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Abstract. In this study, we propose and implement a convergence scheme for the numerical
wavenumber integration in the context of 2.5D FE solution and validate it through a numerical
example. In brief, the scheme is to estimate the convergence based on the relative difference
between two interpolations for a given set of wavenumbers, which is done iteratively by refining
the wavenumber sampling until the relative difference becomes no greater than a specified
value. We evaluate the performance and convergence of the numerical integration scheme by
comparing the results of the responses of a tunnel in a layered ground due to a concentrated
harmonic load using both a full 3D model and a 2.5D model, including computational time
aspect. Finally, we consider applying the same scheme to other relevant numerical integrations.
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1 INTRODUCTION

Most problems in structural and soil dynamics are defined in 3D space. However, in a math-
ematical framework quite a few among those problems can be simplified in such a way that the
geometry and material properties (i.e. density, stiffness, damping, etc.) of the media of interest
are invariant along a particular axis. It is then possible to solve some of these 3D problems via
the so-called 2.5D numerical approach (e.g. Galvin et al., 2010). For instance, wave propagation
due to moving load along a tunnel structure built in layered soil media is a good example where
the given geometry and material properties are often assumed constant along the track direction
(Say y-axis), while they vary along the other two directions (X and z). Thanks to the y-direction
invariance of both geometry and property, all the differentiations with respect to the y coordi-
nate in the 3D wave equation can be replaced by the y-direction wavenumber (ky) without any
loss of accuracy in describing the features in the 3D problems. Then, as in discrete methods
such as finite element (FE) method, the solution can be obtained by a spatial discretization only
along the x- and z-axes, effectively reducing the number of degrees of freedom (DOF) to solve.
On the other hand, this formulation requires that the resulting 2D FE equation be solved for
many wavenumbers ky in the FE context. This can be time-consuming but is still much less
demanding than a full 3D FE analysis, provided that one employs a procedure that ensures
efficient convergence of the associated wavenumber integration. Therefore, it is important to
optimize the sampling and number of ky's to solve so that one can calculate accurate and con-
verged results, while the computational time is reasonable. Particularly for calculation of high
frequency (~100Hz) dynamic response at far offset along the y-axis, the 2.5D FE solution in-
deed becomes essential in comparison to a full 3D FE solution due to the computational
memory requirement.

In this study, we implement a convergence scheme for the numerical wavenumber integra-
tion in the context of 2.5D FE solution and validate it through a numerical example. In brief,
the scheme is to estimate the convergence based on the relative difference between two inter-
polations (e.g. linear and spline) for a given set of wavenumbers, which is done iteratively by
refining the wavenumber sampling until the relative difference becomes no greater than a spec-
ified value (e.g. 0.01). We discuss the performance and convergence of the numerical integra-
tion scheme by considering various aspects. At the end, we also discuss to apply the same
scheme to other relevant numerical integrations e.g. wavenumber integration for the fully ana-
lytical solution.

All the FE calculations in the current study are performed by means of the commercial soft-
ware COMSOL Multiphysics™. The relevant 2.5D wave equation is implemented and solved
in the module of 2D Coefficient Form PDE. In order to avoid artificial reflection from the com-
putational domain boundary, a perfectly matched layer technique (Park and Kaynia, 2017) is
deployed in the current study.

2 PROPOSED WAVENUMBER INTEGRATION METHOD

The numerical wavenumber integration is a common and necessary step in calculation of the
analytical-solution for elastic wave propagation in layered media (e.g. Apsel and Luco, 1983;
Park and Kaynia, 2018) to obtain dynamic response in the spatial domain from the wavenumber
domain. There are two associated challenges: 1) handling of the pole singularities in the kernels
of wavenumber integration; and 2) controlling of the convergence of numerical integration. The
former challenge, which is the most critical in the analytical solution, is due to the extremely
large and singular value of kernels at the propagation poles. A similar procedure for numerical
wavenumber integration is required in the 2.5D FE solution. However, the challenge is related
mainly to the convergence control, because the pole singularity doesn't exist or is not so strong
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in the 2.5D FE solution. In the following, we discuss these features through an example of wave
response in a homogeneous half-space.

