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On the landslide tsunami uncertainty and hazard

Abstract Landslides are the second most frequent tsunami source
worldwide. However, their complex and diverse nature of origin
combined with their infrequent event records make prognostic
modelling challenging. In this paper, we present a probabilistic
framework for analysing uncertainties emerging from the
landslide source process. This probabilistic framework employs
event trees and is used to conduct tsunami uncertainty analysis
as well as probabilistic tsunami hazard analysis (PTHA). An
example study is presented for the Lyngen fjord in Norway.
This application uses a mix of empirical landslide data combined
with expert judgement to come up with probability maps for
tsunami inundation. Based on this study, it is concluded that the
present landslide tsunami hazard analysis is largely driven by
epistemic uncertainties. These epistemic uncertainties can be
incorporated in the probabilistic framework. Conducting a litera-
ture analysis, we further show examples of how landslide and
tsunami data can be used to better constrain landslide
uncertainties, combined with statistical and numerical analysis
methods. We discuss how these methods, combined with the
probabilistic framework, can be used to improve landslide
tsunami hazard analysis in the future.

Keywords Tsunamis . Uncertainty . Landslide
dynamics . Hazard analysis . PTHA

Introduction
Landslides are the second most frequent tsunami source
worldwide (Harbitz et al. 2014a; Tappin 2010; Yavari-Ramshe
and Ataie-Ashtiani 2016). Their importance is undisputed,
most recently demonstrated by the 2018 Anak Krakatoa vol-
cano flank collapse (Grilli et al. 2019) causing several hundred
fatalities. Additional examples of fatal landslide tsunamis
comprise among others the 1959 Vajont event (Crosta et al.
2016), the 1998 Papua Guinea tsunami (Tappin et al. 2008)
and the 1792 Mount Unzen tsunami (Sassa et al. 2016). More-
over, several subaerial landslide-generated waves have induced
up to 150-m run-up heights during the last two decades
(George et al. 2017; Gylfadóttir et al. 2017; Paris et al. 2019;
Sepúlveda and Serey 2009; Tinti et al. 2005). Further examples
can be found in the review of (Harbitz et al. 2014a).

Landslide tsunamis have the potential to produce larger, but
often more local (Okal and Synolakis 2004) tsunamis than earth-
quakes, and they are also more complex and display a more
diverse nature (Løvholt et al. 2015). Therefore, prognostic analysis
of landslide tsunamis is far less developed than for earthquakes,
and hence, we have a more limited understanding of landslide
tsunami hazards (Harbitz et al. 2014a; Geist and Parsons 2014). A
first reason for this is due to lack of knowledge related to the
landslide occurrence frequency, with just a few limited records of
comprehensive landslide statistics covering landslide volumes
across several orders of magnitude (Blikra et al. 2005; Geist and
ten Brink 2019; Lane et al. 2016; Urgeles and Camerlenghi 2013).
Hence, the statistics describing the landslide recurrence is more

poorly constrained than for earthquakes and sometimes even non-
existing. A second reason is that in real situations, we lack well-
established procedures for estimating the uncertainty range the
landslide dynamics would take. This concerns uncertainties relat-
ed to estimating the material properties in situ, corresponding
uncertainties related to geology and failure planes, as well as the
complex material behaviour and transformation after the landslide
have been released. So while we do have significant knowledge
about how tsunamis are generated once the motion of the land-
slide is known, see, e.g. (Løvholt et al. 2015), the landslide dynam-
ics and probability of release is not known a priori for potential
hazardous events. This precise information about the landslide
motion and release probability is difficult to obtain due to the
enormous geographical scale that often needs to be taken into
account, combined with a lack of relevant data. All these factors
play major roles in quantifying the corresponding tsunami gener-
ation uncertainty and, hence, on how they propagate into corre-
sponding tsunami uncertainties.

Consequently, past prognostic analyses of landslide tsunami
hazard have historically resorted to deterministic analysis, e.g.
(Harbitz et al. 2014b; Li et al. 2019; Schambach et al. 2019). Similar
studies addressing the sensitivity to landslide parameters are more
limited (Hilbe and Anselmetti 2015; Kim et al. 2019; Ren et al. 2019;
Salmanidou et al. 2017). To this end, just a handful of landslide
probabilistic tsunami hazard analysis (PTHA or LPTHA) studies
also quantifying the temporal probability of tsunamis exists in the
scientific literature, e.g. Grezio et al. 2012, Lane et al. 2016 and
Grezio et al. 2020. However, none of the landslide PTHA studies to
date appropriately addresses tsunami uncertainty due to the un-
known variability in landslide dynamics. There is hence a pressing
need to better understand and prepare for landslide tsunami
hazard. This encompasses both the understanding of the landslide
tsunami uncertainty, understanding their frequency of occurrence
and setting up a suitable probabilistic framework to carry out the
analysis. In this paper, we attempt to shed light on these processes
and the computational framework by:

1. Providing a review of recent studies that quantify landslide
dynamics uncertainty and its effect on tsunami generation,
presented in the “Landslide dynamics uncertainty constrained
by data: results from previous studies” section.

2. Presenting a simple event tree based on a probabilistic frame-
work for PTHA, incorporating different uncertain parameters
related to landslide dynamics. Acknowledging that the frame-
work is simplified, we argue that it still poses a sufficiently
sophisticated structure for better addressing landslide dynam-
ic uncertainty in PTHA than other models available today. This
framework is presented in the “Framework for probabilistic
tsunami hazard analysis: Lyngen case study” section.

3. Presenting case studies exemplifying how a probabilistic
framework can be utilised in practical applications. The exam-
ple case is the Lyngen fjord in Northern Norway, presented in
the “Probabilistic example studies for Lyngen fjord” section.
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4. In light of the findings in the technical sections sections, finally
discussing in the “Concluding remarks” section how the land-
slide hazard models should be improved in the future, for
instance to more rigorously take into account uncertainties.

