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Abstract: In Norway, shallow landslides are generally triggered by intense rainfall and/or snowmelt
events. However, the interaction of hydrometeorological processes (e.g., precipitation and snowmelt)
acting at different time scales, and the local variations of the terrain conditions (e.g., thickness of
the surficial cover) are complex and often unknown. With the aim of better defining the triggering
conditions of shallow landslides at a regional scale we used the physically based model TRIGRS
(Transient Rainfall Infiltration and Grid-based Regional Slope stability) in an area located in upper
Gudbrandsdalen valley in South-Eastern Norway. We performed numerical simulations to recon-
struct two scenarios that triggered many landslides in the study area on 10 June 2011 and 22 May
2013. A large part of the work was dedicated to the parameterization of the numerical model. The
initial soil-hydraulic conditions and the spatial variation of the surficial cover thickness have been
evaluated applying different methods. To fully evaluate the accuracy of the model, ROC (Receiver
Operating Characteristic) curves have been obtained comparing the safety factor maps with the
source areas in the two periods of analysis. The results of the numerical simulations show the high
susceptibility of the study area to the occurrence of shallow landslides and emphasize the importance
of a proper model calibration for improving the reliability.

Keywords: shallow landslides; rainfall; snowmelt; physically based model; stability analysis; land-
slide inventory; TRIGRS; Norway

1. Introduction

The study of rainfall-induced landslides is an important research topic for the improve-
ment of risk mitigation strategies for current and future climate scenarios. For this reason,
over the years a number of solutions have been developed on this issue, often based on
statistical-probabilistic techniques (e.g., [1–4]). However, even though these methods can
be very effective in the identification of the areas more prone to slope failure (i.e., landslide
susceptibility), the same cannot be said about the temporal prediction of such phenomena,
which still represents a challenging research topic. In this respect, also considering the
improvements of environmental sensing technology, different landslide early warning
systems (LEWSs) have been recently drawn up, both at slope scale (see [5] and references
therein) and over national/regional scale (see [6] and references therein), such as the one
developed. These systems basically monitor the most significant variables related to the
triggering conditions (e.g., rainfall, soil moisture, displacement) and, when given thresh-
olds are exceeded, warning messages are generated to alert the public and authorities [7].
Every early warning system operational worldwide has a different number of thresholds
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and algorithms to activate a warning level. Such thresholds can be defined using different
tools, including physically based models that reproduce, often via numerical simulations,
the progressive onset of the instability within the potentially unstable soil during heavy
rainfall events (e.g., [8–11]). However, a correct spatial evaluation of the input parameters
(e.g., rainfall field, initial water table, thickness and physical–mechanical parameters of
the soil cover) is a fundamental aspect for the reliable application of such models. In this
respect, back-analyses of preceding landslide events is a common strategy to calibrate the
inputs parameters of physically based models.

The results presented in this paper have been obtained applying the physically based
model TRIGRS [12], which is a model specifically devoted to the prediction of rainfall-
induced landslides. Since the model calculates the slope stability conditions in response to
specific rainfall events, we have back-analysed two separate landslide events that occurred
in the upper Gudbrandsdalen, Eastern Norway, on 10 June 2011 and 22 May 2013 [13]. The
unstable areas obtained by the application of TRIGRS (Safety Factor lower than 1) have
been compared with the source areas observed in situ. The outcome of this comparison was
then evaluated through a ROC (receiver operating characteristic) curve analysis, allowing
is to quantify the performance of the two predictions.

2. Materials and Methods
2.1. The Case Study

Gudbrandsdalen is a major north–south trending valley in the mountainous part of
the former Oppland county (now Innlandet county) in South-Eastern Norway (Figure 1).
Specifically, the study area (Veikledalen) is in the upper part of this region, near the village
of Kvam. The area is characterized by hill slopes mainly consisting of green or grey phyllite,
within which layers of grey sandstone, feldspathic sandstone or quartzite can be found [14].
These slopes have been largely carved by glaciers, whose erosive action is also testified by
the presence of till deposits of variable thickness. In general, the thinner deposits (0.5 m
or less) are in the upper part of the slopes, while in the lower parts, the thickness can
reach several tens of meters. The valley floor is mainly filled by glacifluvial and fluvial
deposits, which can be locally covered by Holocene colluvial fans generated at the toe of
the numerous gullies cutting the till deposits [15]. In this respect, the area has experienced
different landslide events recently, mainly channelized debris flows generally initiated as
shallow slides within the soil cover (i.e., soil slips). The most recent events occurred in
May 2008, June 2011 and May 2013. In particular, the last two occurred in very similar
hydrometeorological conditions that also triggered flood events along the Glomma river.

