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Abstract: Landslides represent major threats to life and property in many areas of the world, such as the landslides in the Three 
Gorges Dam area in mainland China. To better prepare for landslides in this area, we explored how several machine learning 
algorithms (long short term memory (LSTM), random forest (RF), and gated recurrent unit (GRU)) might predict ground dis-
placements under three types of landslides, each with distinct step-wise displacement characteristics. Landslide displacements are 
described with trend and periodic analyses and the predictions with each algorithm, validated with observations from the Three 
Gorges Dam reservoir over a one-year period. Results demonstrated that deep machine learning algorithms can be valuable tools 
for predicting landslide displacements, with the LSTM and GRU algorithms providing the most encouraging results. We rec-
ommend using these algorithms to predict landslide displacement of step-wise type landslides in the Three Gorges Dam area. 
Predictive models with similar reliability should gradually become a component when implementing early warning systems to 
reduce landslide risk. 
 
Key words: Landslide; Displacement; Machine learning; Three Gorges Dam reservoir 
https://doi.org/10.1631/jzus.A2000005                                            CLC number:  P642 
 
 

1  Introduction 
 
Landslides are one of the most damaging disas-

ters in many areas of the world, resulting in signifi-
cant losses of life, property, and environmental re-
sources. The China Institute of Geo-environment 
Monitoring reported that 9710 geology-related haz-
ards occurred in China in 2016, 7403 of which were 
landslides (CIGM, 2017). The 2017 Maoxian land-
slide damaged 62 houses and buried over 100 people 
(Intrieri et al., 2018).  

The Three Gorges Dam reservoir (China) is a 
landslide-prone area. The construction of the Three 
Gorges Dam significantly increased hazard risks to 

people, property, and the environment from landslides 
in and around the dam and reservoir (Bai et al., 2010). 
These risks could be reduced by a reliable early 
warning system if systems could reliably predict 
landslide displacements with reasonable accuracy and 
if the system could set reliable displacement thresh-
olds for early warning. Zhou et al. (2016) reported 
that in the area of the 1985 Xintan landslide (26 km 
upstream from the Three Gorges Dam), the economic 
losses and the number of fatalities were significantly 
reduced by an warning system that provided a  
reasonably reliable prediction of the landslide  
displacements. 

Forecasting of landslide deformation can be 
done through either physical or data-based models 
(Ran et al., 2012; Huang et al., 2016). The displace-
ment process of landslides is complex, making it 
challenging to build physical models that are suffi-
ciently representative. On the other hand, three cate-
gories of data-based forecasting models (determinis-
tic, statistical, and computational intelligence models 
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(Ma et al., 2017)), which involve physical mecha-
nisms and general creep theory, can provide explana-
tions for landslide processes. These forecasting 
models, however, apply only to specific cases, rarely 
consider 3D effects, involve uncertainties that are 
difficult to quantify, and incorporate external activi-
ties (rainfall, reservoir rise or drawdown) that are 
difficult to model. Statistical models also have limi-
tations as they are only valid for landslides with 
comparable deformation characteristics. These sorts 
of models usually result in widely scattered predic-
tions of landslide deformations such as the runout 
distance of clays (McDougall, 2017). 

These shortcomings have been addressed in re-
cent years through advances in artificial intelligence, 
especially machine learning algorithms, that have 
greatly improved modelling and forecasting of land-
slide deformation (Liu et al., 2014; Ma et al., 2018; 
Yang et al., 2018). This paper compares three ma-
chine learning algorithms (long short term memory 
(LSTM), random forest (RF), and gated recurrent unit 
(GRU)) to predict landslide hazards from measured 
behavior and measured external actions. The model-
ling, if successful, could help reduce the future risk 
associated with landslide hazards. This paper aims at 
demonstrating the maturity of machine learning al-
gorithms and their ability to predict landslide dis-
placement. Three landslides are used to construct and 
validate the machine learning models. The paper 
briefly describes the landslides and the machine 
learning algorithms used and then compares the re-
sults of the analyses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2  Three step-wise landslides in Three 
Gorges Dam reservoir 

2.1  Three Gorges Dam reservoir area 

In the Three Gorges Dam reservoir area, move-
ments in active landslides have intensified and past 
landslides have been reactivated by intense rainfall 
and/or the raising and lowering of the dam water res-
ervoir. Corominas and Moya (2005), among others, 
showed that meteorological data indicate that in-
creased movements are often closely related to sea-
sonal rainfall. In the proximity of dams, fluctuations in 
the reservoir water level can also significantly influ-
ence the behavior of the slopes within the reservoir 
(Yang et al., 2017). When the Three Gorges Dam 
reservoir was impounded in 2003, the 14 million m3 
Qianjiangping landslide was reactivated when the 
reservoir water level reached 135 m, leading to many 
casualties and extensive damage. When the reservoir 
water level was raised to 172 m in 2008, 60 landslides 
were triggered or reactivated, again causing wide-
spread damage (Du et al., 2013).  

Fig. 1 shows the Yangtze River and its tributar-
ies, the location of the Three Gorges Dam, and the 
locations of the three landslides that are the focus of 
this research. In the Three Gorges Dam reservoir area, 
many of the landslides show a step-wise displacement 
curve. In this work, the step-wise Baishuihe, Baijia-
bao, and Bazimen landslides (Fig. 1), will be used to 
develop the machine learning models and to predict 
future displacements. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Yangtze River, Three Gorges Dam reservoir area, and three landslides studied. Reprinted from (Yang et al., 
2019b), copyrights 2019, with permission from Springer Science+Business Media 



Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2020 21(6):412-429 
 

414

2.2  Baishuihe landslide 
 
The Baishuihe landslide is located about 56 km 

from the Three Gorges Dam. The 2003 landslide 
measured 700 m from east to west, 780 m from north 
to south, and extended over 4.2×105 m2. The moving 
masses had an average thickness of 30 m and an es-
timated volume of 1.26×107 m3. Baishuihe landslide 
has been reactivated frequently including periods of 
severe deformation and over time has caused exten-
sive damage including the destruction of 21 residen-
tial houses in 2004, and the evolution of transversal 
cracks on the landslide surface (August 2005 to Au-
gust 2006), along with sizeable road debris pileup 
(Yang et al., 2019b). 

