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Abstract The detection and location capability of the
International Monitoring System for small seismic
events in the continental and oceanic regions surround-
ing the Sea of Japan is determined mainly by three pri-
mary seismic arrays: USRK, KSRS, and MJAR. Body
wave arrivals are coherent on USRK and KSRS up to
frequencies of around 4 Hz and classical array process-
ingmethods can detect and extract features formost re-
gional signals on these stations. We demonstrate how
empirical matched field processing (EMFP), a genera-
lization of frequency-wavenumber or f-k analysis, can
contribute to calibrated direction estimates which miti-
gate bias resulting from near-station geological struc-
ture. It does this by comparing the narrowband phase
shifts between the signals ondifferent sensors, observed
at a given time, with corresponding measurements on
signals from historical seismic events. The EMFP
detection statistic is usually evaluated as a function of
source location rather than slowness space and the size
of the geographical footprint valid for EMFP templates
is affected by array geometry, the available signal
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bandwidth, and Earth structure over the propagation
path. The MJAR array has similar dimensions to
KSRS but is sited in far more complex geology which
results in poor parameter estimates with classical
f-k analysis for all signals lacking energy at 1 Hz
or below. EMFP mitigates the signal incoherence to
some degree but the geographical footprint valid for a
given matched field template on MJAR is very small.
Spectrogram beamforming provides a robust detection
algorithm for high-frequency signals at MJAR. The
array aperture is large enough that f-k analysis per-
formed on continuous AR-AIC functions, calculated
from optimally bandpass-filtered signals at the differ-
ent sites, can provide robust slowness estimates for
regional P-waves. Given a significantly higher SNR
for regional S-phases on the horizontal components
of the 3-component site of MJAR, we would expect
incoherent detection and estimation of S-phases to
improve with 3-component sensors at all sites. Given
the diversity of the IMS stations, and the diversity
of the methods which provide optimal results for a
given station, we advocate the development of seis-
mic processing pipelines which can process highly
heterogeneous inputs to help associate characteristics
of the incoming signals with physical events.
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1 Introduction

We define a seismic array to be a set of seis-
mometers, distributed in a spatial pattern, with the
distance between seismometer sites typically sig-
nificantly shorter than the distance from source to
receiver. Array stations are central to the global mon-
itoring of seismic disturbances which could consti-
tute breaches of the Comprehensive Nuclear-Test-Ban
Treaty (CTBT). At present, 24 stations of the pri-
mary seismic network of the International Monitoring
System (IMS) are arrays and, in most cases, they
demonstrably provide a superior detection capabil-
ity to 3-component stations (Kværna and Ringdal
2013). The performance superiority comes both from
the ability to improve the signal-to-noise ratio (SNR)
through delay-and-stack beamforming and from the
ability to obtain robust estimates for the backazimuth
and slowness of a signal using spatial analysis of the
arriving wavefront. This helps the phase association
process greatly by indicating both the likely identity
of a seismic arrival and the direction it came from.
However, the performance of an array for a given
signal will depend upon the frequency content of a
signal, the array geometry, and the local geological
conditions.

The IMS seismic arrays have very diverse geome-
tries, with apertures ranging from a few hundred
meters to many tens of kilometres (Gibbons 2014). A
small array (with an aperture of 1 or 2 km) will likely
provide excellent detection and estimation capabil-
ity for high-frequency regional phases but poor noise
suppression and low-resolution slowness estimation
for lower frequency teleseismic arrivals. A very large
array (with aperture of above 20 km) will provide high
array gain and high-resolution slowness estimation
for teleseismic arrivals but inadequate signal coher-
ence for regional signals. Different procedures have
attempted to mitigate the difficulties caused by the
array geometry. Gibbons et al. (2008) use spectrogram
beampacking to facilitate detection and estimation
of high-frequency signals on large aperture arrays
while Selby (2013) exploits the spatial pattern of the
coherent noise-field to improve the performance of
teleseismic signal detection and estimation on medium
and small aperture arrays.