In the period 6–12 June 2011, significant rainfall occurred, and the simultaneous high
temperature led to strong snow-melting process. Due to such a combined effect, several
shallow landslides were triggered in the night between the 9 and 10 June, causing the
closure of numerous roads in Gudbrandsdalen. More than 270 people were evacuated,
and the overall damages cost is estimated at 800 million Norwegian Kroner (NOK), ca.
100 million USD. On 22 May 2013, the combination of intense rainfall and prolongated,
intense snow melting caused widespread flooding and many shallow landslides in the
same area [13]. The worst damage was recorded in the town of Kvam, where more than
200 residents were evacuated. As in 2011, the two main roads, the National Highway
Rv3 and the European highway E6, were closed at several locations. The damage cost is
estimated at a total of 1500 million NOK, ca. 170 million EUR [16]. In this work, the over
100 landslides triggered during both events have been identified through the analysis of
high-resolution aerial orthophotos by distinguishing, for each landslide, the source area
from the propagation and deposition zones (Figure 2).
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2.2. The TRIGRS Model

TRIGRS is a widely used numerical model in the framework of landslide susceptibility
analyses (e.g., [17–19]). It can reproduce, in a simplified form, the triggering process of
rainfall-induced shallow landslides considering relatively few and simple input parameters.
Specifically, it performs a slope stability analysis over large areas through the infinite slope
limit equilibrium method, considering a transient 1-D analytic solution for pore water
pressure induced by rainfall infiltration based on [20] linearized solution of the Richards’
equation. In other words, it is possible to consider a space–time variability of rainfall input
(IZ) that, together with a simple runoff routing scheme, allows calculating the pressure head
response ψ(Z, t) for each grid cell starting from initial saturated or unsaturated conditions.
In this latter case, the model uses a simple analytic solution proposed by [21] to linearize
the Richards’ equation, considering four hydrodynamic parameters: the saturated (θs)
and residual (θr) water content, the saturated hydraulic conductivity (Ks) and a specific
parameter linked to the pore size distribution (αG). If the amount of infiltrating water
reaching the water table exceeds the maximum amount that can be drained by gravity,
TRIGRS simulates the water-table rise, comparing the exceeding water quantity to the
available pore space directly above the water table or capillary fringe (Figure 3) and then,
for each time step, it applies the water weight at the initial top of the saturated zone
to compute the new pressure head [22]. For the calculation of the safety factor in the
unsaturated configuration, the pressure head is multiplied by the effective stress parameter
χ, as suggested by [23]:

χ = (θ − θr)/(θs − θr) (1)

where θ is the soil water content. This approximation represents a simplified form of the
suction–stress characteristic curve [24,25]. The Safety Factor at a specific depth Z is then
calculated according to:

FS(Z,t) = (tanϕ’/tanδ) + {[c’ − (ψ(Z,t) γw tanϕ’)]/[γ Z sinδ cosδ]} (2)

where δ is the slope angle, c’ is the effective soil cohesion, ϕ’ is the effective friction angle of
the soil, γw is the unit weight of groundwater and γ is the total unit weight of soil. A more
detail explanation of the assumptions, fundamental concepts and equation derivation of
the TRIGRS model can be found in [12,22].
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To calculate the Safety Factor in response to specific rainfall events, TRIGRS uses a
series of input parameters (Table 1). Two different detailed (5 × 5 m) digital elevation
models (DEM) are available for the study area. The first one was dated 2010, i.e., before
the 2011 landslide event, and the second one was dated 2012. Considering this aspect, we
decided to use the 2010 DEM for deriving the slope map of the area in the case of the 2011
event simulation, and the 2012 DEM for the 2013 event.

