 
factors. Following earlier researchers (Cao et al 
2016; Zhou et al 2018), the triggering factors 
listed in Table 1 were selected for the periodic 
displacement prediction: rainfall, reservoir water 
and evolution state of the landslide.  

The Grey relational analysis was applied to 
measure the degree of correlation between the 
periodic displacement and each influence factor. 
The periodic displacement was selected as the 
primary sequence and the influencing factors 
were selected as sub-sequences. The sequences 
were normalized as: 

𝑋𝑋𝑘𝑘(𝑖𝑖) ′ = 𝑋𝑋𝑘𝑘(𝑖𝑖)/ 1
𝑛𝑛
∑ 𝑋𝑋𝑘𝑘(𝑖𝑖)𝑛𝑛
𝑥𝑥=0                        (9) 
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where  𝑖𝑖 = 0,1,⋯ ,𝑛𝑛; 𝑘𝑘 = 0,1,⋯ ,𝑚𝑚; n and m are 
the number of data points and influencing factors, 
respectively. The correlation coefficients were 
calculated from: 
 

δ�(𝑥𝑥0(𝑖𝑖) ′ , 𝑥𝑥𝑘𝑘(𝑖𝑖) ′� = 𝑝𝑝+𝜌𝜌𝜌𝜌

�𝑋𝑋𝑘𝑘(𝑥𝑥) ′−𝑋𝑋0(𝑥𝑥) ′ �+𝜌𝜌𝜌𝜌
   (10) 

𝑝𝑝 = ( ) ( )( )0min min kk i
x i x i′ ′−                     (11) 

 

𝑞𝑞 = ( ) ( )( )0max max k
k i

x i x i′ ′−                   (12) 

 
where 𝜌𝜌  is the resolution coefficient and is 
normally set to 0.5. 

The grey relational grade (GRG) was used to 
evaluate the correlation between each variable. 
The GRG was obtained from: 

 

𝑟𝑟(𝑥𝑥0, 𝑥𝑥𝑥𝑥) = 1
𝑛𝑛
∑ 𝛿𝛿 �(𝑥𝑥0(𝑖𝑖) ′ , 𝑥𝑥𝑘𝑘(𝑖𝑖) ′�𝑛𝑛
𝑘𝑘=1       (13) 

 
The values of the GRG ranges from 0 to 1. A 

GRG-value ≥ 0.6 designates a strong correlation. 
Table 1 lists the GRG-values for the correlation 
between periodic displacement and each influ-
ence factor. All the GRG-values are larger than 
0.6, suggesting that the input influence factors 
were properly selected for the forecast model. 

3.4.2 Prediction of periodic displacement 
A multivariate LSTM model was used to predict 
the periodic displacement of the Baijiabao 
landslide. With the seven causal factors as input 
(Table 1), the periodic displacement was the 

output. The inputs and output were normalized 
between [-1, 1]. Samples of the data used in the 
periodic displacement model are shown in Table 
2. The grid search method was used to search for 
the optimization parameters of the LSTM model. 
 
Table 1. Input to the LSTM model and GRG between 
each influencing factor and periodic displacement 

Inputs 1-7 Grey relational 
grade (GRG) 

Input 1: the 1-month anteced-
ent rainfall 0.69 

Input 2: the 2-month anteced-
ent rainfall 0.66 

Input 3: average reservoir ele-
vation in the current month 0.62 

Input 4: change of reservoir 
level over the last 1 month 0.73 

Input 5: the displacement over 
the past 1 month 0.86 

Input 6: the displacement over 
the past 2 months 0.77 

Input 7: the displacement over 
the past 3 months 0.71 

 
The LSTM model was implemented in Python by 
the Keras package and used TensorFlow as a 
backend. Furthermore, a static multivariate SVM 
model using particle swarm optimization (PSO) 
to optimize its parameters, and a univariate 
LSTM model were also applied to predict the 
periodic displacement for comparison. 