Landslide dynamics uncertainty constrained by data: results from
previous studies

Landslide tsunami genesis: a brief summary of past reviews
Modelling of landslide tsunami generation must take into
account the time dependency of the landslide motion and
can involve transitions from supercritical flow (the landslide
outrunning the tsunami) to subcritical flow (the tsunami
outrunning the landslide). In this respect, the ratio between
the landslide velocity and the tsunami wave speed, defined as
the Froude number Fr, measures the degree of criticality. This
is in contrast to earthquakes, which most often rupture much
faster than the tsunami propagates, meaning that the time
dependency is relatively less important for the tsunami haz-
ard. The landslide dynamics hence adds additional complexity
to the tsunami hazard analysis that can be simplified for
earthquakes. To this end, a range of factors controls the
tsunami genesis, as discussed extensively in the literature,
e.g. (Yavari-Ramshe and Ataie-Ashtiani 2016; Løvholt et al.
2015; Fritz et al. 2003; Grilli and Watts 2005; Harbitz et al.
2006; Haugen et al. 2005; Heller et al. 2008; Løvholt et al.
2005; Ruffini et al. 2019; Ward 2001; Watts 2000; Zengaffinen
et al. 2020), and we only provide a simplified review here,
presenting a few essential findings:

& Different types of landslides can have extremely different
tsunami-genic properties. The most pronounced difference is
between subaerial landslides and submarine landslides.

& The tsunami genesis is primarily controlled by the landslide
volume and for impact tsunamis, frontal area, while the land-
slide dynamics (velocity and Froude number, acceleration)
also plays an important role.

& For subaerial landslides, the landslide tsunami genesis is
studied extensively through a range of laboratory studies.
Empirical analysis reveals that the generation scales non-
linearly with the products Froude number and the frontal
slide area cite Fritz et al. (2003), while later studies have
factored in the effect of the landslide mass and slope angle
(Heller et al. 2008; Bullard et al. 2019), the landslide length
(Enet and Grilli 2007; Panizzo et al. 2005) and 3D direc-
tivity effects (Evers et al. 2019; Heller and Spinneken 2015;
Mohammed and Fritz 2012).

& For submarine landslides, the scaling can still depend on the
Froude number, but is more strongly dependent on the accel-
eration (Haugen et al. 2005; Løvholt et al. 2005; Watts 2000;
Hammack 1973) and has a different Froude scaling relationship
(Løvholt et al. 2015; Ward 2001) compared with subaerial land-
slides. For submarine landslides, the tsunami genesis is then
most efficient when Fr = 1, when the landslide and tsunami
travel at the same speed.
While the landslide dynamics is uncertain, two main avenues

can be considered for retrieving more accurate information about
the tsunami genesis: The first one is using data from landslides
and landslide tsunamis to quantify the landslide tsunami genesis.

The second one is to combine geotechnical data with models for
the landslide dynamics. In the remaining part of this section, we
will highlight how the first approach, using landslide data and
associated tsunami observations, can better shed light on relevant
landslide dynamics and tsunami uncertainties.

Examples employing landslide run-out data only
Here, we review briefly two case studies conducted by other
research groups. The first example (Fischer et al. 2015) concerns
a study attempting to invert a snow avalanche deposit into bound-
ed probability distributions for the associated parameters for the
slide dynamics. This study used a frictional-collisional avalanche
model, computing uncertainty bounds for the landslide friction
parameters by optimising the agreement with landslide outputs.
While snow avalanches are different from our present application,
the frictional-collisional model is very similar to submarine land-
slide models and hence relevant. The first iteration of their study
(Fischer et al. 2015) showed that landslide uncertainties were
excessive, and for some parameters, it was even difficult to prop-
erly constrain the uncertainty. A more recent update by some of
the same authors (Kofler et al. 2017), using the Markov Chain
Monte Carlo (MCMC) method, yielded smaller uncertainties for
the same avalanche parameters. In conclusion, the authors found
that it was possible to obtain estimates of the most probable snow
avalanche input parameters, but that the related uncertainty
bounds were rather large.

The second example concerns ensemble simulations mimicking
a large submarine landslide at the Rockall Bank offshore Ireland
(Salmanidou et al. 2017). The procedure here was very similar to
the one above, the frictional-collisional landslide model Volcflow
Kelfoun et al. 2010 was used for the landslide simulation
realisations, and MCMC was used to optimise the landslide pa-
rameters. A range of different maximum velocities was obtained,
spanning the wide range of 30–130 m/s. One essential parameter
for determining the velocity, the turbulence coefficient, exhibited
an almost unitary probability distribution. Hence, landslide dy-
namics uncertainties were rather large. Other parameters, such as
the basal friction and the yield strength, were more confined.
When fed into a tsunami model, these uncertainties resulted in
tsunami surface elevations ranging from 5–25 m for 100 random
realisations. It is stressed that this uncertainty range is related to
the tsunami generated by a single landslide volume at a given
coastal point.

These two example cases indicate that the presence of landslide
data alone can be used to estimate landslide uncertainties, but that
large uncertainties should be expected, even when the volume is
given. In the next couple of subsections, we will demonstrate how
tsunami data can drastically reduce these uncertainties.

Subaerial landslide tsunami case: 2014 Lake Askja
A 20-Mm3 landslide impacted Lake Askja in Iceland on 21 July 2014
(Gylfadóttir et al. 2017). The landslide caused a tsunami with run-
up heights ranging from 10–80 m. Because the event impacted a
lake of limited size, both the landslide volume, run-out distance
and run-up heights, were thoroughly documented. In particular,
the tsunami run-up height was relatively densely sampled along
the entire periphery of the lake. Because of the thorough docu-
mentation of the event (arguably the best-documented historical
landslide tsunami to date), combined with the limited size of the
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lake, the Lake Askja event is viewed as ideal for studying and
understanding landslide tsunami genesis.