For the estimation of the spatial variation of the thickness of the surficial cover, a
modified version of the model proposed by [26] has been applied to the study area. The
original model correlates the soil depth to the local slope angle according to the following
equation:

hi = hmax {1 − {[(tanαi − tanαmin)/(tanαmax − tanαmin)] [1 − (hmin/hmax)]}} (3)

where αi is the slope value at pixel i, while αmax and αmin are the maximum and minimum
slope values encountered in the study area, hi is the soil thickness computed at pixel i,
hmax and hmin are the maximum and minimum soil thickness values measured in the area.
However, Equation (3) was modified in such a way that a series of real thickness data
deriving from different sources could be used, then improving the reliability of the model
itself. The available data are summarized in Table 2.

Table 1. Input parameters for the TRIGRS model.

Parameter Unit Attributed Value Source

Slope (δ) (◦) Spatially variable 5 × 5 m DEM
Soil thickness (H) (m) Spatially variable Fitting equation
Friction angle (ϕ’) (◦) 32 [27]

Cohesion (c’) (kN m−2) 4 [27]
Soil unit weight (γ) (kN m−3) 20 [27]

Hydraulic conductivity (Ks) (m s−1) 1.0 × 10−5 [27]
Hydraulic diffusivity (D0) (m2 s−1) 4.0 × 10−4 [27]

Saturated water content (θs) (-) 0.45 ROSETTA Lite module
Residual water content (θr) (-) 0.03 ROSETTA Lite module
Pore-size parameter (αG) (m−1) 0.02 ROSETTA Lite module + [28]

Initial water table depth (dwt) (m) Spatially variable Varsom Xgeo
Background rainfall rate (IZLT) (m s−1) Spatially variable Varsom Xgeo

Rainfall rate (IZ) (m s−1) Spatially variable Norwegian Meteorological Institute

Table 2. Thickness data of the surficial cover available for the study area.

Type of Data Points Source

Field data–GPS position 3 [29]
Field data 4 [30]

Calculated data 36 LIDAR-based 1 × 1 m2 DEMs

The first dataset [29] is composed by measurements of the surficial cover thickness for
which the GPS position is available from field surveys (Figure 4), whereas the second series
of data are measurements whose position has been identified by using the information
reported in [30]. Regarding the third dataset, we first identified from high-resolution aerial
orthophotos 36 points within the footprint areas where the bedrock was clearly exposed
after the landslide events. Then, we made the difference between two high-resolution
(1 × 1 m) DEMs derived from LIDAR data (Figure 5). Since the DEMs had been released
before (i.e., 2000) and after (i.e., 2012) the 2011 landslide event, it was possible to measure
the effective thickness of the surficial cover in each of the 36 points. Afterwards, all the 43
thickness values (and the corresponding slope values measured in each point) were plotted
in a graph “thickness vs. tangent of slope”, and a least squares linear fit of the points was
used as the soil thickness model (Figure 6). It is important to note that for the numerical
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simulations we decided to neglect the areas with thickness values higher than 2 m in the
lower part of the valley, since the real thickness of the surficial cover is considerably higher
than the expected, and it could not be simplified with a linear trend. On the other end, we
imposed a constant value of 0.4 m (i.e., the lowest thickness value measured on field) for the
steepest areas. However, the thickness of the surficial cover also depends on the geological
and geomorphological features of the area, which are those typical of glacial environments.
In this respect, the map of the Quaternary deposits available at the Geological Survey of
Norway (NGU) shows the presence of “shallow” glacial deposits in the upper part of the
slopes, whereas the “thick” glacial deposits can be found only in the lower part of the
valleys. Considering this last aspect, we decided to impose a constant value of 0.4 m in the
areas characterized by the presence of shallow glacial deposits, and a null value for the
areas where the bedrock outcrops.
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As far as the geotechnical and hydraulic parameters of the debris cover are concerned,
unfortunately no data deriving from laboratory or field tests are available for the study
area, as well as in many other areas in Norway. Therefore, as a first step we decided to
use the values reported in [27]. In this paper, the authors calibrated the soil parameter
values through Monte Carlo simulations using as constraint a series of debris flows located
near Otta, northwest of the study area. Specifically, starting from the spatial distribution
of the Quaternary deposits, deriving from two maps at 1:20,000 and 1:50,000 scale, they
perform numerical simulations by imposing as target the maximization and minimization
of areas classified as unstable for a 1000-year return period rainfall event and in absence of
precipitation, respectively. The resulting values related to the glacial deposits are reported
in Table 1.

