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Abstract
Stress–dilatancy theories play a central role in the modeling of the plastic dissipation of geomaterials. There exist several

mathematical frameworks for describing the stress–dilatancy behavior of soils. One of the limiting assumptions often

introduced is coaxiality between principal directions of stresses and plastic strain increments. However, experimental

evidences suggest that this assumption is generally invalid for the deformation behavior of granular materials. In this paper,

non-coaxial stress–dilatancy framework is developed first in axis symmetric, plane strain and then for general stress–strain

conditions. To facilitate the use of the stress–dilatancy framework for cyclic loading conditions, loading and unloading are

explicitly considered in the development of the framework. Furthermore, a possible way of establishing the evolution of the

degree of non-coaxiality in plane strain and axis symmetric cases is presented. Then the approach is applied to selected

yield functions.
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1 Introduction

Coaxiality between principal stresses and principal plastic

strain rates was first postulated by Saint–Venant [27]. If we

follow the theories of stable equilibrium1 phenomena

according to Gibbs [11], systems that are in stable equi-

librium conditions, when slightly perturbed, have the ten-

dency to maximize dissipation (or conversely to minimize

internal energy). For a given stress state and plastic strain

increment, the plastic dissipation is higher when they are

coaxial. In the absence of constraints, irregularities and

non-homogeneities, coaxiality seems a logical assumption.

However, maximization of dissipation is subjected to, for

example, kinematic constraints in the medium. In granular

materials, such constraints may arise due to anisotropy,

non-homogeneity and bifurcation. It has been pointed out

by Hill [17] that for anisotropic material, generally

principal stresses and principal (plastic) strain increments

are non-coaxial except for the special case where the

principal stress axes coincide with the axes of anisotropy.

In fact, in granular materials, non-coaxiality between

principal stresses and principal (plastic) strain rates has

been observed through various techniques. For example,

Drescher and De Josselin de Jong [9] studied the defor-

mation behavior of a photo-elastic disk assembly to verify

the double-sliding free-rotating model [7] and they were

able to calculate the degree of non-coaxiality between the

axes of principal stresses and strain rates. Roscoe et al.

[25], using simple shear tests, observed that principal

stresses and principal plastic strain rates can be non-

coaxial. Using the directional shear cell apparatus (DSC)

[2], Arthur et al. [3] investigated the stress–strain behavior

of the Leighton-Buzzard Sand samples due to change of

stress path direction and found that principal stresses and

principal strain rates are generally non-coaxial. Gutierrez
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et al. [15] employed the hollow cylinder apparatus to

investigate deformation behavior of dense air-pulviated

Toyoura Sand subjected to proportional stress path, pure

principal stress rotation and loading with increasing devi-

atoric stress combined with principal stress rotation. Their

test results show that loading conditions that involve

principal stress rotations are in general non-coaxial. The

hollow cylinder has been popularly applied to the investi-

gation of stress–strain behavior of soils under loading

conditions that involve principal stress rotation e.g.,

[3, 5, 29, 35]. Non-coaxiality has also been observed in

discrete element model (DEM) setups [1, 3, 29, 35].

1.1 Definition

Consider a stress state in simple shear conditions as shown

in Fig. 1. Let the direction of the minor principal stress and

the minor principal strain rate direction make angles ar and

a _e, respectively, with the x-axis. When there is no deviation

between the two angles, i.e., a _e ¼ ar, the principal stresses

and the principal strain rates are said to be coaxial;

otherwise they are non-coaxial. The degree of non-coaxi-

ality may be defined by the deviation angle D ¼ a _e � ar.

The definition had been extended (between principal

stresses and principal plastic strain rates) to a 3D stress–

plastic strain rate space by Gutierrez and Ishihara [12]. In

general, if a stress tensor rij and a plastic strain rate tensor

_epij are defined in a Cartesian coordinate system x ¼
f x1 x2 x3 gT

as

rij ¼
r11 r12 r13

r21 r22 r33

r31 r32 r33

2
4

3
5 and _epij ¼

_ep11 _ep12 _ep13

_ep21 _ep22 _ep23

_ep31 _ep32 _ep33

2
4

3
5;

ð1Þ

the principal stress tensor and the principal strain rate

tensor are obtained by transforming each as

rij ¼ Tr
ikrklT

r
lj ¼

r1 0 0

0 r2 0

0 0 r3

2
4

3
5 and

_epij ¼ T _e
ik _e

p
klT

_e
lj ¼

_ep1 0 0

0 _ep2 0

0 0 _ep3

2
4

3
5;

ð2Þ

respectively, such that the off-diagonal terms are zero. Tr
ik

and T _e
ik are, respectively, matrices that transform the stress

tensor and the plastic strain rate tensors into their respec-

tive principals. If Tr
ik 6¼ T _e

ik, then the principal stresses and

principal strain rates are said to be non-coaxial, Gutierrez

and Ishihara [12]. From now on, the condition is referred to

as non-coaxiality.

1.2 Trend

Prior to bifurcation, experimental evidences confirm that

the degree of non-coaxiality decreases in magnitude with

increasing stress ratio, see e.g., [3, 24]. In Fig. 2, test

results by Arthur et al. [3] are presented. The test results

show that degree of non-coaxiality vanishes with stress

ratio.