From 2003 to 2013, the Baishuihe landslide 
movements developed features of a retrogressive 
landslide with deformations at the bottom of the slope 
that gradually progressed upwards (Du et al., 2013; 
Miao et al., 2018). Due to the large displacements and 
associated potential risks from these movements, 11 
global positioning system (GPS) stations were in-
stalled. Fig. 2 shows related data from 2003–2013, 
including the GPS recorded displacements, reservoir 
water levels, and rainfall at Location ZG118 as this 
area had the largest quantity of data and largest ob-
served displacements. Data indicate three periods of 
fluctuation in the water levels in the Three Gorges 
reservoir: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) August 2003 to August 2006: water level ran 
between 135 m and 139 m. During that time, only a 
small portion of the slope was under water. The effect 
of the change in reservoir water level was small. The 
accumulated displacement at Location ZG118 was 
step-wise from May to September, in tandem with the 
start of the reservoir level change and annual intense 
rainfall season. 

(2) September 2006 to September 2008: the 
reservoir water level varied between 145 m and 
155 m, causing a large volume of the slope to be 
submerged. When the reservoir level rose, the dis-
placement increased slowly. When the reservoir wa-
ter level fell from 155 m to 145 m concurrent with a 
rainfall of 685 mm (July 2007), the largest defor-
mation to date occurred with a displacement of 
334 mm in one month. 

(3) October 2008 to December 2013: the water 
level in the reservoir varied between 145 m and 
175 m. When the reservoir water level fell for the first 
time from 175 m to 145 m, this time under a rainfall of 
626.4 mm, the maximum monthly displacement was 
only 98.9 mm, which was much less than the maxi-
mum monthly displacement of 334 mm in the second 
period. The annual displacement maintained a 
step-wise behavior during each flood season, alt-
hough the magnitude of each step decreased with 
time. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Recorded rainfall, reservoir water level, and displacement in Baishuihe landslide. Reprinted from (Yang et al., 
2019b), copyrights 2019, with permission from Springer Science+Business Media 
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2.3  Bazimen landslide 
 
The Bazimen landslide close to the town of 

Zigui, was fan-shaped and extended over a 
1.35×105 m2 area. The landslide had a maximum 
length of 380 m, width of 100 to 350 m, and a moving 
mass volume estimated as 2×106 m3 (Yang et al., 
2019a). There were two main sliding surfaces, one at 
about 10 m depth, the other at about 30 m depth. After 
dam impoundment, the Bazimen landslide started to 
move again and two sizable cracks appeared on each 
side of the road within the area in August 2003. As the 
rainfall season unfolded in 2004 (May to August), 
several cracks were observed within the landslide 
area as the reservoir water level dropped from 139 m 
to 135 m. GPS monitoring points were installed on 
the Bazimen landslide at elevations of 165 m, 191 m, 
and 215 m (Du et al., 2013). The observed displace-
ments in the upper region (Location ZG111) were 
larger than those in other parts within the landslide. 

The Bazimen landslide behaved as a “progres-
sive” landslide, where the movements started from 
the upper part and gradually developed downwards 
(Du et al., 2013; Zhou et al., 2016). We selected Lo-
cation ZG111 for machine learning model of dis-
placements because this area had the longest series of 
available data and the largest deformations. Fig. 3 
shows the measured displacement, reservoir water 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

levels, and rainfall at Location ZG111 from 2003 to 
2012. Significantly larger displacements were ob-
served at the Baishuihe landslide during and after the 
first large drawdown in 2009. The step-wise dis-
placements, however, did not decrease with time in 
the subsequent years and intense rainfall (2008 and 
2010) did not result in the largest displacements. 

2.4  Baijiabao landslide   

The Baijiabao landslide, also close to the town of 
Zigui, is located next to the Bazimen landslide. The 
front part of the area was submerged in the dam res-
ervoir. The toe of the landslide was at an elevation of 
135 m, and the upper edge was at an elevation of 
265 m. The landslide was 550 m long from east to 
west and 400 m wide from north to south. Landslide 
debris had an average thickness of 45 m and extended 
over a volume of about 9.9×106 m3 (Cao et al., 2016). 
With the 2003 impoundment of the dam reservoir, 
many cracks appeared on the landslide. In late July 
2003, after a long and intense rainfall, different levels 
of deformation developed on the ground surface, in 
houses on the upper edge of the landslide, and in the 
road in the middle of the landslide. 

In late 2006, four GPS stations were installed on 
the Baijiabao landslide to monitor potential risks 
developing there. Based on analyses of the move-
ments of the Baijiabao landslide, Cao et al. (2016) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Recorded rainfall, reservoir water level, and displacement in Bazimen landslide. Reprinted from (Yang et al., 
2019b), copyrights 2019, with permission from Springer Science+Business Media 
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suggested that the Baijiabao landslide deformed as an 
entity (Yang et al., 2019a). The monitored displace-
ment at Location ZG324 at the center of the landslide 
was used to establish the machine learning models. 
Fig. 4 shows the accumulated displacements at Lo-
cation ZG324 versus time as well as the measured 
rainfall and reservoir water level. Each year, dis-
placements increased from May to September, during 
periods of reservoir water drawdown and seasons of 
heavier precipitation. The reservoir level was raised 
each October and held constant (about 175 m) until 
the following April. During these periods, precipita-
tion was gentle and the landslide displacement was 
minimal. The combined action of seasonal rainfall 
and reservoir drawdown caused step-wise increases in 
displacement. 
 
  
3  Approach to model displacements in Three 
Gorges Dam reservoir 

3.1  Time series decomposition 

The displacement (D) was decomposed into 
three components: a trend, a periodic, and a stochastic 
component, i.e. 