The Lake Askja landslide tsunami was modelled in detail by
Gylfadóttir et al. (2017). They used a simple landslide block slide
model assuming a linear Coulomb term for the bed resistance and
viscous drag and added mass resistance forces due to the ambient
water. This landslide block was in turn coupled to both a
Boussinesq-type (Kim et al. 2017) and a shallow water-type tsuna-
mi propagation and inundation model Geoclaw (Berger et al. 2011)
implemented in the Finite Volume solver Clawpack (LeVeque
2002). Only the simulations including dispersion were able to
closely match landslide run-out and tsunami run-up observations.

Because there exists no measurement or eyewitness observation
of the landslide dynamics, it was necessary to test different
realisations of the block model kinematics. Several hundred sim-
ulations were conducted, and the results were compared with the
tsunami run-up height distributions. To quantify the degree of fit,
an objective function summing the squared differences between
simulated and observed run-up heights was used. Using an opti-
mization procedure, it was found that the most likely landslide
impact velocity was 30.9 m/s, and correspondingly, the most likely
landslide thickness during impact was 35.5 m.

In Fig. 1, we show histograms as functions of the impact velocity
of the slide and the slide thickness displaying the uncertainty of
the impact velocity derived from Gylfadóttir et al. (2017). We here
introduce the objective function of fix referencing as objAsk, noting
that small values of objAsk implies a good match with observations.
In Fig. 1 only results for objAsk < 1.5 ×min(objAsk) are shown. To
this end, min(objAsk) is the realisation that gives the closest agree-
ment with observations. It is argued that all these cases with small
values of objAsk represent a good match with the field observations
(see also Gylfadóttir et al., 2017). Evident from Fig. 1, we see that
there is a significant spread in the landslide impact speeds with
30–35 m/s, while the distribution for the landslide thickness is
more confined between 34 and 37 m. Nevertheless, we see that
the availability of tsunami data leads to a much smaller uncertain-
ty in landslide speed, compared with the landslide dynamics for
the Rockall Bank discussed above, where no tsunami data were
available. This indicates that the tsunami, as a footprint of the
landslide dynamics, can be used to provide much more accurate
information on landslide kinematics than only the landslide
runout observation. It is stressed again that these uncertainties
are the only representative for hindcasting the dynamics of an
event that has already happened. On the other hand, such infor-
mation of past events should be considered useful for prognostic
calculations in the absence of other data.

Submarine landslide tsunami case: the Storegga Slide 8150 BP
The Storegga Slide (Bryn et al. 2005; Haflidason et al. 2004;
Kvalstad et al. 2005) occurred 8150 BP offshore western Norway,
and with a volume of about 3000 km3, it is one of the largest
documented submarine landslides worldwide. Storegga resulted in
an oceanwide tsunami, with palaeotsunami observations in Nor-
way, Scotland, Faroe Islands and Denmark (Bondevik et al. 2005;
Fruergaard et al. 2015; Løvholt et al. 2017; Smith et al. 2004). As for
the Lake Askja rock slide, the relatively rich availability of both
landslide and tsunami data for Storegga facilitates extensive test-
ing of the landslide tsunami model. However, the much larger
Storegga Slide involved a more complex landslide process,

involving for instance retrogressive failure and material
remoulding. These different mechanisms necessitated other kinds
of modelling techniques. It was therefore necessary to use a more
sophisticated landslide model, BingClaw (Kim et al. 2019; Løvholt
et al. 2017), for modelling the Storegga Slide. BingClaw takes into
account landslide remoulding to simulate the landslide dynamics.
Kim et al. (2019) coupled BingClaw to the Geoclaw tsunami model,
using the Storegga Slide to better understand the landslide dy-
namics sensitivity. In contrast to the Lake Askja study, the main
focus of Kim et al. (2019) was to provide rough uncertainty bounds
for the material parameters governing the slide motion, rather
than just for the landslide kinematics as was done for Lake Askja.
We briefly describe their main findings below.

Kim et al. (2019) studied the sensitivity to how the yield strength of
the viscoplastic landslide material influenced by the landslide run-out
distance and the tsunami run-up height. For the limited number of 64
case studies, they compared the simulated landslide runout with the
observed run-out distance of the Storegga Slide, and with observed
paleotsunami run-up heights. Yield strength remoulding between an
initial strength τy,0 and a remoulded strength τy,∞ was assumed, as-
suming an exponential rate e−Γ γwhere Γ is the rate factor and γ is the
modelled material shear strain.

A roughly reworked summary of the findings of Kim et al.
(2019) is presented in Table 1. The first row in Table 1 shows our
interpreted uncertainty ranges based on the findings of Kim et al.
(2019). It is stressed that this study did not undertake a parameter
optimization study as described for Lake Askja in the “Subaerial
landslide tsunami case: 2014 Lake Askja” section. Hence, the pa-
rameter ranges presented in Table 1 are subjective. The second row
indicates which phases that are most sensitive to the given param-
eter according to Kim et al. (2019). Table 1 indicates that the
landslide run-out distance is controlled by the remoulded yield
strength of the material. On the other hand, Table 1 also indicates
that the tsunami run-up height is controlled by the initial yield
strength. This is supported by the previous studies (reviewed
above) indicating that the initial acceleration phase of the land-
slide motion is controlling the tsunami genesis, and the initial
yield strength strongly influences this acceleration phase. The rate
at which the remoulding takes place has an influence on both the
landslide run-out distance and the tsunami genesis.