The tendency of the degree of non-coaxiality during

post-bifurcation deformation is controversial as also

Fig. 1 Non-coaxial behavior in simple shear tests (Roscoe et al. [25])
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pointed out in Tejchman and Wu [28]. For example, Var-

doulakis and Georgopoulos [34] presented a biaxial test on

Karlsruhe Sand that shows that the degree of non-coaxi-

ality vanishes with shear strain after bifurcation. Similarly,

DEM simulations in Thornton and Zhang [29] reveal that

the degree of non-coaxiality vanishes toward the critical

state regardless of post-peak reduction in stress ratio. On

the other hand, Gutierrez and Vardoulakis [13] presented

tests on Nevada Sand in which ‘‘the post-bifurcation non-

coaxiality parameter varies with shear displacement.’’ The

variation in their plot implies that degree of non-coaxiality

increases with shear strain during post-bifurcation defor-

mation. This tendency has been attributed mainly to rota-

tion of principal stresses because of ‘‘a simple shear

loading condition imposed in the shear band.’’ Tejchman

and Wu [28] carried out a numerical investigation of shear

localization in dilatant bodies using a micro-polar

hypoplastic model with a focus on non-coaxiality and

stress–dilatancy behavior of an initially medium dense

Karlsruhe Sand. In the same paper, they showed an

increase in the degree of non-coaxiality during post-bifur-

cation deformation. However, they obtained only a small

rate of increase (from about 1� at the peak to about 6� at

large deformations). Although it is small, the trend does not

agree with the observed trends in experimental measure-

ments in Vardoulakis and Georgopoulos [34] on the same

sand.

Thornton and Zhang [29] from their DEM simulations

pointed out that ‘‘at any stage of shearing, during simple

shear deformation, the angle of non-coaxiality depends on

the mobilized angle of shearing resistance, the rate of

dilation, the initial stress state, and the applied loading

path.’’ Furthermore, Thornton and Zhang [29] concluded

that when there is no further change in volume, the stress

and strain rate directions are coaxial.

1.3 Effect

It is not fully understood yet in what way non-coaxiality

affects the deformation behavior of soils. However, one

aspect can be clearly envisaged, that is, non-coaxiality

affects the energy dissipation mechanism of the medium in

some way. Studies also show that dilatancy is strongly

influenced by non-coaxiality of principal stresses and

principal plastic strain rates. The possible influence of non-

coaxiality on stress–dilatancy behavior of a granular

medium was first pointed out by De Josselin de Jong [8].

Gutierrez and Ishihara [12] proposed a non-coaxial version

of Taylor’s work hypothesis. Later, Gutierrez and Wang

[14] introduced a degree of non-coaxiality into Rowe’s

stress–dilatancy relation. Closely investigating these theo-

ries, some inconsistencies were noticed (Tsegaye [30],

Tsegaye et al. [33]). In the next sections, non-coaxial

plastic dissipation and stress–dilatancy relations are

developed by extending the theory—proposed by Tsegaye

and Benz [31].

The following applies thought out the paper:

1. Stress quantities, friction angles and cohesion are

always taken to be effective values without any special

indication by a prime.

2. Strain rates defined here refer generally to an artificial

time increment and can be considered as simultaneous

infinitesimal strain increments.

2 Non-coaxial plastic dissipation and stress–
dilatancy

For an isothermal condition, the energy variation may be

written as

_F þD� rij _eij ¼ 0; D� 0 ð3Þ

where _F is the rate of Helmholtz free energy, D is the rate

of dissipation, rij is Cauchy’s stress tensor, and _eij is the

strain rate tensor. The strain rate is additively decomposed

into elastic and plastic, i.e., _eij ¼ _eeij þ _epij according to the

well-known hypothesis of elastoplasticity. Accordingly, the

rate of work may be decomposed into elastic and plastic,

i.e., ~W ¼ ~We þ ~Wp ¼ rij _eeij þ rij _e
p
ij. The Helmholtz free

energy may be decomposed into elastic and plastic under

certain assumptions as _F ¼ _Fe þ _Fp where _Fe ¼ rij _eeij and

hence _Fp :¼ _F � rij _eeij. However, in the following _Fp ¼ 0

is assumed such that D ¼ Dp ¼ rij _e
p
ij. Dp is referred to as

plastic dissipation.

Next, we will present a theoretical framework that was

developed [30] for describing stress–dilatancy relations and

Fig. 2 Evolution of degree of non-coaxiality with stress ratio when

the principal stress r1B is preceded by r1A. a DEM simulations.

b DSC experiments (after Arthur et al. [3])
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plastic dissipations in geomaterials. We begin to lay down

the theory first in the plane strain and in the axisymmetric

condition, and then we will continue to apply the same

approach for establishing plastic dissipation and stress–

dilatancy relation considering the full stress and plastic

strain rate tensors.

2.1 Plane strain and axisymmetric conditions

Assuming coaxiality, for axisymmetric and plane strain

conditions, Tsegaye and Benz [31] derived a plastic dis-

sipation of the form

Dp
N ¼ r1r1 _e

p
1 CN � 1ð Þ

�
CN : ð4Þ

where r1 is the major principal stress and _ep1 is the major

principal plastic strain rate (along r1 in this case). r1 are

defined such that r1 ¼ 1, for plane strain and for triaxial

compression and r1 ¼ 2 for triaxial extension, CN is a

stress ratio at the critical state and hence a constant.

For r1 _e
p
1 � 0 and, where ul is the interparticle friction

angle, the original stress–dilatancy relationship of Rowe’s

[26] and the plastic dissipation thereof is found. However,

as discussed in Tsegaye and Benz [31], CN does not have to

be the one given in Rowe [26] and the stress ratio Nr does

not have to obey the Mohr–Coulomb criterion. The

advantage of this approach has been demonstrated in

Tsegaye and Benz [31] by extending existing stress–dila-

tancy equations and deriving a stress–dilatancy relationship

for the Hoek–Brown criterion [18–21] which in its pre-

liminary validation turns out to be in a good agreement

with Farmer’s [10] servo controlled triaxial compression

tests on sand stone and mudstone. Assuming CN ¼ CU
N

when r1 _e
p
1\0, the condition 0\CU

N ¼ 1
�
CL
N � 1 guaran-

tees non-negative plastic dissipation. The suitability of the

corresponding stress–dilatancy equation for soil models

intended for the modelling of deformation behaviour of

soils under cyclic loading has been demonstrated in Tse-

gaye [30]. The assumption of coaxiality has further been

lifted in Tsegaye [30] and Tsegaye et al. [33] for axis

symmetric and plane strain conditions. In Tsegaye [30], the

theory is extended such that a full 3D stress–strain condi-

tion is considered. To give the full treatment of the theory,

the approach in Tsegaye [30] and Tsegaye et al. [33] for

axis symmetric and plane strain conditions is presented

next.