 
D=+P+S.                                    (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The long-term displacement, controlled by “in-
ternal” geological conditions such as lithology, geo-
logical structure, and progressive weathering, was the 

trend component (). The short-term displacement 
was influenced by two “external” factors of rainfall 
and dam reservoir water levels, represented as the 
periodic component (P). The stochastic term (S) is the 
displacement response caused by a sudden change 
such as a raise or drop of the reservoir level. Du et al. 
(2013) pointed out that in the Three Gorges Dam 
reservoir, the reservoir level changes regularly on an 
annual cycle. The total displacement measured by the 
monitoring system, therefore, can also be divided into 
trend and periodic terms and each can be predicted 
separately by different methodologies. 

3.2  Trend component 

The trend term in the displacement vs time curve 
was extracted by the moving average method, and the 
trend term at time t, (t), was calculated as follows: 

 

1 1( ) ,

= , +1, , ,

t t t kD D D
t

k
t k k n

        


 
             (2) 

 
where Dt is the total displacement at time t, n is the 
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Fig. 4  Recorded rainfall, reservoir water level, and displacement in Baijiabao landslide  
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number of measured accumulated displacement 
points, and k is the moving average cycle. 

The trend displacement was predicted with a 
cubic polynomial function (Yang et al., 2019b) of the 
form in Eq. (3): 

  
　(t)=at3+bt2+ct+d,                            (3) 

 
where a, b, c, and d are coefficients (where a cannot 
be zero). The trend displacement polynomial function 
was fitted by the MATLAB R2015b software. 

3.3  Periodic component 

The periodic term in the displacement vs time 
curve was predicted by multivariate machine learning 
algorithms to model the relationship among landslide 
displacement and rainfall and dam reservoir water 
level. To verify the performance of the models, the 
latter part of the observed displacements was not 
included in the model development and was used to 
compare with the predictions made by the machine 
learning models. 

For the machine learning models, key influence 
factors were selected as the input sequences and 
designated periodic displacement as output sequences 
(Section 4). Rainfall and reservoir water level were 
input sequences because they are external influence 
factors on the displacement. Selby (1988) suggested 
that the state of evolution of a landslide was also an 
important factor affecting the way the movement 
responded to the external factors. Following Cao et al. 
(2016) and Zhou et al. (2018a, 2018b), rainfall, dam 
reservoir water level, and the state of the landslide 
were selected as the key factors influencing the pe-
riodic displacement in the machine learning models. 

 
 

4  Machine learning algorithms implemented 
 
Qin et al. (2002) have shown that the movement 

of an active landslide is a nonlinear dynamic process. 
The deformation conditions and triggers at a given 
time affect the deformation in the following time 
interval (Xu and Niu, 2018). Most of the existing 
prediction models are static and ignore the dynamic 
characteristics of landslides. Recurrent neural net-
works (RNNs) (e.g. LSTM and GRU) are dynamic 

models that can remember information from earlier 
time interval(s) and apply the knowledge learned 
from the earlier step(s) to the next step (Han et al., 
2004; Chen and Chou, 2012).  

Table 1 lists the statistical and machine learning 
models used to analyze the landslides in the Three 
Gorges Dam reservoir. The purpose of the study is to 
compare the reliability of these algorithms, to deter-
mine if one or more are robust enough to accurately 
predict landslide displacements, and to decide if any 
might be useful to inform decision-making in early 
warning systems in the Three Gorges Dam area. The 
modelling was done separately for each of these 
landslides and data were not combined because each 
landslide had different monitoring locations and was 
influenced by different factors.  

 
 
 
 
 
 
 
 
 
 
 

 

In this paper, three different prediction models 
was developed for each of the three landslides. This 
section only briefly describes the machine learning 
algorithms used, as more details are available in (Cho 
et al., 2014; Yang et al., 2019b; Liu et al., 2020).  

4.1  Long short term memory neural network 
model 

LSTM neural network belongs to the dynamic 
RNNs category. These networks can model temporal 
sequences and time dependencies more reliably than 
conventional RNNs, which in general cannot handle 
long sequences (Vincent et al., 2010; Li et al., 2020). 
The LSTM neural network includes an input layer, 
one or several hidden layer(s), and an output layer. 
Fig. 5 illustrates the structure of an LSTM neural 
network at a given time-step. The basic unit of the 
hidden layer is a memory block and the units in the 
hidden layer are related to other units from one step to 

Table 1  Machine learning algorithms for analysis of 
Three Gorges Dam reservoir landslides 

Landslide
Statistical and machine learning models  

Trend Periodic displacement 
Baishuihe 3rd degree  

polynomial 
LSTM 
RF 
GRU 

Bazimen 3rd degree  
polynomial 

LSTM 
RF 
GRU 

Baijiabao 3rd degree  
polynomial 

LSTM 
RF 
GRU 
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another. The memory block consists of an input gate, 
a forget gate, an output gate, and a memory cell. The 
three gates are responsible for regulating the flow of 
information in and out of the memory cell. The input 
gate controls the flow of input activations into the 
memory cell. The forget gate controls whether the 
information from the previous step is remembered or 
forgotten. The output gate is responsible for transfer-
ring useful information to the next memory block. 
Yang et al. (2019b) described the LSTM neural net-
work algorithm used in more detail. The LSTM 
model for landslide displacement modelling is inter-
esting because it reflects the dynamic evolution of 
deformations by relating observations from one 
time-step to the next. 

  
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Random forest algorithm 

The RF algorithm is an “ensemble” machine 
learning method for classification and regression and 
consists of the definition of multiple decision trees 
first developed by Breiman (2001). The RF algorithm 
generates uncorrelated decision trees that operate 
together. The RF algorithm creates an ensemble of 
random decision trees and forms a forest to produce 
more accurate ensemble prediction. Each tree is 
grown based on a re-sampling (bootstrap aggregating) 
technique. The classification and regression proce-
dure are established through a random group of var-
iables selected at each tree node (Breiman, 2001). To 
ensure reliable predictions, at least two conditions 
should be verified: the selected variables should have 
some predictive power ability; the different decision 
tree models need to be uncorrelated (Liu et al., 2020). 
Detailed statistical explanation on RF algorithm is 
given in (Breiman, 2001). 