The region surrounding the Sea of Japan (Fig. 1)
is an exceptionally interesting region in test-ban treaty
monitoring. In addition to the presence of the North

Korean nuclear test site, there are many regions of
high natural seismicity with the capability of gen-
erating very large and damaging earthquakes with
potentially extensive aftershock sequences. Accurate
and robust detection and location of seismic events in
the region, covering a wide range of magnitudes, is
crucial both for regional and global seismic monitor-
ing. The detection capability for the smallest seismic
events in the region is determined by three primary
IMS seismic arrays: USRK (Ussuriysk, Russian Fed-
eration), KSRS (Wonju, South Korea), and MJAR
(Matsushiro, Japan). These three stations have very
different geometries and signal coherence attributes;
the IMS network in the region provides a useful lab-
oratory for exploring the performance of processing
algorithms.

In Fig. 1 is marked a single earthquake, offshore
to the South of Honshu, Japan, with magnitude 4.6.
Throughout this paper, we will use recordings of sig-
nals from this earthquake on the three seismic arrays
to demonstrate generic properties of the stations for
signal processing relevant to CTBT monitoring. The
algorithms presented in this paper were tested on
many different seismic events but, for demonstration
purposes, we chose a single event which fulfilled a
number of requirements. First, the magnitude is of rel-
evance for low to medium yield nuclear explosions.
Second, the event was recorded well by all three arrays
without data outages or faults. Third, it is part of a con-
tinuous band of seismicity such that we can observe
the degree to which detection statistics apply to nearby
events.

In Section 2, we pay special attention to the per-
formance of these three stations using classical array
processing: frequency-wavenumber or f-k analysis.
How does direction estimation perform for signals in
different frequency bands on the three different arrays,
and under which circumstances do classical proce-
dures break down? Which consequences might this
have for CTBT monitoring in the region?

Harris and Kværna (2010) demonstrated how
empirical matched field processing (EMFP), a gen-
eralization of f-k analysis, could be applied to clas-
sifying signals on seismic arrays. In particular, it
was demonstrated how EMFP could differentiate
between sources of explosions far closer to each other
than could be resolved by f-k analysis: both in the-
ory and practice. The scattering of seismic energy
along the path, which degrades the performance of
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Fig. 1 Seismicity surrounding the Sea of Japan in the years
2008–2016 taken from the Reviewed Event Bulletin (REB)
of the International Data Center (IDC) for the Comprehensive
Nuclear-Test-Ban Treaty Organization (CTBTO). Only events
with REB phase readings from each of the three primary seis-
mic arrays USRK, KSRS, and MJAR are displayed. The star

indicates the location of the North Korean Punggye-ri nuclear
test site with great circle lines to the 3 arrays in the region.
The white open square indicates the location of a magnitude 4.6
earthquake with REB location 32.67oN, 138.12oE and depth
323 km at time 07:42:52 UT on January 2, 2009

plane-wavefront f-k analysis, deforms the incoming
wavefield and leaves a narrowband spatial seismic
fingerprint on the observing array which is recog-
nized and exploited by EMFP. Gibbons et al. (2017)
demonstrated how EMFP could be applied to obtain-
ing unbiased estimates of backazimuth and apparent
velocity on a small aperture seismic array by com-
paring incoming wavefronts with a bank of EMFP
templates constructed from previous observations. It
appears that structure close to the SPITS array deflects
the incoming wavefront, resulting in large biases
in these parameters which need correcting prior to
phase association and event location. Mapping the
EMFP templates to sources in geographical space can
provide indirect estimates of these parameters that

are in principle unbiased. In Section 3, we apply
the procedure described in Gibbons et al. (2017)
to the USRK, KSRS, and MJAR arrays and
evaluate its performance on arrays of increas-
ing aperture. We investigate how EMFP could
mitigate problems associated with classical array
processing.

In Section 4, we consider the special case of the
MJAR array. The scattering of high-frequency seismic
energy at this station has demonstrably proved prob-
lematic in the detection and correct classification of
arrivals from events at regional distances. In addition
to EMFP, we explore a refined incoherent signal pro-
cessing procedure to make more robust seismic phase
identification.
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While the main focus of this paper is improving
the reliability of estimates for the traditional param-
eters used in the event-building seismic processing
pipeline, we note that the geographical parameter
space which forms the basis for EMFP may point to
fundamentally different ways of interpreting seismic
signals. Could EMFP facilitate a more general form of
seismic pipeline processing? We conclude with some
perspectives for future development.