For non-coaxial principal stresses and principal plastic

strain rates, the rate of plastic work in the principal stress

space may be written as

�Wp ¼ r1r1
_�ep1 þ r3r3

_�ep3; ð5Þ

where ri are principal stresses (i ¼ 1 � major; i ¼
3 � minor) and _�epi are the conjugate plastic strain rate

components projected along the principal stress compo-

nents (coaxial components). ri are defined such that

r1 ¼ r3 ¼ 1, for plane strain, 2r1 ¼ r3 ¼ 2, for triaxial

compression and r1 ¼ 2r3 ¼ 2 for triaxial extension.

For plane strain and axisymmetric conditions, the

relation

_�ep1
_�ep3

� �
¼ 1

ms

cos2 D
ms m2

s tan2 D
tan2 D ms

� �
_ep1
_ep3

� �
; ð6Þ

is proposed for projecting principal plastic strain rate

components, _epi , onto the respective principal stresses. In

Eq. (6), D is degree of non-coaxiality between the principal

stress and the principal plastic strain rate directions and

ms ¼ r3=r1. The mapping presented in Eq. (6) is actually

derived for a plane strain condition, i.e., for ri ¼ 1. The

extension to axis symmetric conditions is assuming that

axis symmetric conditions can be constructed from super-

position of two perpendicular planes strain conditions.

From the tests in Gutierrez et al. [15], for monotonic tests

with fixed principal stress path, the deviation between the

directions of the principal stresses and the principal plastic

strain increments is small compared to tests that involve

principal stress rotation. Therefore, a coaxial condition

may be assumed for axis symmetric conditions.

Next, let the principal stress components and the prin-

cipal plastic strain rate components obey the relations

r1 ¼ Nrr3 and _ep3 ¼ �Nw _e
p
1; ð7Þ

respectively, where Nr is the stress ratio and Nw is the

dilatancy ratio, respectively, and they are called stress–

dilatancy conjugates in Tsegaye [30]. Considering Eqs. (5),

(6) and (7), the non-coaxial plastic rate of work can be

conveniently written as

~Wp ¼ r1r1 _e
p
1ĉN

~dN ; ð8Þ

in which ĉN and ~dN are convenient functionals that are

established by rearranging the plastic rate of work from

Eqs. (5) and (6). The function ~dN contains the stress–di-

latancy conjugates according to

~dN ¼1 1 � ms

~Nw

Nr
; ms

~Nw ¼
2 �ms

_�ep3
_�ep1
¼ msNw � tan2 D

1 � msNw tan2 D

ð9Þ

The function ĉN is dilatancy-coaxiality function given

by

ĉN ¼ cos2 D� ms
~Nw þ tan2 D

1 þ ms
~Nw tan2 D

sin2 D: ð10Þ

Postulating the first variation of the function ~dN in

Eq. (9)1 to vanish, i.e., the variation
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d~dN ¼ � dðms
~NwÞ

Nr
þ ms

~Nw
dNr

N2
r
¼ 0 ð11Þ

yields the relation,

CNms
~Nw ¼ Nr: ð12Þ

Note that ms
~Nw contains the degree of non-coaxiality

according to Eq. (9)2. The non-coaxial plastic dissipation is

obtained by substituting Eq. (11) into Eq. (8)

Dp
N ¼ ~Wp ¼ r1r1 _e

p
1ĉN 1 � 1

C ~N

� �
� 0; ð13Þ

Assuming C ~N ¼ CL
~N

when r1 _e
p
1 � 0 and C ~N ¼ CU

~N
when

r1 _e
p
1\0, guaranteeing the inequality in Eq. (13) requires a

bit more than the inequality 0\C ~N ¼ CU
~N
¼ 1

.
CL

~N
� 1, it

also requires ĉN � 0 which limits the range of the degree of

non-coaxiality D 2 ½�p=4; p=4�. This range is more

relaxed than the range proposed by de Josselin de Jong [7]

who obtained, for a given angle of shearing resistance, u,

D 2 ½�u=2;u=2�.
The integration constant, CN , may be established by

considering the phase transformation point, i.e., msNw ! 1

and hence ms
~Nw ! 1 in the sense of loading.

Substituting Eq. (9)2 into Eq. (12), the non-coaxial

stress–dilatancy relationship for axisymmetric and plane

strain conditions is written as [30]

msNw ¼ Nr þ CN tan2 D
C ~N þ Nr tan2 D

: ð14Þ

Note that for a coaxial condition, i.e., when D ¼ 0, the

relationship in Eq. (14) simplifies to CNmsNw ¼ Nr and

ĉN ¼ 1, leading to the plastic dissipation in Eq. (4).