For the estimation of the hydrodynamic parameters employed by TRIGRS in the unsat-
urated modality, we used the ROSETTA Lite module [31] available within the HYDRUS-1D
software [32]. This module uses a database of measured water retention and other proper-
ties for a wide variety of media. Specifically, for a given grain-size distribution the model
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estimates a soil water retention curve (SWRC) based on the hydraulic model proposed
by [33] and with good statistical comparability to known retention curves of other media
with similar physical properties [34]. In this work, an average grain size distribution has
been considered according to four samples collected in the case study area [35]. However,
the αG parameter corresponds to a fitting parameter of the SWRC based on a different
([36] hydraulic model. This parameter was then estimated using the conversion formula
from [28], which defines a correspondence between the above-mentioned hydraulic models
through the capillary length approach [37].
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The initial water-table depth and the background rainfall rate are, instead, closely re-
lated to the preceding hydrological conditions, which can highly affect the spatio-temporal
occurrence of rainfall-induced landslides [38]. Such parameters were estimated from the
information reported in Varsom Xgeo (www.xgeo.no). It is an open access decision-support
tool developed from the cooperation between the Norwegian Water Resources and Energy
Directorate (NVE) and other governmental agencies such as the Norwegian Meteorological
Institute, the National Public Road Administration, the National Rail Administration and
the National Mapping Authority. Specifically, it is composed of a web portal and several
modules that store different types of data such as: gridded maps (spatial resolution: 1
km2) of meteorological data and simulated hydrological, glaciological and hydrogeological
conditions; real-time data recorded at automatic stations; field observations (i.e., snow
conditions, landslide events); thematic maps; warnings maps; and satellite images. The

www.xgeo.no
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tool is daily employed for national forecasting and warning services (e.g., floods, landslides
and snow avalanches) carried out by NVE over the entire national territory [39].
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The hydrological conditions reported in Varsom Xgeo derive from simulations per-
formed at the daily scale with HBV, which is a semi-distributed conceptual rainfall-runoff
model [40,41]. Specifically, two versions of the model are daily employed at NVE: a
river-catchment-type version that is calibrated over 150 river catchments and a spatially
distributed-type version (also known as GWB-Gridded Water Balance). The latter version
considers each of 385,000 cells over the entire Norwegian territory as a separate basin,
for which a specific water balance is performed. The model runs 24 h a day and uses
precipitation and air mean temperature as inputs. The main structure of the HBV model
comprises four storage components: snow, soil moisture, and upper and lower runoff zone.
The model can reproduce not only runoff, but also infiltration and snow melting, then
estimating the corresponding variations of groundwater level, soil saturation, soil frost, etc.
In particular, the groundwater-level map provides information on the groundwater level
compared to the average for the same day for the reference period 1981–2010. The degree
of soil-saturation map (Figure 7) shows the percentage of soil saturation, which describes
the relationship between current soil-water storage compared to the maximum soil-water
storage simulated with the HBV model in the reference period 1981–2010. In this work, the
degree of soil saturation was used for the estimation of the background rainfall rate (IZLT).
Such a parameter represents the steady (initial) surface flux, which can usually be approxi-
mated by the average precipitation in recent weeks or months that is needed to maintain
the initial conditions [22]. However, information about methods for estimating IZLT is rare
in the literature. If the soil is saturated, IZLT can be the same as hydraulic conductivity,
while it can be zero for dry soil. For this reason, several authors [42–45] calculated this
parameter as a fraction of the hydraulic conductivity considering the long-term weather
conditions prior the investigated period. Thus, we spatially varied the background rainfall
rate as a function of the degree of soil-saturation map available for both the events: the
higher the degree of saturation, the higher the IZLT value, with the maximum value equal
to Ks for Sr = 100%. In this respect, the degree of saturation simulated by the HBV model
accounts for the contribution of all the hydrologic processes on the slopes, including the
snowmelt, which had a relevant role in developing the instability conditions during the
2013 event. Finally, the rainfall field related to the 2011 and 2013 events was obtained from
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hourly meteorological radar measurements operated by the Norwegian Meteorological
Institute (Figure 8).
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3. Results and Discussions