2 Classical array processing on IMS arrays in the
Sea of Japan region

Figure 2 shows the geometries of the three arrays
KSRS, USRK, and MJAR, drawn to the same scale.
While USRK is typical of the small to medium aper-
ture 9-element arrays developed especially for the
IMS, with an aperture of around 4 km, the inner-
most elements are exceptionally closely spaced. KSRS
and MJAR are medium aperture arrays with diam-
eters of around 12 km. However, as Gibbons and
Ringdal (2012) demonstrate, the signal coherence
properties at KSRS and MJAR are very different, in
particular for regional signals. Alongside each map
are broadband frequency-wavenumber spectra in two
different frequency bands for the first arriving P-
wave at the stations from the earthquake marked
in Fig. 1.

Each of the slowness estimate panels in Fig. 2 dis-
plays a projection of the incoming seismic energy
into a 2-dimensional parameter space: (sx, sy). It is
assumed that the seismic signal propagates as a planar
wavefront with the time of arrival, ti , at seismometer
site i given explicitly as

ti = t0 − r i .s (1)

where s = (sx, sy) is called the slowness vector. The
magnitude of the slowness vector,

sh =
√

s2x + s2y , is the inverse of the apparent veloc-

ity: vapp = 1/sh. The scalars sx and sy are related to
the backazimuth, Θ , with sx = sh sin(Θ) and sy =
sh cos(Θ). t0 is the time at which the wavefront passes
over the reference site with absolute location R0. The
coordinates of instrument i at the absolute location Ri

are specified relative to R0 with

r i = Ri − R0. (2)

The slowness components sx and sy have units s/km,
and the eastward and northward components of the
relative position vector r i have units of km.

Both the relative position vectors r i and the slow-
ness vectors s have vertical components rz and sz
although these are usually neglected on the grounds
that the differences in elevation between sensors in
the array is typically significantly smaller than the
horizontal distances between sensors.

There are many ways of evaluating which slowness
vectors, s, best describe a given incoming wavefront
(e.g. Rost and Thomas 2009; Ruigrok et al. 2017). IfN
is the number of sites in our array then we can define
for a single frequency ω, and slowness vector s, a so-
called steering vector of N complex numbers given by

ε(ω, s) =
[
e−iωs.r1 . . . e−iωs.r i . . . e−iωs.rN

]T

.

(3)

The energy incident on an array with this particular
single-frequency plane wavefront hypothesis can be
expressed by

P(ω, s) = ε(ω, s)H C(ω)ε(ω, s) (4)

where C(ω) is the covariance matrix, evaluated on
the waveform data, and H the Hermitian transpose
operator. The covariance matrix has dimensions N

by N with element Clm(ω) defining the relationship
between vl(t) and vm(t), the time-series belonging to
channels l and m, with

Clm(ω) =
∫

dτχlm(τ)e−iωτ (5)

where χlm(τ) is the correlation between the two wave-
forms with

χlm(τ) =
∫

dγ w(γ ) w(γ +τ) vl(γ ) vm(γ +τ) (6)

for a windowing (boxcar) functionw(t)which isolates
the data-window of interest.

A challenge in estimating the narrowband covari-
ance matrices from real-world seismic array data is
the transience of coherent seismic signals with a given
phase velocity, meaning that the phase shifts often
need to be evaluated on very short data windows.
The multitaper coherence routines of Prieto et al.
(2009) have been found to be particularly robust for
making accurate estimates of C(ω). For increased
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Fig. 2 For each of the primary seismic array stations USRK,
KSRS, and MJAR, we display the array geometry (left), and
broadband f-k estimates for the first arriving P-wave from the
January 2, 2009, earthquake in the 1–5 Hz band (center) and

the 2–5 Hz band (right). Each f-k estimate was made using a 4-
s-long data segment starting at the times 07:45:38.85 (USRK),
07:45:07.35 (KSRS), and 07:43:56.675 (MJAR)

stability, and reduced sensitivity to the spectral content
of the signal and noise, we typically consider a rela-
tive beam-power summed incoherently over a range of
distinct frequencies, k, giving a broadband estimator