2.2 General stress–strain condition

Next, the theoretical framework is extended to the general

stress–strain conditions by considering the rate of plastic

work given by

~Wp ¼ rij _e
p
ij; ð15Þ

where the full stress tensor rij and the full plastic strain rate

tensor _epij are defined with respect to a common reference

axes. The stress and the plastic strain rate tensors can be

equivalently written as

rij ¼ pdij þ sij and _epij ¼
1

3
_epvdij þ _epij; ð16Þ

respectively, where p is the effective confining pressure

defined by one-third of the trace of the effective stress

tensor, i.e., p ¼ rijdij
�

3, _epv is the plastic volumetric strain

rate tensor defined by the trace of the plastic strain rate

tensor, _epv ¼ _epijdij, which is valid for infinitesimal strain

assumption, sij is the deviatoric stress tensor, and _epij is the

deviatoric plastic strain rate tensor.

In the principal stress space described by a set of

eigenvectors, the deviatoric stress tensor can be written as

sk ¼
2

3
q sinfhr þ 2ð3 � kÞp=3g; k ¼ 1; 2; 3 ð17Þ

wherein q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij

�
2

q
is a stress invariant called devia-

toric stress. Similarly, the principal deviatoric plastic strain

rate can be written as

_ek ¼ _epq sinfh0_e þ 2ð3 � kÞp=3g; k ¼ 1; 2; 3; ð18Þ

wherein _epq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _epij _e

p
ij

.
3

r
is the deviatoric plastic strain

rate.

Considering the transformation in Eq. (2), the deviatoric

stress and the deviatoric plastic strain rate are given by

sij ¼ q ~mij and _epij ¼ _epq~nij; ð19Þ

wherein ~mij and ~nij are given by

~mij ¼
2

3
½Tr

i1T
r
j1 sinðhr þ 4p=3Þ þ Tr

i2T
r
j2 sinðhr þ 2p=3Þ

þ Tr
i3T

r
j3 sin hr� ð20Þ

~nij ¼ T _e
i1T

_e
j1 sinðhp_e þ 4p=3Þ þ T _e

i2T
_e
j2 sinðhp_e þ 2p=3Þ

þ T _e
i3T

_e
j3 sin hp_e ; ð21Þ

respectively.

Considering Eqs. (15), (16) and (19), the plastic rate of

work can then be conveniently written as

~Wp ¼ p _epv þ q _epq ~mij~nij: ð22Þ

Note that Eq. (22) has already been derived in Gutierrez

and Ishihara [12] and they have then called the quantity

~mij~nij the non-coaxiality factor, whose absolute value we

call here the degree of coaxiality and denote it with a ~c.

We proceed to establish the stress–dilatancy relation and

the plastic dissipation employing the same techniques we

have used for the plane strain and the axis symmetric

conditions. Consider constraints of stress ratio and plastic

strain rate ratio as

q ¼ Mh
rp and _epv ¼ �Mh

w _e
p
q; ð23Þ

respectively, where Mh
r is the stress ratio and Mh

w is the

conjugate dilatancy ratio.

The rate of plastic work per unit bulk volume can be

written as in

~Wp ¼ p _epq~c~dM; ð24Þ

where ~c ¼ j ~mij~nijj and ~dM is a function of the stress–dila-

tancy conjugates and is given as
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~dM ¼ � ~Mh
w þ ~Mh

r; ð25Þ

where ~Mh
w ¼ Mh

w

.
~c and ~Mh

r ¼ sMh
r, in which the quantity

s ¼ sgnð ~mij~nijÞ is defined.

Postulating the variation, d~dM ¼ 0 and hence
~dM ¼ Ch

M � 0, Tsegaye [30] was led to a plastic dissipation

~Dp

M ¼ p _epq~cC
h
M � 0: ð26Þ

The corresponding stress–dilatancy relationship is then

Mh
w ¼ �~c sMh

r � Ch
M


 �
: ð27Þ

The constant Ch
M may be established by considering

Mh
w ¼ 0 at the phase transformation condition as just dis-

cussed in Sect. 2.1. Convenient ad hoc functions of void

ratio may then be introduced such that the effects of density

are taken into account in both the stress–dilatancy relation

and the plastic dissipation. A non-constant ad hoc may

overrule the postulate that d~dM vanishes.

Note that the scalar quantity ~mij~nij contains the degree of

non-coaxiality. However, it contains not only the degree of

non-coaxiality between principal stresses and principal

plastic strain rates but also the difference in the Lode angle

of the stress tensor and the plastic strain rate tensor, as it

was also discussed in Gutierrez and Ishihara [12]. When

the principal stress and the principal plastic strain rate

tensor are coaxial, one obtains ~mij~nij ¼ s cosðhr � hp_e Þ.
Notice also that for loading s ¼ 1, for neutral loading s :

¼ 0 and for unloading s ¼ �1. Sometimes the deviation in

the Lode angle has also been inclusively considered as non-

coaxiality in the definition of non-coaxiality as a non-co-

incidence of directions of stresses and plastic strain incre-

ments, e.g., as stated in Tejchman and Wu [28].

Note that the plastic dissipation in Eq. (26) and the

stress–dilatancy relationship in Eq. (27) are different from

the one proposed by Gutierrez and Ishihara’s [12].

Gutierrez and Ishihara postulated that the plastic dissipa-

tion obeys ~Dp

M ¼ p _epqMc, where Mc is given by the stress

ratio at the critical state. Gutierrez and Ishihara [12]

themselves asserted that non-coaxiality decreases the

plastic dissipation although their final proposition that the

plastic dissipation obeys ~Dp

M ¼ p _epqMc does seem not

reflect that. The difference in the proposed plastic dissi-

pation is also reflected in the resulting stress–dilatancy

relationships as will be shown later.