While there are altogether relatively narrow uncertainty ranges for the
initial and remoulded yield strengths, Kim et al. (2019) found that
different parameter combinations could provide a relatively similar de-
gree of match with paleotsunami run-up observations. The fact that
different landslide properties influence different phases of the coupled
landslide-tsunami process adds to the complexity. Hence, the multiplicity
of landslide parameters controlling different phases of the landslide
motion may lead to ambiguous interpretations of landslide parameter
uncertainties when we use them in a forecasting situation. This uncertain
must be interpreted as an epistemic uncertainty in prognostic modelling.
On the other hand, the present parameter ranges are againmore confined
than the cases without tsunami observations reviewed above. As for Lake
Askja, this demonstrates how tsunami information canbeused toprovide
more accurate information on the landslide dynamics of past events.

Framework for probabilistic tsunami hazard analysis: Lyngen case
study
Past, well-documented landslides and tsunamis provide relevant
examples for constraining tsunami-genic landslide parameters.
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However, in most forecasting situations, we cannot expect that
input landslide parameters and related probabilities can be
completely constrained by field data. Hence, we need to resort to
expert judgement in addition to empirical data, and the landslide
parameters governing the tsunami genesis can be expected to
exhibit a considerable uncertainty that is larger than those emerg-
ing from re-analysing past events as in the previous section. Be-
cause the tsunami hazard is strongly linked to the landslide
dynamics, it is important that these uncertainties are reflected in
a probabilistic study to weight them in a systematic way. Below, we
demonstrate how these landslide uncertainties can be incorporat-
ed in a tsunami hazard study, using the example case of Lyngen
fjord situated in Northern Norway to demonstrate the framework.

Setting
The study is conducted in the Lyngen fjord situated in Northern
Norway, which location is shown in Fig. 2. Four unstable rock
slope volumes, all located on the eastern side of the fjord, contain
a potential rock slide-induced tsunami threat to the coastal

communities along the Lyngen fjord. These rock slides are labelled
Jettan, Indre Nordnes, Revdalsfjell 2 and Revdalsfjell 1B. Volumes
and motion of these slopes are retrieved by combining satellite-
and ground-based InSAR (Eriksen et al. 2017) as well as other
physical measurements such as borehole monitoring.

In this study, we limit the analysis to tsunami hazards failure
along these four slopes. Hence, we do not consider the possibility
of tsunamis due to other landslides occurring on other slopes.
Moreover, the estimation of the landslide recurrence (in terms of
annual probability of occurrence) is beyond the scope of this
paper. However, we note that the annual probability of occurrence
is necessary for quantifying the tsunami hazard. Fortunately, esti-
mates of the probability of occurrence are available from a previ-
ous study conducted by NVE (Majala et al. 2016). All the different
landslide volumes with associated annual probabilities are re-
trieved from (Majala et al. 2016) are listed in Table 2. These
previously estimated return periods are based on expert judge-
ment by the authors of the report (Majala et al. 2016), using a
combination of slope movements measured on the actual unstable
slope, combined with information of historical landslide events in

Fig. 1 Results from an attempt to optimise landslide dynamics by hindcasting the well-documented Lake Askja landslide and tsunami (Gylfadóttir et al. 2017). The figure
shows histograms for all the lowest values of the optimization parameter (objAsk< 1.5×min (objAsk)). Upper panel: distribution as a function of the landslide velocity at
the moment of landslide impact with the water. Lower panel: distribution as a function of the landslide thickness

Table 1 Rough material parameter uncertainty ranges (Kim et al. 2019) for BingClaw parameters applied for the Storegga Slide and tsunami

τy, ∞ Γ τy, 0

Range 2–3.5 kPa 5 × 10−2 − 5 × 10−4 10–15 kPa

Sensitive output Run-out distance Run-out distance and Run-up height Run-up height
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the region proximal to the potential landslides (Hermanns et al.
2013). Consequently, areas with larger historical activity and larger
slope movements are considered more probable than slopes with
lower movement and less evidence for historical events. Table 2
also contains rough estimates of the uncertainty of the annual
probability of occurrence, which should cover 90 % of the uncer-
tainty range.

Probabilistic and computational framework

Computational framework
A computational framework capable of simulating thousands of
landslide tsunami scenario propagation and inundation models is
implemented as the basis for the probabilistic analysis. The finite

difference tsunami model GloBouss (Løvholt et al. 2008) is used to
simulate the open tsunami propagation in the fjord. GloBouss is a
Boussinesq-type model and incorporates first-order non-linear
terms and optimised frequency dispersion. The tsunami simula-
tions in the fjord are carried out on a local bathymetry with
an original grid resolution of 25 m. To find a sufficiently
accurate resolution for the tsunami propagation grids, we
have performed grid refinement convergence tests. At loca-
tions with typical depths similar to the depth at the fjord side
of the inundation grids (where the waves from the propaga-
tion model are fed into the inundation model), the height of
the leading wave for 100-m resolution differs with less than
0.1% compared with 50-m grid resolution. For the second
wave, we find a difference of 5–6%. In the present study,

Fig. 2 The Lyngen fjord, with the location of the four different unstable rock slopes considered in this study, namely Jettan, Indre Nordnes, Revdalsfjell 2 and Revdalsfjell 1B

Landslides



the leading wave is generally always the highest one and is
the main contributor to the maximum inundation heights.
The convergence tests therefore show that for tsunami prop-
agation a grid resolution of 100 m is sufficient, which is hence
applied in the simulations. The present simulations are car-
ried out in linear dispersive mode.

Tsunamis are generated by landslide block sources, the
methodology is described in, e.g. (Løvholt et al. 2015;
Harbitz et al. 2014b; Løvholt et al. 2005) and we only review
a few important details here. The landslide has a shape of a
rounded rectangular block, having a frontal area Aj, a width
Wj and a length Lj, p, where j and p indicate event realisation
numbers explained below. The landslide moves along a
straight line with a prescribed motion following a sine func-
tion in time. The landslide impacts the water with a velocity
Um, retarding its motion until it has reached a velocity Rn,
where m and n are event realisation numbers. The tsunami
generation is then taken into account as a time-dependent
volume flux source as the landslide advances as described in
(Løvholt et al. 2015).