P̂ (s) =
∑

k ε(ωk, s)
H C(ωk)ε(ωk, s)∑

k tr {C(ωk)} (7)

Evaluating this quantity over a dense grid of slowness
vectors, s, provides a plot which gives an analyst an
intuitive indication of the azimuthal direction a wave
came from, how fast it appears to propagate over the
array (identifying it as, e.g. teleseismic P, regional P,
regional S), and the confidence with which we can
attach to the measurement.
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The frequency bands considered in Fig. 2 are 1–
5 Hz and 2–5 Hz.

These two bands were chosen as they differ only
by the energy below 2 Hz which is usually present
for medium to large seismic events and largely absent
in the signals from lower-magnitude events in the
study region, as observed at the three IMS arrays
considered.

Comparing the 1–5 Hz and 2–5 Hz panels for each
of the stations in Fig. 2 demonstrates how significant
this low-frequency energy is in generating a robust
and plausible direction estimate using f-k analysis.
For the arrays USRK and KSRS, the slowness esti-
mate for this regional signal is qualitatively identical
for the two frequency bands; that is to say that we
obtain a similar backazimuth (direction) and appar-
ent velocity and the same identification of phase type
(a Pn-type regional arrival). For both arrays however,
the relative f-k power (array gain) is lower for the 2–
5 Hz band, with more significant sidelobes and greater
asymmetry in the f-k pattern.

For the MJAR array, a qualitatively different slow-
ness estimate results from the 2–5 Hz band. Whereas
the 1–5 Hz band indicates a Pn arrival from the
south, the 2–5 Hz band has a maximum at one of
the sidelobes and returns an S-wave velocity from the
south-east. The estimate without the 1–2 Hz frequency
energy has generated a qualitatively misleading anal-
ysis of this signal arrival and this would affect all
subsequent stages of the phase association and event
generation procedure. The MJAR example displayed
in Fig. 2 is typical. Gibbons et al. (2008) show a sim-
ilar phenomenon for the Pn arrival from the October
8, 2006, declared DPRK nuclear test. In that case,
there is little energy above the noise level between 1
and 2 Hz. For the first four declared North Korean
nuclear tests (October 8, 2006, May 25, 2009, Febru-
ary 12, 2013, and January 6, 2016) theMJAR array did
not contribute to the fully automatic event hypothe-
ses issued by the CTBT International Data Center in
their Standard Event List 3 (SEL3). All the explosions
were well recorded by the array but the parame-
ter estimation capability did not result in estimates
which could be associated with the event hypothe-
ses. (The larger explosions on September 9, 2016,
and September 3, 2017, did result in signals with
accurate slowness estimates for the MJAR Pn arrivals
and these do contribute to the SEL3 reports for these
events).

An analyst familiar with operational processing on
a given network of seismic arrays will develop an intu-
ition for how the slowness plots appear for different
types of signals, in different frequency bands. Which
frequency bands provide robust estimates on a given
array station? Examining the slowness grids together
with the array geometries (c.f. Fig. 2) provides a level
of insight into to the properties of the slowness grids.
However, significant bias in estimates, or low-quality
estimates resulting from signal incoherence, is only
learned empirically.

3 Empirical matched field processing: projecting
wavefield measurements into geographical space

Harris and Kværna (2010) demonstrated an empiri-
cal form of array signal processing, empirical matched
field processing or EMFP, that could identify the
origin of seismic signals generated by sources far
closer to each other than the array should be able
to resolve under classical considerations. The sources
were mines, located within a few kilometres of each
other, situated over 400 km away from the ARCES
small aperture seismic array. A ground truth database
of signals from explosions known to have taken place
at each of the mines was used to build up a cali-
bration set of waveforms from which measurements
could be used to classify subsequent signals for which
the source was not known.

Instead of testing a hypothesis that an incoming
wavefront matches a set of phase shifts corresponding
to a plane wavefront with slowness vector s, we test
the hypothesis that the incoming wavefront matches a
set of phase shifts consistent with previous observa-
tions from a given source. We can arbitrarily denote
an arrival from a source of interest α. This may, for
example, refer to a Pn phase from a given site, an Sn,
or Lg, phase from the same site, or first arrivals from
all seismic events within a very limited geographical
footprint.