3 Tendency of the degree of non-coaxiality

During pre-bifurcation deformation of granular materials,

various test results consistently show that the degree of

non-coaxiality vanishes with the stress ratio. For the plane

strain and axis symmetric cases, this is translated into the

inequality dĉN � 0 in Tsegaye [30] and hence

dĉN ¼ � 2

cos 2D tanD
dD� 1

1 þ ms
~Nw

dðms
~NwÞ� 0: ð28Þ

Then, from Eq. (28) the inequality

dD� � 1

2
cD tanD

1

1 þ ms
~Nw

d ms
~Nw


 �
; ð29Þ

is obtained, where cD ¼ cos 2D is the degree of coaxiality.

As long as the quantity ms
~Nw is increasing, the magnitude

of the degree of non-coaxiality must be decreasing, i.e.,

when DðþÞ, dDð�Þ and Dð�Þ, dDðþÞ. These inequalities

may help establish the evolution rule of the degree of non-

coaxiality. A simple evolution rule may be established as

dD ¼ � 1

2
paDcD tanD

1

1 þ ms
~Nw

d ms
~Nw


 �
; ð30Þ

where paD is added to control the rate of decay, aD is a

material parameter that controls the rate of decay

(p ¼ 3:14. . . so that aD takes a relatively smaller value and

has no mathematical origin).

Equation (29) implies that the evolution of the degree of

non-coaxiality is influenced by dilatancy ratio ~Nw (thus also

the stress ratio) and stress path (ms) in agreement with

Thornton and Zhang [29].

Note that when D0 is zero, the angle of non-coaxiality is

identically zero for the rest of the deformation irrespective

of changes in the dilatancy ratio. Such may be true if the

sample is truly isotropic (both in initial fabric and initial

stress state). This is in agreement with the results from

discrete element simulations, e.g., Thornton and Zhang

[29], Wang et al. [35]. However, if there is non-coaxiality

due to a constraint of some sort from the beginning, the

dilatancy ratio works on it such that in each subsequent

increment it tends toward coaxiality.

For dms ¼ 0, i.e., proportional stress path, and C ~N a

constant, Eq. (29) simplifies to

dD ¼ � 1

2
paDcD tanD

1

C ~N þ Nr
dNr; ð31Þ

Equation (31) implies that the degree of non-coaxiality,

D, decreases with an increasing stress ratio, Nr. This ten-

dency agrees with observations, for example, with Roscoe

et al. [25], Matsuoka et al. [23], and Thornton and Zhang

[29]. The tendency of Eq. (31) is such that non-coaxiality

decreases with positive increment in stress ratio, thus

toward the critical state, see the DSC tests and DEM

simulations by Arthur et al. [3].

However, if D[ 0 and dNr\0, dD[ 0, Eq. (31)

implies that the degree of non-coaxiality increases. This

may occur during post-bifurcation deformation (see
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Gutierrez and Vardoulakis [13]). However, Vardoulakis

and Georgopoulos [34] presented a biaxial test on Karl-

sruhe Sand (Fig. 3) in which the degree of non-coaxiality,

during post-bifurcation deformation, shows a tendency of

vanishing with shear strain. This tendency seems to con-

tradict the observation of the former, i.e., Gutierrez and

Vardoulakis [13]. In explaining the contradiction, Gutier-

rez and Vardoulakis [13] suggested that the degree of post-

bifurcation principal stress rotation may depend on the soil

type. It is also noted that the latter tendency cannot be

deduced from Eq. (31) at least in its present form, but it

may be deduced from Eq. (29). In the test results of Var-

doulakis and Georgopoulos [34], the dilatancy angle was

still increasing for a while after the peak friction angle

(Fig. 3). This result is in agreement with Eq. (29). The

seeming contradiction arises if one assumes the evolution

of the dilatancy ratio is governed by the stress ratio alone

upon which Eq. (31) is derived from Eq. (29).

Figure 4 shows the evolution of dilatancy-coaxiality

function ĉN and the degree of non-coaxiality D with stress

ratio considering the evolution rule in Eq. (31). The higher

the value of aD, the faster the degree of non-coaxiality

vanishes. On the basis of how fast the system reaches its

maximum dissipation potential under continuous defor-

mation, granular materials may be distinguished into highly

dissipation efficient, medium dissipation efficient and low

dissipation efficient. Other suggested evolution rules can be

found, for example, in Gutierrez and Wang [14] and

Gutierrez et al. [16].

The DEM simulation results in Thornton and Zhang [29]

show a strong relationship between the initial degree of

non-coaxiality, D0, and the K0 stress state. A possible form

that can capture such a relationship between the initial

degree of non-coaxiality and the K0 for the simple shear

condition is

tanD0 ¼ jD
1 � K2

0

K0

; ð32Þ

where jD is a constant. For the specific simulation results

in Thornton and Zhang [29], Fig. 5, jD ¼ 2=3 gives a good

fit. However, generally one may speculate that non-coaxi-

ality may arise due to non-homogeneity of the media, stress

discontinuity, fabric anisotropy and mechanisms due to

bifurcation as existing experimental evidences suggest,

e.g., Gutierrez and Vardoulakis [13].

4 Application to selected yield criteria

Here, selected yield criteria are considered for illustrating

how the theoretical frameworks so far presented can be

used to enhance existing stress–dilatancy relationships

[30].

4.1 Non-coaxial stress–dilatancy formalism
for a Mohr–Coulomb material

Here, we consider a material that obeys Coulomb’s friction

rule. As presented in Tsegaye and Benz [31], the mobilized

stress ratio and the stress ratio at constant volume are

defined by

NMC
r ¼ Nu þ bNu � b and �KMC

N ¼ �Nc þ b �Nc � b;

ð33Þ

respectively, where

Nu ¼ 1 þ sinum

1 � sinum

; �Nu ¼ 1 þ fsd sinuc

1 � fsd sinuc

; 0� fsd sinuc\1;

ð34Þ

And b ¼ a=r3, wherein um is mobilized friction angle and

uc is critical state friction angle here considered a material

constant, and a is the so-called attraction [22] given as

a ¼ c cotuc where c is cohesion, fsd is an ad hoc function

that is introduced to capture effect of effective confining

pressure and void ratio. Next, specific stress–dilatancy

relations are developed considering loading and unloading

following the theoretical framework established in

Sect. 2.1.