For estimating possible ranges in landslide velocities and impact
velocities as well as frontal areas, we have applied the Voellmy
version (Kim 2014) of BingClaw (Kim et al. 2019). We refer to this
model as VoellmyClaw below. This information is then used as input
for setting up the blockmodel kinematics described in the paragraph
above. The reason for using a block source in the probabilistic mass
production of simulations instead of using the VoellmyClaw model
directly is that we have better control of the shape and kinematic
variability of the landslide and because the VoellmyClaw model
demands more computational resources and data handling than a
block source model. In VoellmyClaw, the main parameters are fric-
tion angle and friction from turbulence and viscous drag.

Inundation simulations are also carried out on a series of
different coastal locations. The inundation simulations are per-
formed on refined topographic grids having a resolution of 10 m
on the finest grid (nested grids). The convergence tests of grids
with 5- and 10-m resolution show less than 0.1 % difference of the
leading wave in the sea for depth larger than, e.g. 50 m. In the
inundated areas, the differences are less than 3 %. From this, we
conclude that the 10-m grid gives sufficient accuracy. The MOST
model (Titov and Synolakis 1997) is used for these inundation
simulations, using a nesting procedure to couple the tsunami
propagation model dynamically to the inundation simulation
(Løvholt et al. 2010).

Event-tree analysis
An event-tree analysis is set up to analyse tsunami probabilities.
The event tree used in the present study is displayed in Fig. 3. The
event-tree structure contains branches representing individual
conditional landslide event probabilities, which are independent.
The full set of branches contains all the landslide parameters
considered in the uncertainty analysis. Furthermore, a single
branch set contains a complete set of conditional probabilities
for a given landslide parameter, for instance, a given landslide
volume (indicated as Volr in Fig. 3) or a landslide impact velocity
(indicated as Um in Fig. 3).

In this study, the present event-tree structure is implemented
for estimating the uncertainty in tsunami probability at a given
coastal location. The explanation below follows the event tree
given Fig. 3 from left to right, hence starting from the top of the
tree structure. Except for the probability of the landslide volume,
which is given in terms of the annual probability, all conditional
probabilities are in the [0 − 1] range, and the sum of all the
conditional probabilities for a given parameter is 1. For this, we
ended up with the following probability branches:

& Exceedance probability for inundation height probabilities for
a given landslide number q. To retrieve the overall hazard at a
given coastal site, the probabilities due to tsunami from all
landslides Nq = 4 are combined.

& The rate λ = P(Volr| landslideq) of a landslide volume failing on
slope q. This probability is given in terms of the temporal
frequency information.

& The conditional probability of alternative tsunami generation
mechanisms PM = P(Mp| Volr). In this study, this parameter
concerns two different alternative models for the tsunami
generation. The first alternative is a finite block that slides into
the basin from the land. The second alternative is represented
by a block with “infinite” length, meaning that the submerged
slide length will always be larger than submarine landslide run-
out distance. These alternative models for the tsunami gener-
ation were introduced due to the imperfection of the numerical
model, which is linear in the tsunami generation area. The
finite block length captures the landslide volume correctly,
but because the rear part generates a large wave through when
the rear part of the landslide enters the water, it is not consid-
ered fully realistic. Vice versa, the infinite block represents a
more realistic generation mechanism, but the volume will be
too large.

Table 2 Unstable rock slopes with estimated volumes, annual frequencies and uncertainty range in annual frequency for the Lyngen fjord study. The upper and lower
ranges in annual frequencies are expected to cover 90% of the uncertainty range. All values are derived from (Majala et al. 2016), except the mean value, which is derived
assuming that the annual frequency follows a lognormal distribution

Rock slope Volume
(Mm3)

Median freq.
(year−1)

Lower freq.
(year−1)

Upper freq.
(year−1)

Estimated mean freq.
(year−1)

Jettan 6 1/800 1/200 1/2000 1/633

Indre Nordnes 6 1/2000 1/400 1/8000 1/1307

Revdalsfjell
1B

0.8 1/3000 1/1000 1/10000 1/2315

Revdalsfjell 2 5 1/2000 1/300 1/4000 1/1685
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& The conditional probability PA = P(Aj|Mp) for a landslide fron-
tal area Aj, given the tsunami generation mechanism Mp (finite
or infinite block length).

& The conditional probability PU = P(Um| Aj) for a landslide im-
pact speed Um, given the frontal area Aj.

& The conditional probability PR = P(Rn|Um) for the submerged
landslide run-out distance Rn, given the landslide speed Um.

The implementation of the event tree assumes that all parameter
probabilities are combined, and that all parameter combinations are
independent of each other. For instance, this means that all
realisations of a landslide velocity Um are combined with all frontal
areas Aj, all frontal areas Aj are combined with all landslide volumes
Volr and so on. This is clearly a simplification, as the landslide
parameters in most cases are dependent on each other. One excep-
tion from this assumption is however implemented, namely a
dependency between the landslide velocity Um and the run-out
distance Rn, where we allow only the highest velocity landslides to
reach the largest run-out distances and vice versa. In this case, the
full set of branches are not used, and the conditional probabilities are
re-normalised by increasing the probabilities of the remaining
branch in such a way that the sum of all active realisations is still
unity.

We assume that the probability of a single event follows a
Poissonian process. First, we define the probability of a single land-
slide source in the event tree given as the product of all conditional
probabilities over the event-tree branch multiplied with the rate λ:

Pq;r;p; j;m;n ¼ 1−e−λ�PM �PU �PA �PR ð1Þ

While the overall probability summed over all simulations is
given by

P x; yð ÞI ¼ 1− ∏
q;r;p; j;m;n

1− Pq;r;p; j;m;n � P x; yð Þq;r;p; j;m;n

h i� �
ð2Þ

where the exceedance probability of a coastal point being in-
undated is found from the inundation simulations by taking into

account that P(x, y)q, r, p, j, m, n is the binary probability of a point
being inundated, which is simply 1 if a point in a scenario simu-
lation is wet, and 0 if the point is dry.