4.3  Gated recurrent unit algorithm 

The GRU algorithm belongs to the RNN cate-
gory. Traditional RNN trains the neural network 
model by using gradient-based methods. Gradient- 
based methods learn neural network’s parameters by 
learning how small changes in the network’s param-
eters will affect network output. The network cannot 
effectively learn the network’s parameter when a 
change in the network’s parameter causes very small 
change in the network’s output. When training certain 
artificial neural networks using gradient-based 
methods, the vanishing gradient problem can occur 
and become gradually worse with increases in the 
number of layers in the architecture. In the vanishing 
gradient problem, the gradients of the network’s 
output relative to the network’s parameter in the early 
layers become extremely small: even a large change 
in the network’s parameter of the early layers does not 
have a big effect on the network’s output. Therefore, 
it is difficult to learn and tune the network’s parame-
ter of earlier layers when the vanishing gradient 
problem appears. To solve the vanishing gradient 
problem of a standard RNN, GRU uses the so-called 
update gate and reset gate (Cho et al., 2014). The 
GRU algorithm has a simpler memory block structure 
than the LSTM, with a reset gate and an update gate 
only. Fig. 6 illustrates the structure of the GRU net-
work. The reset gate decides how much information 
from the previous step is remembered and resets the 
information in the current time-step. The update gate 
helps the model determine how much information 
from previous steps and the current information needs 
to be transferred to the cell and ultimately sent to the 
output layer. 

 
 

5  Analysis input and key factors for periodic 
displacement modelling 

5.1  Input for periodic displacement model 

Slopes at different stability states can respond 
differently under the impulse of identical external 
trigger factors. For a stable slope, even strong triggers 
may not cause excessive displacements. On the other 
hand, for a marginally stable or unstable slope, the 
slightest increase in an external “load” may cause 

Fig. 5  Structure of an LSTM neural network at a given 
time-step 
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disequilibrium and large displacements (Crozier and 
Glade, 2005). As mentioned, rainfall (or precipita-
tion) and dam reservoir water level were used as input 
sequences because they are believed to act as triggers 
for slope displacements. In the case of the three 
landslides modelled here, the displacement was 
measured by GPS once a month. In the machine 
learning models, the time interval between two dif-
ferent time frames changed with landslide defor-
mation characteristics and actual demand. From April 
to September, the landslides deformed in distinct 
steps. The interval between two time frames was 
short, e.g. one month. In modelling, the interval can 
be shorter if more data are available during the same 
monitoring period. From October to April, the sliding 
became more uniform again. The interval between 
two time frames can be longer during this period. The 
displacements recorded over periods of one, two, and 
three months were selected as the most significant 
parameters to represent the current state of the slope 
(Cao et al., 2016; Zhou et al., 2016, 2018a). Table 2 
lists the key input parameters selected for the analysis 
of the periodic displacements of the three landslides. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.2  Importance of key factors influencing periodic 
displacement 

 
Several techniques can be used to quantify the 

predictive capacity of influence factors including the 
information gain ratio (Tien Bui et al., 2016), the least 
support vector machine (Pham et al., 2018), and the 
Gini information gain (Quinlan, 1993). The Gini 
information gain method, using the RF approach (Liu 
et al., 2020; Zhang et al., 2020), was adopted in this 
study to assess the relative importance of each key 
factor. Information gain is used to determine which 
feature gives the maximum information for predicted 
results. It is based on the degree of uncertainty, im-
purity or disorder in the dataset. The Gini index is the 
probability of a randomly chosen feature being mis-
classified with a range between 0 and 1, where 0 
denotes that all features belong to one class and 1 
denotes that the features are randomly distributed 
across the class. The Gini index is calculated by 

 

2

1

Gini 1 ,
j

i
i

p


                           (4) 

 

where pi is the probability of a feature being classified 
into the class, and j is the number of features in the 
class.  

Table 2 presents the importance of the selected 
key factors (precipitation, dam reservoir level, and 
landslide evolution state) on the prediction of periodic 
displacement. An evaluation and comparison of the 
predictive capability of the key influencing factors 
using the Gini information gain method indicate that 
the significance of the precipitation, dam reservoir 
level, and landslide evolution state varies from one 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Inputs for periodic displacement modelling and their importance 

Input 
Importance of influencing factor 

Baishuihe 
 landslide 

Bazimen  
landslide 

Baijiabao  
landslide 

Precipitation Input 1, the 1-month cumulative antecedent rainfall 0.03 0.12 0.04 
Input 2, the 2-month cumulative antecedent rainfall 0.03 0.07 0.04 

Dam reservoir 
level 

Input 3, reservoir level change in 1-month period 0.04 0.21 0.23 
Input 4, reservoir level change in 2-month period 0.07 – – 
Input 5, the average elevation of the dam reservoir 

level in the current month 
0.04 – 0.04 

Landslide evolu-
tion state 

Input 6, the displacement over the past 1 month 0.05 0.06 0.02 
Input 7, the displacement over the past 2 months 0.07 0.07 0.03 
Input 8, the displacement over the past 3 months 0.66 0.47 0.60 

Fig. 6  Structure of a GRU neural network at a given 
time-step 
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landslide to the other for different selected inputs. The 
results of the Gini information gain analysis show that 
the displacement (called landslide evolution state in 
Table 2) over the past three months has the highest 
significance for the three landslides. The respective 
influence factors can be explained as follows: 

1. Machine learning algorithms were used to 
predict the periodic displacement in the forthcoming 
month from the displacement over earlier periods of 
either one, two, or three months. The predicted dis-
placements were more dependent on the earlier dis-
placements than those on the seasonal rainfall. 

2. Precipitation showed a lower significance 
index than the dam reservoir water level for the three 
landslides. Most of the landslide bodies were sub-
merged in the reservoir water. The portion of the 
landslide affected by rainfall was therefore limited. 