4.1.1 Loading

Substituting Eq. (33) into Eq. (14), the dilatancy ratio

multiplied by the shear mode constant, msN
MC
w , is given by

msN
MC
w ¼ NMC

r þ �KMC
N tan2 D

�KMC
N þ NMC

r tan2 D
: ð35Þ

Then the sine of the mobilized dilatancy angle is

obtained from [32],Fig. 3 Evolution of degree of coaxiality and dilatancy during post-

bifurcation for Karlsruhe Sand (after Vardoulakis and Georgopoulos

[34])
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sin ŵL
m ¼1 �msNw � 1

msNw þ 1
¼2 �cD

Nu � �Nc

Nu þ �Nc � fb
;

fb ¼ 2b=ð1 þ bÞ:
ð36Þ

Equation (36)2 is obtained by substituting Eq. (35) into

Eq. (36)1. For b ¼ 0 Eq. (36)2 reduces to

sin ŵL
m ¼ �cD

sinum � fsd sinuc

1 � fsd sinum sinuc

: ð37Þ

The influence of non-coaxiality on the stress–dilatancy

is demonstrated in Fig. 6. As can be seen in the figure, non-

coaxiality reduces the magnitude of the dilatancy angle.

However, if the rate at which the degree of non-coaxiality

vanishes is very high, the effect in the dilative region (at

higher mobilizations) can be low. It should be noted here

that the stress–dilatancy relation presented in Eq. (37) does

not agree with Gutierrez and Wang’s [14] non-coaxial

version of Rowe’s stress–dilatancy relation. As can be seen

from Eq. (37) and as also illustrated in Fig. 6, the higher

the degree of non-coaxiality, the less the magnitude of the

dilatancy angle for a given mobilized friction angle,

whereas the Gutierrez and Wang [14] non-coaxial version

of Rowe’s stress–dilatancy relation gives the opposite, i.e.,

the higher the degree of non-coaxiality, the higher the

magnitude of the dilatancy angle for a given mobilized

friction angle below the phase transformation. In fact,

when cD tends to zero, the Gutierrez and Wang [14] for-

mulation tends to given unlimited volumetric contraction

and unlimited plastic dissipation.

4.1.2 Unloading

For the case of unloading, CN ¼ 1 � �KMC
N may be inserted

into Eq. (36) such that msN
MC
w is given by

(a) (b)

Fig. 4 Plots of a ĉN versus Nr and b D versus Nr for D0 � 400 and C ~N ¼ 3

Fig. 5 Evolution of the degree of non-coaxiality with shear strain

from DEM simulation of a simple shear condition (after Thornton and

Zhang [29])

(a) (b)

Fig. 6 Effect of non-coaxiality on stress–dilatancy relation in plane

strain conditions for different values of aD(the evolution rule in

Eq. (31) considered), fsd ¼ 1 and uc ¼ 30 degree during plastic

loading (and the initial degree of non-coaxiality is calculated after

Eq. (32) where Jakys formula is used for determining K0)
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msN
MC
w ¼

�KMC
N NMC

r þ tan2 D

1 þ NMC
r

�KMC
N tan2 D

; ð38Þ

which yields

sin ŵU
m ¼1 �cD

�KMC
N NMC

r � 1

�KMC
N NMC

r þ 1
¼2 �cD

� ð1 þ b2Þ �NcNu � bð1 þ bÞð �Nc þ NuÞ þ b2 � 1

ð1 þ b2Þð �NcNu þ 1Þ � bð1 þ bÞð �Nc þ NuÞ
:

ð39Þ

Equation (39)2 is obtained considering Eqs. (33)1,2 into

Eq. (39)1. Considering b ¼ 0, Eq. (39)2 further simplifies

to

sin ŵU
m ¼1 �cD

�NcNu � 1
�NcNu þ 1

¼2 �cD
sinum þ fsd sinuc

1 þ fsd sinum sinuc

: ð40Þ

Comparing Eqs. (37) and (40), �cD remaining the same,

the minus sign in the former changes into a plus sign in the

latter. Therefore, the non-coaxial stress–dilatancy relation

for the loading and the unloading conditions can be com-

bined as

sin ŵm ¼ �cD
sinum � sfsd sinuc

1 � sfsd sinum sinuc

; ð41Þ

where s ¼ 1 during loading and s ¼ �1 during unloading.

4.2 Non-coaxial stress–dilatancy formalism
for a Hoek–Brown material

A stress–dilatancy formulation for the Hoek–Brown

[18–21] failure criterion for rocks and rock masses has

been proposed in Tsegaye and Benz [31]. Here, the same

stress–dilatancy relationship is extended considering non-

coaxiality following the formalism established in Sect. 2.1.

In Tsegaye and Benz [31], the stress ratio, NHB
r , and the

modified residual strength derived from the generalized

Hoek–Brown criterion were given as

NHB
r ¼ 1 þ ~b mb

�
~bþ s


 �a
; ~b ¼ rci=r3 ð42Þ

and

�KHB
N ¼ 1 þ fsd ~b m̂b

�
~bþ ŝ


 �â
; ð43Þ

respectively, assuming that the Hoek–Brown criterion

governs the stress ratio since the onset of plastic defor-

mation and the residual state. rci is the uniaxial compres-

sive strength of intact rock. The parameters mb, s and a are

constants which depend upon the rock mass characteristics:

the Geological Strength Index (GSI) and disturbance factor

(D). The circumflex letters, m̂b, ŝ and â, in Eq. (43) rep-

resent the Hoek–Brown parameters at the residual state.