Figure 1 compares two kernels calculated via a fully analytical solution (red thin solid line)
by Park and Kaynia (2018) and the corresponding 2.5D FE solution (blue thick solid line). Both
of the kernels are for the same homogeneous half-space subjected to a harmonic vertical load
with frequency 100 Hz applied at the surface. The kernels are calculated exactly at the loading
point. It is clearly shown in Figure 1 that the kernel of the 2.5D FE solution looks rather mod-
erate without any strong singularity near the Rayleigh pole (black thin dashed vertical line). On
the other hand, that of the analytical solution shows a strong and sharp singularity near the
Rayleigh pole, subsequently requiring very-densely-sampled wavenumbers to calculate accu-
rately. It is shown that the challenge in relation to the pole singularity is less significant (or
almost negligible) in the 2.5D FE solution than the analytical solution. Therefore, it is expected
that interpolation of the kernels of the 2.5D FE solution is feasible, even near the poles, which
in turn can save significantly the computation effort in the 2.5D FE solution. Yet, we still need
to make sure the convergence of the wavenumber integration by optimizing the sampling and
number of wavenumbers to include into the 2.5D FE calculation.

kernel comparison
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Figure 1. Comparison of two kernels calculated by means of analytical and 2.5D solutions, normalized with re-
spect to the reference kernel calculated at the zero wavenumber. Note that the X-axis is the normalized wave-
number with respect to the shear wavenumber ks; and kr and ky are the radial- and y-direction wavenumbers,

respectively, used in the analytical and 2.5D FE solutions.

Based on the observations made through the example in Figure 1, we propose a convergence
controlling scheme. The scheme a simple approach, consisting of the following steps:

1. Initialize a wavenumber sampling of k=[0:AK:Kmax]. Here, Kmax should be so large that
the kernels at Kmax is small enough. Note that as shown in Figure 1, the kernels decay
quickly for k>Krayleigh. In addition, Ak could be large enough such that the total num-
ber of k's is no so high e.g. < 10. Alternatively, the sampling can be done logarithmi-
cally, while using the same Kmax.

2. Calculate the kernels for the given wavenumber sampling k by 2.5D FE solution pro-
cedure.
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3. Interpolate the kernels by means of two different interpolations (e.g. linear and
spline).

4. Estimate the relative differences between the interpolated values of the two different
interpolation methods at the middle points of individual wavenumber sampling in-
tervals.

5. Collect the middle-point wavenumbers (say k=o.01) where the relative differences are
greater than a specified criterion (e.g. 0.01).

6. Re-calculate the true kernels for those collected middle-point wavenumbers k.01 by
2.5D FE solution procedure.

7. Repeat Steps 3-6 by updating k with accumulatively adding k-o.01, until k=001 does
not exist.

Once Step 7 above is completed, we perform an inverse Fourier transform from ky-domain
to y-domain in order to calculate the final wave response in the spatial domain. We have found
through numerical experiments that the number of wavenumbers after Step 7 is around a few
100's. If, on the other hand, we in a brute force manner use an equally-spaced wavenumber
sampling for k=[0,Kmax], the total number of wavenumbers could be in the order of >10%.

3 NUMERICAL EXAMPLES

We validate the wavenumber integration scheme proposed in the study by solving a simple
example of a tunnel embedded in a two-layered soil medium. Figure 2(a) shows the full 3D
model described with 2 symmetric planes used at x=0m and y=0m. The tunnel is located in the
upper soil layer of 16m thickness, and the tunnel bottom is close to the lower bedrock layer of
infinite thickness. The thickness of the tunnel wall varies between 0.6m to 1.0m along the pe-
rimeter, shown in Figure 2. The harmonic excitation load of 100 Hz is applied in the middle of
the tunnel base and in the vertical direction, red arrow in Figure 2(b). The material properties
and geometry in the example problem is shown in Table 1. In addition, Figure 2(b) shows four
lines highlighted in blue, where we extract the displacement results and compare with a full 3D
FE simulation. Figure 3(a) and (b) show the FE meshes used in calculation, respectively, for
the 2.5D and 3D analyses. The numbers of DOFs used in each model are around 43x10° and
1250x10°, respectively.