5.3  Prediction process with the machine learning 
and polynomial models 

Fig. 7 describes the prediction process with 
machine learning and polynomial models, including 
model training and testing. The trend and dynamic 
components of the accumulated landslide displace-
ment were predicted separately. The trend displace-
ment was constructed by fitting a curve to the trend 
displacement. The periodic displacement was pre-
dicted by the machine learning models. The total 
accumulated displacement was obtained by adding 
the predicted trend and periodic displacements. The 
predicted total displacement was then compared with 
the monitoring data. Once the model was established 
(using 70% of the monitoring data), the model was  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

then tested, following the same process with the re-
maining 30% of the data. 
 
 
6  Results  

6.1  Displacement decomposition 

Locations with detailed displacement measure-
ments were selected for detailed analysis to develop 
the machine learning model and to test the landslide 
displacement prediction model. Locations included 
Location ZG118 for the Baishuihe landslide, Loca-
tion ZG111 for the Bazimen landslide, and Location 
ZG324 for the Baijiabao landslide. 

1. At Location ZG118 on the Baishuihe land-
slide, the first 113 readings of monitoring data, from 
August 2003 to December 2012, were used to train 
(i.e. learn) the machine learning models. The re-
maining 12 readings, collected from January to De-
cember 2013, were used to verify the prediction re-
liability of the model. 

2. At Location ZG111 on the Bazimen landslide, 
the monitoring data from August 2003 to December 
2011 were used to train the model and the remaining 
data from January 2012 to December 2012 were used 
to validate the model. 

3. At Location ZG324 on the Baijiabao land-
slide, the monitoring data from January 2007 to De-
cember 2012 were used as training dataset while the 
data from January 2013 to December 2013 were used 
to test the model. 

For the three landslides, the decomposition of 
the displacement was calculated using the moving 
average method using 12 months as the cycle inter-
val. The measured periodic term, after removal of the 
trend term from the total displacement, was modelled 
with each of the three machine learning algorithms. 
Fig. 8 shows the trend term displacement and peri-
odic term displacement as measured at Locations 
ZG118, ZG111, and ZG324 for each of the three 
landslides. 

6.2  Prediction of trend displacement 

The trend displacement component was mod-
elled with a cubic polynomial function (Eq. (2)). For 
Locations ZG118 and ZG324, the trend displacement 
was divided into three segments. The trend curve at 
Location ZG111 was divided into two segments. Fig. 7  Flowchart of the prediction model 



Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2020 21(6):412-429 
 

421

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 shows the cubic polynomial function for the 
training dataset for each landslide. The predicted 
trend displacement was calculated by the cubic pol-
ynomial function of the last training period. The  
predicted trend displacement calculated by the cubic 
polynomial function agrees well with the measured 
data, as illustrated in Fig. 9 and confirmed by the high 
regression coefficients R2 in Table 3. 

6.3  Prediction of periodic displacement 

The dataset was divided into a training and a 
validation set. Xu and Niu (2018) suggested dividing 
the data population into two parts with 70% for 
training and 30% for validation. Using this approach, 
they developed a well-trained LSTM model. This 
division of 70/30 was selected for the present study. 
In each location, where a prediction was undertaken, 
the periodic term displacements and controlling fac-
tors were normalized to [−1, 1]. 

The grid search method was used to search for 
the optimal parameters of the three machine learning 
models. With the LSTM algorithm, the models for the 
Baishuihe, Bazimen, and Baijiabao landslides had 
three hidden layers. With the GRU algorithm, the 
models at Baishuihe and Bazimen landslides had 
three hidden layers while Baijiabao landslide model 
had only two hidden layers. The optimal length of the 
input sequence for the LSTM and GRU was also 
determined by the grid search method and was finally 
set to 12. RF is an ensemble algorithm based on de-
cision trees. The numbers of decision trees for the 
Baishuihe, Bazimen, and Baijiabao RF models were 
75, 100, and 10, respectively. The displacement pre-
diction results of the analyses with the three machine 
learning algorithms were: (1) the displacements cal-
culated for the training dataset and for the validation 
dataset over the entire observation period for the 
LSTM, RF, and GRU models are compared with the 
measured displacements; (2) the detailed predicted 
displacements for the three landslides are calculated 
by three algorithms over the validation dataset; (3) the 
accuracy of the three machine learning models is 
compared.  

Fig. 10 compares the measured and predicted 
periodic displacements during the training process at 
Locations ZG118, ZG111, and ZG324 using the 
LSTM, GRU, and RF models. During the training, the 

Fig. 8  Displacement decomposition into trend and peri-
odic components at Locations ZG118, ZG111, and ZG324
(a) Baishuihe landslide (ZG118); (b) Bazimen landslide 
(ZG111); (c) Baijiabao landslide (ZG324) 



Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2020 21(6):412-429 
 

422

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Coefficients of trend displacement polynomial function ((t)=at3+bt2+ct+d) 

Landslide Time period a b c d Regression coefficient (R2)
Baishuihe 
ZG118 

July 2004–May 2007 0.0010 −0.0065 14.055 114.74 0.999 

June 2007–Aug. 2009 0.0441 −3.9100 98.947 529.50 0.996 

Sept. 2009–Dec. 2012 0.0009 −0.1303 16.382 1766.30 1.000 

Bazimen 
ZG111 

July 2004–May 2005 −0.0378 0.4454 17.569 93.32 1.000 

June 2005–Dec. 2011 −0.0002 −0.1269 4.6793 335.22 0.997 

Baijiabao 
ZG324 

Dec. 2007–May 2009 0.0113 −0.4603 9.4709 37.10 0.999 

June 2009–Feb. 2011 −0.0067 −0.1816 20.059 110.90 0.998 

Mar. 2011–Dec. 2012 −0.0125 0.6852 3.2434 410.56 0.995 

 

Fig. 9  Predicted and measured trend displacement 
components 
(a) Baishuihe landslide; (b) Bazimen landslide; (c) Baijiabao 
landslide 
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Fig. 10  Comparison of measured and predicted dis-
placements for training and validation datasets, using the 
LSTM, GRU, and RF machine learning models 
(a) Baishuihe landslide; (b) Bazimen landslide; (c) Baijiabao 
landslide 
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computed displacements agreed well with the meas-
ured displacements for the three machine learning 
algorithms. Based on these results, the established 
LSTM, GRU, and RF models were judged to be ad-
equate to predict the periodic displacement under 
future conditions. 