Then, the corresponding non-coaxial stress–dilatancy

equations may be established by considering plastic

deformations under loading and under and unloading as

follows.

4.2.1 Loading

Assuming loading and substituting Eqs. (42) and (43) into

Eq. (14) leads to

msN
HB;L
w�peak ¼

NHB
r�peak þ �KHB

N tan2 D
�KHB
N þ NHB

r�peak tan2 D
: ð44Þ

Substituting Eqs. (42) and (43) into Eq. (44), the dila-

tancy angle may be obtained as

sin ŵHB;L
peak ¼ �

msN
HB;L
w�peak � 1

msN
HB;L
w�peak þ 1

¼ �cD
C� ~C

2 þ Cþ ~C
: ð45Þ

where C and ~C are, respectively,

C ¼ ~bðmb

�
~bþ sÞa and ~C ¼ fsd ~bðm̂b

�
~bþ ŝÞâ: ð46Þ

4.2.2 Unloading

For unloading, considering CN ¼ 1= �KHB
N such that

msN
HB;U
w�peak ¼

�KHB
N NHB

r�peak þ tan2 D

1 þ NHB
r�peak

�KHB
N tan2 D

; ð47Þ

substituting Eqs. (42) and (43) into Eq. (44) and consid-

ering the definition in Eq. (36), one obtains

sin ŵHB;U
peak ¼ �cD

Cþ ~Cþ C ~C

2 þ Cþ ~Cþ C ~C
: ð48Þ

4.3 Non-coaxial stress–dilatancy formulation
for Lode angle-dependent yield functions

In this section, we are going to demonstrate how specific

stress–dilatancy relations and plastic dissipation equations

might be established for the general stress–strain condition

following the formalism established in Sect. 2.2 when the

yield functions are specified.

Let the stress ratio be written in terms of the triaxial

compression stress ratio and a convenient Lode angle-de-

pendent function as

Mh
r ¼ ‘hMC

r ; ð49Þ

where MC
r is the stress ratio for triaxial compression and ‘h

is the Lode angle-dependent modification.

Accordingly, the modified ‘constant’ may be obtained as

a stress ratio at the phase transformation condition as

Ĉh
M ¼ �̂K

h
M ¼ �̂‘

h
c
�̂K
h
M; ð50Þ
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where �̂‘
h
c is a modified Lode angle-dependent function and

�̂K
h
M is the modified phase transformation stress ratio which

evolves to the critical state stress ratio as the plastic

deformation progresses toward the critical state condition.

Assuming the Mohr–Coulomb yield function, the cur-

rent stress ratio and the stress ratio at the phase transfor-

mation for the triaxial compression and the triaxial

extension states are given, respectively, as

MMC;C=E
c ¼ MC=E

u ð1 þ b̂Þ and �K
C=E
M ¼ �MMC;C=E

c ð1 þ b̂Þ;
ð51Þ

wherein

MC=E
u ¼ 3

Nu � 1

r1Nu þ r3

; �MC=E
c ¼ 3

�Nc � 1

r1
�Nc þ r3

and b̂ ¼ a=p:

ð52Þ

Nu and �Nc are as defined in Eq. (34), r1 and r3 are as

defined in Eq. (5), and a is attraction. The subscript

c indicates critical, and the superscript C/E indicates tri-

axial compression or extension conditions. The stress ratio

is then obtained by multiplying the triaxial compression

stress ratio by an appropriate Lode angle-dependent func-

tion. The Bardet [4] Lode angle-dependent function may be

considered for instance.

Combining Eqs. (27), (49) and (50), we obtain

Mh
w ¼ �~cðs‘hMC

r � �‘hc �M
C
r Þ: ð53Þ

Inserting Eqs. (51) into Eq. (53), we obtain a stress–

dilatancy relationship as

Mh
w ¼ �~cðs‘hMC

r � �‘hc �M
C
c Þð1 þ b̂Þ: ð54Þ

5 Preliminary validation of the proposed
theory

5.1 Dependence of plastic dissipation on non-
coaxiality

Let us consider the experimental investigations due to

Gutierrez and Ishihara [12] and their implication interms of

effects of non-coaxiality. The original data from Gutierrez

and Ishihara [12], Fig. 7 (Left), show a plot of the dilatancy

ratio against the stress ratio multiplied by the degree of

coaxiality, ~c ¼ j ~mij~nijj, for monotonic tests and for tests

subjected to pure principal stress rotation. The following

can be inferred from the plot.

• At lower mobilizations of the stress ratio, the stress–

dilatancy relation is less contractive for the tests with

pure stress rotation than those for monotonic loading.

• On average, the plots tend to have a unique stress ratio

at the phase transformation state.

• On average, the differences in the dilatancy ratio

between the two data sets vanish with stress ratio

Further, the data are interpreted in terms of the nor-

malized plastic dissipation, Fig. 7 (right). From the trend of

the plastic dissipation for the two sets of data, it can be

observed that

• the tests with pure rotation dissipate less than those

from monotonic loading.

• on average the difference in the normalized plastic

dissipation between the two sets of data vanishes with

stress ratio.

It is known that tests with principal stress rotation

induce non-coaxiality between the directions of principal

stresses and principal plastic strains increments. The data is

therefore in agreement with the non-coaxial plastic dissi-

pation and stress–dilatancy theory presented in this paper.