Specifically, we replace the expression in Eq. 7 with

P̂ (α) =
∑

k ε(ωk, α)H C(ωk)ε(ωk, α)∑
k tr {C(ωk)} (8)

where ε(ωk, α) are the empirical steering vectors cor-
responding to the arrivals with the classification α

and are the eigenvectors of the covariance matrices
C(ωk, α) measured from the calibration dataset. In the
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source classification problem addressed by Harris and
Kværna (2010), a number of alternative hypotheses,
αm, were tested where the indices m indicate differ-
ent mines. The empirical steering vectors, ε(ωk, αm)

were generated from Pn arrivals from Ground Truth
explosions that took place at mine m. For each signal
of unknown origin in the test dataset, the mine of ori-
gin was assumed to be the one for which the operator
in Eq. 8 was largest. This classification is conceptually
no different from the broadband slowness grids dis-
played in Fig. 2. Each grid simply displays evaluations
of Ns × Ns alternative hypotheses of wave propaga-
tion using different plane-wave rather than empirical
models. In almost all cases, the correct source, m,
was selected. Differences in the scattering of the seis-
mic wavefield along the marginally different pathways
from each source were sufficient to give a slightly
better match with the steering vectors from the true
source than with the alternative hypotheses.

In principle, an empirical steering vector ε(ωk, α)

can be obtained from a covariance matrix C(ωk, α)

evaluated for a single segment of array data, from the
signals generated by one event. However, elements of
this covariance matrix may be unrepresentative of the
population of events from that source: possibly due to
noise or imperfections in the data. In practice, where
possible, we estimate an ensemble covariance matrix
C(ωk, α) averaged over a representative sample of
signals from events at the source of interest:

C(ωk, α) =
∑

ε∈α C(ωk, αε)∑
ε∈α 1

(9)

with care being taken to ensure that all elements of
covariance matrices are present for all signals. If data
is missing from one or more channels of the array for
a given event, the corresponding rows and columns of
the covariance matrix will be zero. If it is unavoidable
to use events, ε, for which there is missing data then
the denominator in Eq. 9 will need to be adjusted for
each element of the covariance matrix to consider the
true number of contributions to that element.

In classical plane-wave f-k analysis, we typically
choose a single component of the wavefield, most
often the vertical component. This is because the
propagation model assumes that the waveforms are
identical on all channels except for the time-delays
between the signals at the different sites. In EMFP,
for 3-component seismic arrays, we can in principle
include all components of the wavefield such that vl(t)

and vm(t) do not necessarily need to measure the same
component of ground motion. The elements of the
covariance matrices are just estimates of the coher-
ence and phase differences between pairs of channels
without any underlying assumptions about the relation
between the signals; the steering vectors are simply
the eigenvectors of these covariance matrices. How-
ever, the contributions to the covariance matrices from
the cross-component pairs of channels are likely to be
far less significant than the contributions from channel
pairs with the same component of ground motion. Fur-
ther work will be required to explore the performance
gain possible from including multiple components
in the same system on seismic arrays where this is
possible.

In this paper, we consider only vertical compo-
nent sensors. In fact, we have no choice; all of the
arrays USRK, KSRS, and MJAR consist of vertical-
only seismometer sites, with the exception of a lone
3-component station in each of the arrays.

Before we construct the ensemble covariance
matrix, we should test the internal consistency of
the elements contributing to it. Ringdal et al. (2009)
demonstrate an attempt to classify seismic signals
from two very closely spaced mines using two com-
peting empirical matched field steering vectors. The
classification was relatively unsuccessful, with several
of the events at one of the mines being incorrectly
attributed to the other mine. A cluster analysis of
the empirical steering vectors from individual calibra-
tion events for one of the mines showed two distinct
populations with rather different sets of phase shifts
between the narrowband signals on different sensors.
Mines and quarries are seismically highly heteroge-
neous with voids and free surfaces which may result
in different radiation for different sequences of shots
within the same complex (e.g. McLaughlin et al.
2004). Forming two different ensemble covariance
matrices from each of the populations of events at this
mine allowed for a far more robust and accurate signal
classification.