Fig. 11 compares the measured and predicted 
displacements for the three landslides with the three 
machine learning algorithms in more detail, but this 
time using the testing dataset only. The periodic 
landslide displacement was initiated and aggravated 
by rainfall and dam reservoir water level which 
change periodically every year in the Three Gorges 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reservoir area. For example, as shown in Fig. 4, the 
reservoir level was raised every October and held 
constant until April of the next year. The annual vari-
ation of rainfall was similar. Therefore, one year of 
testing dataset contained the seasonal variation of 
periodic displacement from these two external factors. 

To quantify how well each of the machine 
learning models duplicates the measured displace-
ments calculated under model testing, the following 
indicators were used: absolute error in mm, relative 
error in %, including their minimum and maximum 
values, the mean absolute percentage error (MAPE) 
in %, and the root mean square error (RMSE) in mm, 
defined as the standard deviation of the residuals. The 
RMSE tells how concentrated the data are around the 
line of best fit. 

Tables 4–6 compare the measured and predicted 
periodic displacements with the testing dataset for the 
three landslides (Locations ZG118, ZG111, and 
ZG324), respectively with the LSTM, GRU, and RF 
machine learning models. 

For the Baishuihe landslide (Location ZG118), 
the RMSE values with the LSTM, GRU, and RF 
models were very close, i.e. 7.5 mm, 8.0 mm, and 
6.5 mm, respectively (Table 4). The range of absolute 
errors from the RF model is the smallest, with a 
minimum error of 2.7 mm and a maximum error of 
10.2 mm. The MAPE values were 10.5%, 10.7%,  
and 13.5% for the LSTM, GRU, and RF models, 
respectively.  

For the Bazimen landslide (Location ZG111), 
the RMSE values with the LSTM, GRU, and RF 
models were 13.8 mm, 12.6 mm, and 26.0 mm, re-
spectively (Table 5). The MAPE values were 8.6%, 
8.4%, and 14.2% for the LSTM, GRU, and RF mod-
els, respectively. 

For the Baijiabao landslide (Location ZG324), 
the RMSE values with the LSTM, GRU, and RF 
models were again very close, 9.2 mm, 8.8 mm, and 
10.5 mm, respectively (Table 6, p.425). The MAPE 
values were 14.2%, 15.6%, and 24.4% for the LSTM, 
GRU, and RF models, respectively. 

6.4  Prediction of total accumulated displacement 

The total displacement was obtained from the 
sum of the predicted trend and periodic displace-
ments. Fig. 12 (p.425) shows the predicted total dis-
placement calculated by cubic polynomial function 
and the LSTM, GRU, and RF machine learning  

Fig. 11  Comparison of measured and predicted periodic 
displacements for the validation dataset only, using the 
LSTM, GRU, and RF machine learning models 
(a) Baishuihe landslide; (b) Bazimen landslide; (c) Baijiabao 
landslide 
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models. The results indicate that the prediction of three 
models agrees well with the measurements. Between 
January and December 2013 for the Baishuihe land-
slide (Location ZG118), the RMSE values in the pre-
dicted total displacement were 10.9 mm, 10.0 mm, and 
10.1 mm, respectively with the LSTM, GRU, and RF 
models. For the Bazimen landslide (Location ZG111), 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the RMSE values in the predicted total displacement 
were 20.0 mm, 19.5 mm, and 26.9 mm between 
January and December 2012, respectively with the 
LSTM, GRU, and RF models. For the Baijiabao 
landslide (Location ZG324), the RMSE values over 
2013 were 10.2 mm, 8.9 mm, and 8.4 mm with the 
LSTM, GRU, and RF models, respectively. 

Table 4  Comparison of accuracy of predicted periodic displacement at location ZG118 with three machine learning 
algorithms (Baishuihe landslide) 

Time 
(year-month) 

Measured 
displ. 
(mm) 

LSTM model GRU model RF model 
Displ. 
(mm) 

Absolute 
error (mm)

Relative 
error (%)

Displ. 
(mm)

Absolute 
error (mm)

Relative 
error (%)

Displ. 
(mm) 

Absolute 
error (mm) 

Relative 
error (%)

2013-01 47.1 43.6 3.5 7.5 44.4 2.7 5.7 55.8 8.8 18.6 
2013-02 33.0 34.8 1.8 5.2 32.5 0.5 1.6 39.1 6.1 18.5 
2013-03 29.8 25.9 3.9 13.3 23.0 6.8 22.9 37.6 7.8 26.2 
2013-04 40.7 19.9 20.8 51.2 19.4 21.3 52.5 30.5 10.2 25.1 
2013-05 25.4 28.6 3.2 12.9 25.8 0.4 1.7 34.7 9.3 36.8 
2013-06 76.7 87.9 11.2 14.6 69.1 7.5 9.8 82.1 5.4 7.1 
2013-07 103.4 99.8 3.6 3.5 103.0 0.4 0.4 107.5 4.0 3.9 
2013-08 102.1 102.6 0.5 0.5 107.9 5.7 5.6 107.5 5.4 5.3 
2013-09 100.8 101.5 0.7 0.7 102.6 1.8 1.8 97.4 3.5 3.4 
2013-10 89.0 89.8 0.8 0.9 92.1 3.1 3.5 86.0 3.0 3.4 
2013-11 66.6 74.0 7.4 11.0 78.5 11.8 17.8 73.0 6.4 9.5 
2013-12 61.8 58.9 2.9 4.7 64.9 3.1 5.0 59.2 2.7 4.3 
Min. error – – 0.5 0.5 – 0.4 0.4 – 2.7 3.4 
Max. error – – 20.8 51.2 – 21.3 52.5 – 10.2 36.8 
MAPE (%) – – 5.0 10.5 – 5.4 10.7 – 6.0 13.5 
RMSE (mm) – 7.5 – – 8.0 – – 6.5 – – 