(@) (b)

Figure 2. (a) Example problem of a tunnel imbedded into two-layered soil medium (modelled with two symmet-
ric planes at x=0m and y=0m); (b) 4 lines (blue) on the tunnel surface where responses are calculated and com-
pared. Red arrow shows where the vertical point load of 100Hz is applied on Line 1.
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Material Density [kg/m®] Shear/Compression Thickness [m]
velocity [m/s]
Upper layer 1500 500/2000 16
Lower layer 3000 2000/4000 inf
Concrete tunnel 2300 2128/3475 0.6 (bottom: 1.0)

Table 1. Material properties and geometry in the example problem in analysis. A uniform viscous damping of
1% is applied to all the materials.
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Figure 3. FE meshes used: (a) for 2.5D simulation; (b) for 3D simulation

Figure 4 compares the two results of the 2.5D and 3D FE simulations, calculated along the
4 lines highlighted with blue lines in Figure 2(b). The solid and dashed lines are, respectively,
for the 2.5D and 3D FE solutions, and the blue and red colors denote, respectively, the real and
imaginary parts of the time-harmonic response. It is clearly shown that the agreement between
the 2.5D and 3D FE simulations is perfect for Line 1, 3 and 4. Namely, the solid and dashed
lines are exactly on the top of each other. The agreement for Line 2 (line along the tunnel crown)
is also very good but not as much as the other lines, which is believed to have to do with the

wavenumber sampling near the Rayleigh (or generally, wave propagation) pole(s). The im-
provement on this issue is under investigation.

It is mentioned earlier that kmax should be so large that the kernels at kKmax is small enough,
making sure that the numerical integration is converged. Furthermore, we have also found out
that kmax depends on the relative position of (or distance between) load and receiver points.
Figure 5 shows the normalized kernels for the four response lines in Figure 2(b) whose distances
to the vertical load are different. Line 1 has zero distance to the load point, and Lines 3, 4 and
2 have Im, 6m and ca 11m distance, respectively. It is easily noticed in Figure 5 that the decay-
ing rate of the kernels is proportional to the distance between the load and response points.
Therefore, we may conclude that the longer the distance is, the smaller Kmax is needed.
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Figure 4. Comparison of 2.5D (solid lines) and 3D (dashed lines) simulation results in displacement along 4 lines
on the tunnel surfaces (defined in Figure 2). Note that the Y-axis scale of Plot (b) is 10 time smaller than that of
the other three plots.
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Figure 5. Comparison of kernels calculated for the four lines on the tunnel surfaces (defined in Figure 2). Note
that the kernels are normalized with respect to the reference kernel calculated at the zero wavenumber. In addi-
tion, the X-axis is the normalized wavenumber with respect to the shear wavenumber ks of concrete (~0.295).
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4 CONCLUSIONS

In this study, we propose a simple scheme with which we can efficiently integrate the wave-
number integration in the context of 2.5D FE solution for a full 3D wave equation. The scheme
consists of 7 steps and controls iteratively the convergence of the integration. The satisfactory
performance of the proposed integration scheme is demonstrated by comparing the results of
the responses of a tunnel in a layered ground due to a concentrated harmonic load using both a
full 3D model and a 2.5D model. In addition to comparison of the displacements, information
about computational time is provide. One of the key parameters in the proposed scheme is the
maximum wavenumber to be used in the analysis (Kmax). Analyses indicate that the longer the
distance between load and response points, the smaller Kmax is required.

Herein, we have applied successfully the proposed integration technique to the 2.5D FE
wave equation. Nevertheless, it is worthwhile to mention that the same technique can also be
applied to any numerical integration e.g. numerical wavenumber integration for the fully ana-
lytical solution by Park and Kaynia (2018), replacing a brute force integration with equally-
spaced wavenumbers and saving computation time by >10 times. A related study is in progress.
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