The results of the numerical simulations are presented in Figure 9 in terms of temporal
evolution of slope instability at the catchment scale for the 2011 event. It is important to
note that just before rainfall occurs (12 p.m.), no cell is indicated as unstable by the model.
After a progressive increase of the instability level in the following hours, the most critical
phase verifies between 12 a.m. and 1 a.m., when the number of unstable cells jumps from
10,878 to 30,262 in response to a high rainfall peak (Table 3). Afterwards, only a slight
increase in the number of unstable cells is predicted until the end of the rainfall event (11
a.m.). In the case of the 2013 event, the TRIGRS simulations describe a different temporal
evolution of the event. In particular, the onset of the most critical conditions occurs since
the beginning of rainfall, and the increase of unstable cells is more continuous than in
the 2011 case (Table 3). At the end of the event, 52,415 cells result as unstable, against
33,692 simulated for the 2011 event. This result emphasizes how the higher soil-moisture
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content in 2013 represents a more critical initial condition, which leads to a higher number
of unstable cells against a lower rainfall intensity. However, in both cases the timing of the
occurrence of the landslides substantially agrees with the actual sequence of the events.
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Table 3. Number of unstable cells predicted by TRIGRS at different times during the 2011 and 2013
event.

Time (2011) N. of Unstable Cells (2011) Time (2013) N. of Unstable Cells (2013)

12 p.m. 0 7 a.m. 0
12 a.m. 10,878 11 a.m. 21,299
1 a.m. 30,262 1 p.m. 46,300

11 a.m. 33,692 12 a.m. 52,415

After the reconstruction of the instability scenarios over time, we evaluated the spatial
predictability of the failure process through a ROC (receiver operating characteristic)
curve analysis. Thus, we compared the two FS maps corresponding to the final state of
both events (i.e., 11 a.m. and 12 a.m., for 2011 and 2013 events, respectively) with the
two inventories of the source areas, in order to verify if the model was able to catch the
actually unstable areas (TP-True Positive) and, at the same time, to minimize the number
of erroneous failure predictions over stable areas (FP-False Positive). Specifically, the curve
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relates, for different threshold values, the True Positive Rate (TPR) with the False Positive
Rate (FPR), that can be calculated as:

TPR = TP/(TP + FN) (4)

FPR = FP/(FP + TN) (5)

where TN and FN are, respectively, the number of correct and wrong nonfailure predictions.
The ROC curve allows quantifying the predictive capability of the model: the larger the
area under curve (AUC), the better the prediction (Figure 10). In this respect, AUC is
equal to 0.940 for the 2011 event, while it is slightly higher for the 2013 event (0.947).
Furthermore, in both cases the percentage of TPs, with respect to the total landslide areas,
is quite high (i.e., 74.6% and 86% for 2011 and 2013 event, respectively). Although such
an outcome appears very satisfactory, it is fair to highlight that a large part of this result
is related to the higher proportion of stable observations with respect to unstable ones,
which turns also into very high TN values for both events (Tables 4 and 5). As regards
the “unstable” areas, even the graphical comparison between the two final FS maps and
the spatial distribution of the source areas shows a general overestimation of the actual
slope instability, in particular for the 2013 event (Figure 11). This overestimation can be
partially explained by the poor information available on several input parameters. In this
respect, we performed a sensitivity analysis for evaluating the weight of each parameter
on the back-analysis results. Specifically, the mean values derived from [27] for five input
parameters (Table 1) were varied according to the corresponding standard deviations. We
also assumed single soil-thickness values for “shallow” and “thick” glacial deposits, always
on the basis of the values reported in [27]. Considering that the 2013 event is characterized
by the most critical initial soil-moisture conditions, we decided to reproduce only this event
for emphasizing the effect of the parameter variation on the slope stability conditions. The
results of the analysis (Table 6) show that the soil mechanical parameters (friction angle
and cohesion) greatly affect the simulation outcome in terms of number of unstable cells,
since even small variations can induce conditions of complete stability or instability. On the
contrary, soil unit weight has a significantly lower impact, which is comparable with that
of the hydraulic conductivity, while the hydraulic diffusivity does not induce any variation
in the final number of unstable cells (at least within the considered range of values). As
regards the soil thickness, a not negligible number of slope failures can be noticed from
the very beginning of the event, while at the end an underestimation and overestimation
of the instability processes results, respectively, with the lowest and highest thickness
values. The latter result then suggests that the use of single soil-thickness values over large
areas represent an oversimplification that may induce a distorted estimation of the slope
instabilities. However, it is important to stress that estimating the spatial variation of the
soil thickness and other input parameters at the catchment scale is not straightforward:
in our opinion, this point represents the main drawback of physically based models such
as TRIGRS. Another limitation of the model concerns the difficulty to simulate complex
triggering mechanisms. However, as it is shown in this work, an in-depth analysis of the
parameterization process allows consideration of different hydrologic processes occurring
on the slopes, including the snowmelt. Furthermore, TRIGRS can be applied over areas
with incomplete landslide inventories. The latter aspect represents a clear advantage over
other methods for landslide susceptibility studies (such as heuristic and statistical ones),
even though it would still be better to validate the resulting susceptibility map through the
comparison with actual landslide scenarios, as shown in this work.
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Table 4. Number of correct and false predictions resulting from TRIGRS simulations for the 2011 event.