Table 5  Comparison of accuracy of predicted periodic displacement at location ZG111 with three machine learning 
algorithms (Bazimen landslide) 

Time 
(year-month) 

Measured 
displ. 
(mm) 

LSTM model GRU model RF model 

Displ. 
(mm) 

Absolute 
error (mm) 

Relative 
error (%)

Displ. 
(mm) 

Absolute 
error (mm)

Relative 
error (%)

Displ. 
(mm) 

Absolute 
error (mm) 

Relative 
error (%)

2012-01 97.2 99.2 2.0 2.1 98.6 1.4 1.5 103.7 6.5 6.7 
2012-02 83.4 81.3 2.1 2.5 78.5 4.9 5.9 76.5 6.9 8.3 
2012-03 69.9 67.0 2.9 4.2 66.5 3.3 4.8 69.0 0.9 1.3 
2012-04 52.6 56.4 3.8 7.1 58.9 6.3 12.0 61.9 9.3 17.6 
2012-05 39.1 43.9 4.8 12.3 43.5 4.4 11.2 48.2 9.1 23.1 
2012-06 129.4 100.7 28.7 22.2 103.4 26.0 20.1 49.5 79.8 61.7 
2012-07 187.1 177.7 9.4 5.0 184.5 2.6 1.4 157.5 29.6 15.8 
2012-08 148.2 179.3 31.1 21.0 175.5 27.3 18.4 164.7 16.6 11.2 
2012-09 154.3 166.0 11.7 7.6 168.2 13.9 9.0 152.5 1.9 1.2 
2012-10 157.1 147.2 10.0 6.3 154.7 2.4 1.5 143.3 13.8 8.8 
2012-11 125.5 133.3 7.8 6.2 134.4 8.9 7.1 133.3 7.7 6.2 
2012-12 122.3 114.2 8.2 6.7 112.4 9.9 8.1 111.9 10.4 8.5 

Min. error – – 2.0 2.1 – 1.4 1.4 – 0.9 1.2 
Max. error – – 31.1 22.2 – 27.3 20.1 – 79.8 61.7 
MAPE (%) – – 10.2 8.6 – 9.3 8.4 – 16.0 14.2 
RMSE (mm) – 13.8      –     – 12.6        –       – 26.0       –       – 
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7  Discussion 
 
Current traditional machine learning algorithms 

predict landslide displacement as static regressions. 
However, landslide processes are nonlinear, dynamic 
phenomena that occur over time suggesting that dy-
namic modelling is more suitable for predicting 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

displacements caused by landslides. In this study, 
dynamic models used time series analysis to predict 
landslide displacements. Two algorithms, LSTM and 
GRU, were neural network algorithms.  

The three machine learning models used in this 
paper, the LSTM, GRU, and RF algorithms, were able 
to predict with reasonable accuracy of the periodic 

Table 6  Comparison of accuracy of predicted periodic displacement at location ZG324 with three machine learning 
algorithms (Baijiabao landslide) 

Time 
(year-month) 

Measured 
displ. 
(mm) 

LSTM model GRU model RF model 

Displ. 
(mm) 

Absolute 
error (mm) 

Relative 
error (%)

Displ. 
(mm) 

Absolute 
error (mm)

Relative 
error (%)

Displ. 
(mm) 

Absolute 
error (mm) 

Relative 
error (%)

2013-1 71.4 74.5 3.1 4.3 77.2 5.8 8.1 61.4 10.0 14.0 
2013-2 54.2 59.2 5.0 9.2 62.2 8.0 14.8 55.6 1.4 2.6 
2013-3 37.7 44.0 6.3 16.6 45.5 7.9 20.9 41.1 3.4 9.1 
2013-4 23.8 29.7 5.9 24.8 28.1 4.3 18.2 35.6 11.8 49.8 
2013-5 17.2 20.6 3.4 19.9 14.8 2.4 14.1 41.2 24.0 139.5 
2013-6 61.9 37.1 24.8 40.1 52.3 9.6 15.6 78.6 16.7 26.9 
2013-7 87.4 75.7 11.7 13.4 101.0 13.6 15.5 92.6 5.2 6.0 
2013-8 82.0 75.0 7.0 8.5 87.0 5.1 6.2 89.1 7.2 8.7 
2013-9 69.3 69.7 0.4 0.6 82.2 12.9 18.6 74.7 5.5 7.9 
2013-10 60.6 57.5 3.1 5.1 55.7 4.8 8.0 65.5 4.9 8.2 
2013-11 51.9 44.7 7.2 14.0 41.5 10.4 20.1 60.9 9.0 17.3 
2013-12 43.7 37.4 6.3 14.4 32.0 11.7 26.7 45.0 1.3 3.0 

Min. error –     – 0.4 0.6     – 2.4 6.2     – 1.3 2.6 

Max. error –     – 24.8 40.1     – 13.6 26.7     – 24.0 139.5 
MAPE (%) –     – 7.0 14.2     – 8.0 15.6     – 8.4 24.4 
RMSE (mm) – 9.2 – – 8.8        –        – 10.5     –     – 

 

Fig. 12  Comparison of measured and predicted 
displacements with three machine learning algo-
rithms with training and validation datasets 
(a) Baishuihe landslide; (b) Bazimen landslide; (c) 
Baijiabao landslide 
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and total accumulated displacement of three step-wise 
landslides in the Three Gorges Dam reservoir area. 
The models established relationships among the data 
at different times, the state of the landslide dis-
placements and the rainfall, and water level draw-
down (and rise) in the dam reservoir. The algorithms 
were able to learn rules from earlier time steps and 
historical information.  