Probabilistic example studies for Lyngen fjord

Discretizing landslide parameters and filling the probabilities
The landslide parameters used in the PTHA event-tree analysis
and the related probabilities are here defined by using available
knowledge, statistics and experience gained from previous simu-
lations of subaerial landslide tsunami studies. The probabilities
were assigned using expert judgement and hence set subjectively
through joint discussions among the authors of this paper, based
on available data and simulations. Yet, as elaborated below, the
chosen parameter values and associated probabilities lend them-
selves heavily on data where available.

Due to the number of branches in the event tree and because each
event requires a significant amount of computational resources, just
a few realisations of each landslide parameter is possible for this
study. For the submarine run-out distance Rn and the frontal areaAj,
we assign five different alternative parameters with five associated
probabilities, while for the impact velocity Um we have used three.
The parameter values and corresponding probability for these three
parameters are found in Table 3.

The probabilities for the submarine run-out is based on sta-
tistics on the available data on the ratio between the fall height
(H) and run-out length (L) as a function of the volume for large
rockslides in Norway, see (Romstad et al. 2009) and references
therein. The five parameter values for the submarine run-out
distances are found by taking the mean value, as well as the upper
and lower 95 and 67 percentiles from Fig. 4.

The three different landslide velocities used in the probabilistic
analysis are typically lower and upper limits of impact velocities
(U1 and U3) for rockslides in Norwegian fjords (Harbitz et al.
2014b), while the mean impact velocity (U2) is calculated from a
simple numerical scheme for block slide dynamics labelled the
energy line approach.

The process of determining the landslide frontal area and
run-out distance are carried out using the following steps:
First, the VoellmyClaw model parameters are tuned to reach

Fig. 3 General structure of the event tree including all branches for the Lyngen study
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the mean run-out value (R3 in Table 3) and the velocities
from the energy line approach (see above). A special case is
Revdalsfjell 1B, which in the case of mean runout do not
reach the fjord. In this case, we apply R1 as reference. Area
A2 is defined as the total affected area over the coastal cross-
section integrated overall simulation times, while A3 is defined
as the largest instantaneous area crossing the coastline at any
given time. The other values of the front area A1, A4 and A5

are defined as A1=1.5 ∗ A2, A4 = 0.6 ∗ A2 and A5 = 0.4 ∗ A2. The
ratio between the height and width of the slide is determined
by extracting similar ratios from the VoellmyClaw simulations.

For the probability PM related to cutting the landslide end
during impact, we use PM1 = 0.3 (a finite length block) and PM2 =
0.7 (an infinite length block). The reason for the emphasis on the
infinitely long block is that the calibration of the landslide dynam-
ics (velocity and runout) in the past tsunami analysis has assumed
this approach for fitting previous tsunami simulations towards
observations, e.g. (Harbitz et al. 2014b).

We stress again that the annual frequency of each of the differ-
ent rock slide events was provided from an external study. Hence,

establishing the source annual frequencies were not a part of this
study. However, the frequencies, as presented in Table 2, were
given as median values with associated uncertainty ranges. To
derive the mean landslide frequency, which was used as rates in
the event tree, we assumed lognormal distribution. Derived mean
values are given in Table 2.

Inundation height uncertainty due to single volume landslides
Here, we compute the hazard using all the four source regions
listed in Table 2, aggregated over all the landslide parameters and
probabilities listed in Table 3. Because we only investigate single
volume landslides, we refer to this work as semi-probabilistic (the
full probabilistic analysis is carried out in the next section). Fig-
ure 5 shows a tsunami hazard for one of the inundation sites
(Lyngseidet), for 1/1000 year−1 and 1/5000 year−1 exceedance prob-
abilities. In addition, we show the maximum inundated area ag-
gregated for all simulations. Due to the steep slopes in the Lyngen
fjord, the contour maps for the 1/1000 year−1 and 1/5000 year−1

exceedance probabilities coincide in many places. This is due to
the steep slope controlling the inundation distance, which does

Table 3 Parameters and corresponding probabilities (P) used in the calculations for all four rock slide locations for the Lyngen study. R is the submarine runout (five
values), A the frontal area (five values) and U the impact velocity (three values). Combined with the possibility of two alternative generation mechanisms, this gives 150
different combinations (5 × 5 × 3 × 2) for each location and each volume.

Submarine runout Frontal area Impact velocity
Param R (m) PR Param A (m2) PA Param U (m/s) PU

Jettan

R1 1946 0.07 A1 22500 0.05 U1 30 0.3

R2 1404 0.24 A2 15000 0.2 U2 55 0.55

R3 945 0.38 A3 12000 0.35 U3 80 0.15

R4 694 0.24 A4 9000 0.25

R5 500 0.07 A5 6000 0.15

Indre Nordnes

R1 1718 0.07 A1 27000 0.05 U1 30 0.3

R2 1189 0.24 A2 18000 0.2 U2 43 0.55

R3 740 0.38 A3 14400 0.35 U3 70 0.15

R4 494 0.24 A4 10800 0.25

R5 305 0.07 A5 7200 0.15

Revdalsfjell 1B

R1 575 0.07 A1 3000 0.05 U1 30 0.3

R2 125 0.24 A2 2000 0.2 U2 38 0.55

R3 0* 0.38 A3 1600 0.35 U3 60 0.15

R4 0* 0.24 A4 1200 0.25

R5 0* 0.07 A5 800 0.15

Revdalsfjell 2

R1 1357 0.07 A1 10500 0.05 U1 30 0.3

R2 899 0.24 A2 7000 0.2 U2 38 0.55

R3 506 0.38 A3 5600 0.35 U3 60 0.15

R4 86 0.24 A4 4200 0.25

R5 0* 0.07 A5 2800 0.15
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not exclude differences in inundation heights. On the other hand,
we see that the most extreme scenarios in the probabilistic analysis
by far exceed the inundation limits for these return periods.