2011
Predicted

0—Stable 1—Unstable

Observed
0—Stable

TN FP N. of Stable Observations
1,193,631 72,188 1,265,819

1—Unstable
FN TP N. of Unstable Observations
892 2620 3512

N. of Stable Predictions N. of Unstable Predictions Total N. of Observations and
Predictions

1,194,523 74,808 1,269,331

Table 5. Number of correct and false predictions resulting from TRIGRS simulations for the 2013 event.

2013
Predicted

0—Stable 1—Unstable

Observed
0—Stable

TN FP N. of Stable Observations
1,186,063 84,603 1,270,666

1—Unstable
FN TP N. of Unstable Observations
170 1049 1219

N. of Stable Predictions N. of Unstable Predictions Total N. of Observations and
Predictions

1,186,233 85,652 1,271,885

Table 6. Outcome of the sensitivity analysis performed on several input parameters of the TRIGRS model, considering the
2013 landslide event.

Parameter Mean Value Standard
Deviation

Value for Sensitivity
Analysis

(±st. dev.)

Early n.
Unstable

Cells

Difference
with

Values
Table 3

Final n.
Unstable

Cells

Difference
with

Values in
Table 3

Friction angle (ϕ’) 32 3.2
28.8 0 0 100,856 +48,441

35.2 0 0 0 −52,415

Cohesion (c’) 4 1.5
2.5 0 0 134,432 +82,017

5.5 0 0 0 −52,415

Soil unit weight (γ) 20 0.4
19.6 0 0 54,231 +1816

20.4 0 0 50,693 −1722

Hydraulic conductivity (Ks) 1 × 10−5 2.5 × 10−6 7.5 × 10−6 0 0 48,193 −4222

1.25 × 10−5 0 0 54,681 +2266

Hydraulic diffusivity (D0) 4 × 10−4 5 × 10−5 3.5 × 10−4 0 0 52,415 0

4.5 × 10−4 0 0 52,415 0

Soil thickness (H) 1.2 (thick) 0.8 (shallow) 0.3
0.9 (thick) 0.5 (shallow) 884 +884 25,919 −26,496

1.5 (thick) 1.1 (shallow) 40,775 +40,775 129,107 +76,692
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4. Conclusions

In this work we applied a well-known numerical model for rainfall-induced landslide
prediction (TRIGRS) in a context where different hydrologic processes occur on the slopes,
including snowmelt. In this sense, we put great efforts into exploiting the existing data
available over large areas, trying to define a reliable procedure for the definition of the input
parameters required by the model. The results of the performed numerical simulations
indicate that TRIGRS is able to reproduce the 2011 and 2013 landslide events, at least in
terms of temporal evolution of the instability process. In this respect, it is worth noting
the role of the initial conditions in the timing of occurrence of shallow landslides. In
fact, the instability arises quite early in the 2013 case due to the wetter initial conditions.
Furthermore, the number of unstable cells at the end of the event is higher than that of 2011
event, despite the lower rainfall intensity. Regarding the spatial-predictive capability of
the model, the ROC analyses indicate high values of AUC in both cases, although TRIGRS
tends to overestimate the unstable areas, probably due to a degree of uncertainty around
the estimation of input values. In this sense, a sensitivity analysis performed on several
input parameters suggests that the soil mechanical parameters and the soil thickness have
the greatest impact on the slope-stability conditions. Future efforts should then focus
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on innovative methods and techniques for the definition of input parameters over large
areas, which can enhance the reliability of landslide scenarios depicted by physically based
models such as TRIGRS.
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