Table 7 compares the accuracy indicators MAPE 
and RMSE for the three machine learning models for 
each of the three landslides. The predictions by the 
LSTM and GRU models were similar and had ap-
proximately the same margin of error. For the 
Baishuihe and Baijiabao landslides, the results with 
the three machine learning algorithms were approx-
imately equivalent. The RMSE values are less than 
10 mm and the MAPE values are between 10% and 
16% for the LSTM and the GRU models. The LSTM 
neural network and the GRU models agreed espe-
cially well with the measurements during the period 
of the step-wise increase in the displacement (May to 
July), as illustrated in Fig. 11. The RF model gives 
higher values of MAPE, although the RMSE values 
are similar to those from the other models. For the 
Bazimen landslide, the LSTM and GRU models ap-
pear to predict the displacement more reliably than 
the RF model. The reason for this difference might be 
because the RF algorithm, as a combination of binary 
decision trees, is not able to predict time-series  
observations as well as the other deep learning  
algorithms. 

 
 
 
 
 
 
 
 
 
 
The proposed dynamic modeling approaches, 

using time-series analysis and machine learning 
models, resulted in accurate prediction of displace-
ments for slow, step-wise deformations. For the three 
landslides, rainfall and the reservoir water level 
fluctuation were the key external factors leading to 
increased slope displacements. The respective im-

portance of each of the rainfall and reservoir water 
level was not, however, the same over time. The dis-
placement response, depending on the respective 
influence factors may result in a change in the learned 
rules during the training of the model. The LSTM and 
GRU machine learning models were able to adapt to 
these changes, through assessing the learned rules, 
forgetting invalid ones and remembering useful ones. 

Since the multivariate LSTM and GRU algo-
rithms provide an accurate prediction of the step-wise 
displacements in the Three Gorges Dam reservoir, 
such models could be very useful in early warning 
systems. Based on this study, the LSTM and GRU 
models can be recommended to predict landslide 
displacement in the Three Gorges Dam reservoir area. 
Note that fewer hyper-parameters need to be tuned in 
the GRU model than those in the LSTM model. The 
RF model needs more validation, in view of the re-
sults obtained in this study.  

There are two main limitations to the analyses 
done: (1) at this time, the good agreement obtained 
applies to step-wise type of landslide movements 
only; (2) for each landslide studied, one monitoring 
point was used: a single point is insufficient to char-
acterize an entire landslide. The analysis should be 
expanded to include several monitoring points in 
different parts of each landslide. This would also 
increase the quantity of data for the machine learning 
models, which would be beneficial. This would lead 
to an improved estimation of the predictive capability 
of the three different models. 

 
 

8  Conclusions 
 
The goal of this research was to test and compare 

different machine learning algorithms in predicting 
landslide displacements in the Three Gorges Dam 
reservoir area to see if such displacements predicted 
by machine learning models can be used as an input in 
landslide early warning systems. The paper also aims 
at demonstrating the maturity of machine learning 
algorithms and their use in geotechnical engineering 
models.  

The three machine learning models (LSTM, 
GRU, and RF) were able to accurately predict peri-
odic and total accumulated displacement for the  
three step-wise landslides in the Three Gorges Dam 

Table 7  Comparison of accuracy of predicted periodic 
displacement for three landslides 

Landslide 
MAPE (%) RMSE (mm) 

LSTM GRU RF LSTM GRU RF

Baishuihe 10.5 10.7 13.5 7.5 8.0 6.5

Bazimen 8.6 8.4 14.2 13.8 12.6 26.0

Baijiabao 14.2 15.6 24.4 9.2 8.8 10.5
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reservoir area. The models established relationships 
among the data at different times, the state of the 
landslide displacements, and the causal effects of 
rainfall and water level drawdown (and rise) in the 
dam reservoir. The LSTM and GRU algorithms were 
able to learn rules from earlier time steps, thus making 
use of the historical information.  

The proposed dynamic modelling approach, 
using time series analysis and machine learning 
models, also had accurate results in predicting dis-
placements for slow and step-wise deformations. The 
LSTM and GRU machine learning models were able 
to adapt to these changes, through assessing the 
learned rules, forgetting invalid ones, and remem-
bering useful ones. 

The results of the analysis indicate that predic-
tive models should become an essential component in 
landslide early warning systems. Multivariate LSTM 
and GRU machine learning algorithms could be very 
useful as one of the “risk-informed” inputs in an early 
warning system to help decision-making. Overall, 
dynamic models based on machine learning outputs 
have the potential for broad applications to predict 
landslide displacement in landslide-prone regions and 
should be further studied and refined to improve their 
accuracy. 
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中文概要 
 

题 目：边坡位移智能预测算法 

目 的：边坡位移预测是实现滑坡灾害预报的有效手段，
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对降低滑坡灾害导致的损失具有重要意义。本文

针对三峡库区广泛分布的“阶跃型”滑坡，采用

三种不同的机器学习算法：长短期记忆（LSTM）

神经网络、随机森林（RF）算法和门控递归单元

（GRU），预测三个不同的三峡库区边坡位移，

并对比三种算法的预测精度，从而选择适用于边

坡位移预测的机器学习算法。 

创新点：1. 建立了基于时间序列分解和机器学习算法的动

态预测模型，并能够准确预测边坡位移。2. 对比

了不同的机器学习算法预测边坡周期项位移的

精度。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

方 法：1. 基于时间序列分解原理，将边坡累积位移分解

为趋势项位移和周期项位移。2. 利用多项式拟合

对边坡趋势项位移进行预测。3. 基于位移影响因

素采用三种机器学习模型（LSTM、GRU 和 RF）

预测边坡周期项位移。 

结 论：1. 本文提出的基于时间序列分解和机器学习算法

的动态预测模型可以准确预测三峡库区“阶跃

型”边坡位移。2. LSTM 和 GRU 算法可以充分利

用滑坡历史信息，精确预测边坡位移的周期项。 

关键词：滑坡；位移；机器学习；三峡库区 

 

 
 
 
 
 
 
 
 
 
 

 
 