In this investigation, a total of 31 probabilistic high-resolution
inundation maps were computed, often with the same character-
istic behaviour as revealed for Lyngseidet. However, only a few
sites like Lyngseidet were located in the immediate vicinity of the
identified landslide prone sites shown in Fig. 2. Hence, many
locations faced relatively smaller hazard. To this end, we aggregat-
ed the hazard for all the sites into joint hazard maps. These hazard
maps are shown in Figs. 6 and 7 for 1/1000 year−1 and 1/5000 year−1

exceedance probabilities, respectively. As shown for the 1/1000
year−1 exceedance probability, tsunami heights in the vicinity of
the landslide areas (along a stretch of 5–10 km north and south

from two northernmost landslides, say), we find maximum inun-
dation heights in the order of 4–8 m. Further afield, the inundation
heights rapidly drop off to 3 m and less. The 1/5000 year−1 exceed-
ance probability inundation heights are considerably larger, with
associated inundation heights up to 10 m.

The 1/5000 year−1 hazard map corresponds to the strictest of the
two hazard maps applied to Norwegian building legislation. Pre-
viously, the authors of this paper have carried out also determin-
istic tsunami hazard analysis (unpublished). When comparing the
new semi-probabilistic 1/5000 year−1 hazard results with the deter-
ministic ones, we typically find that the deterministic results pro-
vide at least 20–30% larger inundation heights than the semi-
probabilistic method (results not shown). Hence, by introducing
the probabilistic method to weight different alternative models,

Fig. 4 The regression analysis of the run-out statistics of rock slides in Norway as explained in the text. H is the fall height, L is the total horizontal run out. The vertical
lines A, B and C indicates the volumes 0.8, 5 and 6 Mm3

Fig. 5 Inundation height exceedance probabilities for the Lyngseidet site using the fixed volume approach. Three different levels are considered: 1/1000 year−1

exceedance probability (red line), 1/5000 year−1 exceedance probability (black line) and the maximum inundated area overall simulations (green line)
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there is a tendency in this case that less conservative assumptions
are made. Consequently, areas previously located in hazard zones
could be freed.

We notice that the hazard is considerably larger in sites close to
the Jettan landslide, which is considered having the highest prob-
ability to fail compared with the three other landslides, as revealed
by Table 2. Naturally, the hazard levels are sensitive to the mean
landslide recurrence rates because the landslide volumes are fairly
similar. We emphasise again that these mean landslide rates have
been determined expert judgement by a group of engineering
geologists carefully assessing each slope (Majala et al. 2016). In
the present semi-probabilistic approach, the uncertainty related to
the return period and the volume have not been quantified, as only
the mean value of the return period was used. In the more general
PTHA carried out in the next section, we explore briefly the
sensitivity to these assumptions.

Synthetic PTHA study containing multiple volumes
Contrary to the analysis in the previous section, we will in the
following adopt a PTHA study where multiple landslide volumes
contribute to the hazard. We consider only inundation to the
Lyngseidet site, already analysed using the semi-probabilistic ap-
proach (see Fig. 5). As the inundation at this site is heavily dom-
inated by tsunamis caused by Jettan and Indre Nordnes slope
failures, we further consider only these two source regions.

Moreover, we assume exactly the same landslide parameters and
related parameters as we did for the volumes considered in
the previous section. We realise that this assumption would likely
be violated in nature, as the landslide velocities, frontal areas and
run-out distances from smaller landslides are likely to be smaller
than for the large landslides. In any case, we adopt this assumption
because it simplifies our analysis, but also because the main
purpose here is to demonstrate the method.

In the following, we use the tapered Pareto distribution (see,
e.g. Geist and Parsons, 2014) to generate magnitude frequency
distributions (MFDs) relating the volumes to the probability of
occurrence for the Jettan and Indre Nordnes sites. The tapered
Pareto distribution used here is given by

P V ≤vð Þ ¼ P0
V

Vmax

� �β

⋅e
V−Vmax

Vc ð3Þ

where P0 is a normalisation factor, V the landslide volume,
Vmax the largest volume, Vc the value for the onset of the tapering
and β as steepness factor. P0 is adjusted to make the integrated
annual probability for all volumes in the analysis being equal to
1/50. The 1/50 factor was chosen subjectively but was necessary for
demonstrating the methodology. We remark that this value was
kept low to comply with the lack of historical records of large rock

Fig. 6 1/1000 year−1 exceedance probability for maximum inundation heights aggregated for all inundation sites using the fixed volume approach. The yellow markers
indicate the location of the four rock slides
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slides. A value of 1/50 seems plausible due to the lack of large
historical events in the areas and could even have been given a
lower value on this basis.

The parameters used in the present MFDs are listed in Table 4.
These parameters make use of three different MFDs for each of the
two landslide areas. In all cases, we adjust the parameter β to
obtain the desired rates for the most voluminous landslides. MFD1

gives similar rates for the largest volumes (V ≥ 6⋅106 Mm3) as the
single-volume analysis in the previous section. MFD2 gives a larger
probability to the landslides with V≥ 6⋅106 Mm3 and a lower
probability to the smaller volumes. The opposite is the case for
MFD3. To establish landslide scenarios, we discretise each MFD
into eight different volumes separated logarithmically. Then, we
simulate the landslide dynamics and tsunami generation as de-
scribed in the “Probabilistic and computational framework” sec-
tion using the landslide volumes identified for the MFDs, and all
the different scenario parameterisations given in Table 3. All MFDs
used are depicted in Fig. 8, with the scenario volumes given on the
x-axis and the rate on the y-axis.