Fig. 7 Left: Stress ratio (q/p) multiplied by degree of coaxiality, ~c,

versus dilatancy ratio (�Mw) for tests with pure rotation of principal

stresses and with monotonic loading, data from Gutierrez and Ishihara

[12], Right: Normalized plastic dissipation versus dilatancy ratio

interpreted from the data

Fig. 8 Predicted versus measured degrees of coaxiality (cos 2D). The

predicted degree of coaxiality (cos 2D) is calculated using the

measured dilatancy ratio as an input into Eq. (55)
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5.2 Evolution of the degree of non-coaxiality

Equation (30) can be analytically integrated such that it

yields the relationship

tanD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vw

vw þ ð1 þ msNwÞp
aD

s
;

vw ¼ tan2 D0

1 � tan2 D0

1 þ msNw;0

 �paD

:

ð55Þ

The dilatancy ratio calculated from Vardoulakis and

Georgopoulos [34], in Fig. 3 is then fed into Eq. (55). A

good agreement is obtained between the trend of the

experimentally measured degree of coaxiality, cos 2D; and

that of the trend of the degree of coaxiality calculated using

Eq. (55), Fig. 8.

Integrating Eq. (31) yields the relationship

tanD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vr
vr þ ðC ~N þ NrÞp

aD

s
;

vr ¼
tan2 D0

1 � tan2 D0

C ~N þ Nr0


 �paD
:

ð56Þ

The trend compares reasonably well with data from

DSC tests in Arthur et al. [3], Fig. 9.

6 Conclusion

Inconsistencies were noted in some of the theoretical

frameworks proposed in literature for the description of

stress-dilatancy relations and plastic dissipations in geo-

materials when principal stresses and principal plastic

strain rates were non-coaxial, which added to the motiva-

tion of the work presented in this paper. The paper deals

with the development of, a consistent and unifying theo-

retical framework that describes non-coaxial plastic dissi-

pation and stress–dilatancy relations for geomaterials. For

a possible use in models that intend the modelling of

deformation behaviour of geomaterials under cyclic load-

ing, both loading and unloading were explicitly consid-

ered. The framework accomodates and extends the well-

known stress-dilatancy theories that have so far assumed a

central place in constitutive modelling of geomaterials.

Selected experimental results from literature that demon-

strated the validity of elements of the theoretical frame-

work have also been presented. Through theoretical

arguments and looking at published experimental results, it

is concluded that

• plastic dissipation decreases with increasing of degree

of non-coaxiality between axes of principal stresses and

principal plastic strain increments.

• when the degree of non-coaxiality tends to increase, the

volumetric changes due to dilatancy tend to decrease.

• the degree of coaxiality increases with increasing

dilatancy ratio and increasing stress ratio prior to

bifurcation.

In addition, limits of the degree of non-coaxiality have

been obtained for the case of a plane strain deformation

requiring that the plastic dissipation be non-negative. The

limits of the degree of non-coaxiality so obtained were

found to be more relaxed than previously proposed

and they accommodated the maximum values of degrees of

non-coaxiality previously observed in DEM simulations.

Furthermore, the formulation presented in this paper for

describing the evolution of the degree of coaxiality con-

forms to empirical observations in the pre-bifurcation

region. After bifurcation, some inconsistencies can be

explained by the proposed framework. However, avail-

able experimental evidences are insufficient to draw

conclusions.
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with theory, Eq. (56)
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Appendix: Notations

Group 1: Stress\stress related quantities

Tensors

rij Cauchy’s stress tensor

sij Deviatoric stress tensor

~mij Stress direction

Tr
ik Transformation matrix for stresses

Scalars

riði¼1;2;3Þ Principal stress components

p Confining pressure, mean normal stress

q Deviatoric stress

Ratios

Nr Stress ratio (r1=r3)

Mr Stress ratio (q=p)

‘h Lode angle-dependent function (Lode function)

Mh
r

Lode angle-dependent stress ratio (q=p)

Group 2: Strain\strain related quantities

Tensors

_eij Strain rate tensor

_eij Deviatoric strain rate tensor

~nij Plastic strain increment direction

T _e
ik

Transformation matrix for plastic strains

Scalars

_eiði¼1;2;3Þ Principal strain rate components

_ev Volumetric strain rate

_eq Deviatoric strain rate

Ratios

Mh
w

Lode angle-dependent dilatancy ratio

Nw Dilatancy ratio (� _e3= _e1)

Group 3: Energy related

~W Rate of work

D Dissipation rate

Dp Plastic dissipation

F Helmholtz free energy

dN ; dM Function of stress-dilatancy conjugates

D Degree of non-coaxiality

cD Degree of coaxiality (plane strain)

~c ¼ ~mij~nij Degree of coaxiality (general)

Group 5: Mohr–Coulomb

a Attraction

c Cohesion

Group 6: Hoek–Brown

rci Uniaxial compressive strength of intact rock pieces

a Hoek–Brown constant

â Hoek–Brown constant (a) residual state

GSIr GSI for the residual state

mb Hoek–Brown constant for rock mass

m̂b Hoek–Brown constant (mb) for rock mass at

residual state

mi Hoek–Brown constant for the intact rock pieces

s Hoek–Brown constant

ŝ Hoek–Brown constant (s) for the residual state

Group 7: Superscripts

e Elastic

p Plastic

h Lode angle dependent

C=E Triaxial compression/triaxial extension

C Triaxial compression

E Triaxial extension

Group 8: Subscripts

N Axisymmetric, plane strain stress state

M In the p–q plane

c Critical

m Mobilized

w Dilatancy

Group 9: Miscellaneous

CN ;CM Dilatancy constants

Ch
M

Lode angle-dependent dilatancy constant

fsd State function, function of e, p, etc

KN ;KM Stress ratio at the critical state
�KN ; �KM Modified critical state stress ratio

ms Shear mode coefficient (r3=r1)

dij Second order unit tensor

uc Critical state friction angle

um Mobilized friction angle

wm Mobilized dilatancy angle
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