Figure 6 and Table 3 present the results of the 
three analysis. The multivariate LSTM analysis 
gave better agreement with the measured values 
than the multivariate SVM model and the 
univariate LSTM model. The values of the 
RMSE, MAPE and R indices are 9.1, 9.7% and 
0.96, respectively. 

Table 2. Data samples used in the modelling of periodic displacement 
Time Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Output 

2013-01 -0.97 -0.94 0.86 -0.33 -0.92 -0.87 -0.89 0.18 
2013-02 -0.89 -0.95 0.56 -0.55 -0.94 -0.91 -0.92 0.06 
2013-03 -0.74 -0.80 0.28 -0.52 -0.92 -0.91 -0.94 -0.06 
2013-04 -0.48 -0.54 0.17 -0.34 -0.87 -0.84 -0.90 -0.13 
2013-05 0.23 0.08 -0.15 -0.57 -0.87 -0.80 -0.83 -0.10 
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Figure 6. Predicted and measured periodic displacement  
 
Table 3. Prediction accuracy of periodic displacement 

Model RMSE MAPE(%) R 
Multivariate LSTM 9.1 9.7 0.96 
Univariate LSTM 14.5 14.5 0.84 
Multivariate SVM 10.8 16.2 0.92 

3.5 Prediction of total displacement  
The total displacement was obtained by adding 
the trend and periodic displacements. Figure 7 
and Table 4 show that the multivariate LSTM 
achieved the best prediction of the three models. 

4 DISCUSSION 
Compared with the univariate LSTM, the 
multivariate LSTM predicted better the step-wise 
displacement. For example, the displacement 
increase of 53 mm of June 2013 occurred under 
combined reservoir drawdown and heavy 
rainfall. The absolute mean percentage error 
(APE) of the predicted results obtained by the 
multivariate and univariate LSTM models were 
0.6% and 4.8%, respectively. The univariate 
LSTM method cannot simulate as well the 
relationship between deformation and triggers. 

For the same input, the dynamic model LSTM 
showed higher prediction accuracy than the static 
model SVM. The LSTM model resulted in 
RMSE, MAPE and R-values of 8.2, 0.8% and 
0.99, while the static SVM model had values of 

10.8, 1.1% and 0.98. The LSTM model could 
establish connections between the data in 
different time steps. The LSTM model learns 
rules from historical information and then applies 
these rules to the current step.  

Furthermore, the LSTM model can judge, 
filter and remember the information from 
previous time steps. The useful information is 
remembered; the useless information is forgotten. 
For the SVM model, connections between 
different time steps are not possible. The SVM 
model learn rules from a time step and cannot use 
historical data, and therefore cannot model the 
response of landslide deformation as well. 

 
Figure 7. Predicted and measured total displacement 
 
Table 4. Prediction accuracy of total displacement 

Model RMSE MAPE(%) R 
Multivariate LSTM 8.2 0.8 0.99 
Univariate LSTM 14.6 1.4 0.95 
Multivariate SVM 10.8 1.1 0.98 

5 CONCLUSION 
Seasonal rainfall and reservoir water level 

fluctuations are the dominant factors inducing the 
step-wise deformation of landslides in the TGRA. 
It is thus necessary to consider these triggering 
factors in the forecast models to improve the 
prediction models. 

The dynamic LSTM model is one such model 
because it builds relationships between different 
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time steps, and makes full use of historical infor-
mation. This information can be filtered by the 
“memory block” and the accuracy of the 
prediction will not be disturbed by past 
information from a long time ago. These 
characteristics of the model contribute to 
improving the predictions, compared with other 
models. 

The proposed dynamic model combined with 
WA and LSTM achieved accurate prediction in 
the case of slow step-wise landslides. Based on 
this study, the approach can be recommended to 
predict landslide displacement in the TGRA and 
other landslide-prone regions. 
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