Results using the PTHA approach are summarised in Fig. 9 for
two exceedance probabilities, namely 1/1000 and 1/5000 year−1.
The results are also compared with the tsunami inundation maps
using the semi-probabilistic analysis represented by a single vol-
ume landslide in each location from the “Inundation height un-
certainty due to single volume landslides” section. From the
results, we make the following observations, recalling that MFD1

puts similar weight on the largest volumes as in the semi-
probabilistic analysis, that MFD2 puts more weight on the largest
volumes and MFD3 puts more weight on the smaller volumes: For
the 1/1000 year−1 exceedance probability map, we see clearly that
results using MFD2 cover a larger area than the other analyses.
Furthermore, it is observed that MFD1 cover a slightly larger area
than the semi-probabilistic analysis, while the MFD3-based analy-
sis gives almost the same inundated area as the semi-probabilistic
analysis, albeit with slightly smaller inundation distance. When we
move to comparing the 1/5000 year−1 exceedance probability map,
we find less pronounced differences between the four different
analyses, with the exception that the MFD2 analysis provides a
larger inundated area than the three other analysis sets (which are
almost identical).

It is clear that the results are most sensitive to the choice of
MFD for the 1/1000 year−1 exceedance probability compared with
the 1/5000 year−1 one. Comparing the results using different MFDs
with the semi-probabilistic analysis did not produce dramatically
different results in the present case. However, part of the explana-
tion for the small differences also lies in the strong topography
control on the probability contours in steep topography. In a
setting with a flatter topography, the differences could possibly
be more pronounced. Moreover, the uncertainty range we explore
in the different synthetic MFDs is not very large given the large
lack of knowledge on the failure probabilities. As the uncertainty is
directly linked to MFD, exploring larger uncertainties would

Fig. 7 1/5000 year−1 exceedance probability for maximum inundation heights aggregated for all inundation sites using the fixed volume approach
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naturally also be reflected in the hazard maps. While it is beyond
the scope of this paper to analyse the probability of source recur-
rence, it is obvious that this parameter has a first-order effect on
the hazard.

In the present framework, we carried out probabilistic tsunami
hazard analysis using single MFD curves as input. A more general
approach would be to treat such models as alternative realisations,
represent the hazard with related uncertainty limits. Such an

Table 4 Values used for creating synthetic MFDs. The total annual rates for volumes exceeding 6 Mm3 are also listed

MFD number Rate: Σ P(V ≥ 6 Mm3) V0 (Mm
3) Vmax (Mm

3) Vc (Mm
3) β

Jettan

MFD1 1/655 year−1 0.05 20 6 0.4

MFD2 1/420 year−1 0.05 20 6 0.3

MFD3 1/1020 year−1 0.05 20 6 0.5

Indre Nordnes

MFD1 1/1355 year−1 0.05 20 6 0.56

MFD2 1/860 year−1 0.05 20 6 0.46

MFD3 1/2080 year−1 0.05 20 6 0.66

Fig. 8 Synthetic magnitude frequency distribution curves for landslide volumes for the Jettan landslide (upper panel) and the Indre Nordnes landslide (lower panel). The
different MFDs are used in PTHA to illuminate the sensitivity to modelled annual source rates. The markers in the figures show the rates used for the individual scenario
realisations
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approach is already implemented for earthquake tsunamis (Selva
et al. 2016), and it would in principle be possible also to apply it to
landslide PTHA in the future.

Concluding remarks
In this paper, we have reviewed how landslide and tsunami data
can be used to better constrain landslide dynamics uncertainty,
and in turn, landslide tsunami probability. Past landslides can be
used to train models to provide bounded envelopes for landslide
parameters. In cases where only landslide run-out data are avail-
able, these uncertain parameter bounds are usually rather broad
and sometimes not even properly constrained. It is further shown
that tsunami data can dramatically reduce the interpreted uncer-
tainty bounds for the landslide parameters. The reason for this is
that the tsunami is an indirect footprint of the landslide motion.

For prognostic analysis of landslide tsunamis, we need to resort to
both data as well as to subjective choices for quantifying the landslide
tsunami hazard. In this paper, a framework for aggregating probabilities
from different uncertain parameters is combined using a simple event-
tree analysis. In this analysis, probabilities stemming from both empir-
ical data and judgement are combined in the same framework. A more
rigorous framework, separating treatment of aleatory (inherent) uncer-
tainty and epistemic (lack of knowledge) uncertainty is not attempted
here. However, we admit that more rigorous uncertainty treatment
should be attempted for PTHA from landslide sources in the future.

An example of a LPTHA application for the Lyngen fjord
area in Northern Norway is presented and discussed. The
results from this LPTHA is largely controlled by the annual
rates of occurrence from the subaerial landslides that are
input to the analysis. However, there is also large variability
between the different landslide parameter realisations, which
gives rise to significant differences in the hazard. To this end,
the worst-case scenario within the set of events comprising
the PTHA study provided a much larger inundation area
compared with the 1/1000 year−1 and 5000 year−1 year exceed-
ance probability subject to Norwegian legislation. In general,
it was found that by using a probabilistic analysis rather than
a deterministic one, our LPTHA analysis tended to be less

conservative. Hence, new inundation limits were less strict
than previously enforced by the legislation. Another finding
from the probabilistic analysis was that the largest landslide
volume, at the corner frequency of the magnitude frequency
distribution, say, largely determined the tsunami hazard at the
return periods of interest. This deserves to be better investi-
gated though.

In summary, the probabilistic landslide tsunami hazard analysis
is still in its infancy. However, advancements are being made in
better understanding landslide tsunami uncertainty. The probabi-
listic framework is in place to embed such uncertainties into
LPTHA, but we still need to use judgement for estimating proba-
bilities. By better making use of past landslide and tsunami data,
as well as high-performance computing resources, we expect
LPTHA to provide more mature input to future hazard assess-
ments. On the other hand, landslide tsunamis are infrequent
events, and the hazard should always be expected to carry large
uncertainties.
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