In the applications described above, the primary
focus was source identification. EMFP was a signifi-
cantly better signal classifier than waveform correla-
tion. One reason for the poor performance of correla-
tion is that the explosions are ripple-fired sequences,
resulting in very different temporal forms of the sig-
nals. The estimates of the narrow-band coherence and
phase-shifts are relatively insensitive to the temporal
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form of the signal and the elements of the covariance
matrices, and corresponding elements of the eigenvec-
tors, are relatively stable characteristics of the event
populations.

Gibbons et al. (2017) describe a slightly different
application of EMFP. There, the aim was to provide
parameter estimates for incoming wavefronts at a seis-
mic array which provide a best possible indication of
the direction the signal comes from. In other words,
they wanted to provide a visual impression, analogous
to the slowness grids in Fig. 2, which helps an analyst
to interpret the incoming signal but which is not lim-
ited by the limitations of the plane-wave model. Gib-
bons et al. (2017) focused on the very small aperture
(1-km diameter) SPITS array on the Arctic island of
Spitsbergen. Due to the small aperture, signal coher-
ence is relatively high for the frequencies of interest
in regional seismic monitoring. However, likely due
to structure very close to the array, there is often
significant bias in both the backazimuth and appar-
ent velocities measured (see Gibbons et al. 2011).
It was demonstrated that a geographical labelling of
empirical steering vectors, where each classification
α considered is associated with the epicenter of the
earthquake which generated the calibration signal,
allowed an indirect estimate of the backazimuth and
slowness that was not significantly biased.

The three primary IMS seismic arrays surrounding
the Sea of Japan are very different from the SPITS
array studied by Gibbons et al. (2017). The array
apertures are far larger and we have already seen
that signal incoherence can generate difficulties. How
applicable is this form of EMFP to signal characteri-
zation to the Asian seismic arrays? Figure 3 displays
the waveforms of the signal from the January 2, 2009,
earthquake on each of the elements of the USRK array.
The slowness grids in the top row of Fig. 2 were calcu-
lated using the data near the signal arrival from exactly
these signals. The signal at USRK from this earth-
quake is impulsive and has a high SNR. The central
panel of Fig. 3 displays the coherence and phase-shifts
between each pair of sensors measured for two dis-
crete frequencies: 1.25 Hz and 3.75 Hz. If r l and rm

denote the relative (Cartesian) position vectors of sites
l and m then the coherence and phase shift between
channels m and l is displayed at the location rm − r l .
The set of these locations is called the co-array and
displaying the phase relationships superimposed onto
this geometry (as opposed to a simple N by N matrix)

allows us to see if time-shifts between sensors are
associated with a consistent direction. Since the size of
the symbols is proportional to the coherence between
the sensors, we also see how the waveform similarity
diminishes with distance between the sensors.

The relative sparsity of the USRK array means that
there are significant gaps in the co-array, and coherent
spatial patterns of phase-shifts are difficult to discern.
To the right of Fig. 3, we display how these phase
shifts would appear if the wave had propagated across
the array according to the plane-wave assumption. All
the symbols to the right are sized to indicate perfect
coherence. The colours and the superimposed dashed
lines to the right provide the impression of a wave
approaching from the correct direction with alternat-
ing red and blue bands cutting across the co-array. The
1.25 Hz evaluation contains essentially a single cycle
while the 3.75 Hz panel indicates four or so cycles
across the co-array aperture. The differences between
the empirical and theoretical phase shifts indicates
the degree to which the incoming seismic wavefield
deviates from the plane-wave model.

Figure 4 (right) displays a magnification of a short
time-window at the onset of the signal displayed in
Fig. 3. Here, we see directly not only the moveout of
the signals across the array but also how the tempo-
ral form of the signal varies from sensor to sensor.
The human eye can perform a visual cluster analysis
on these signals and discern clear groupings of simi-
lar waveforms. Differences in the shape of the signals
on the different sensors explain the less than perfect
coherence values (size of symbols in Fig. 3). Differ-
ences in the colour of symbols in Fig. 3) along the
superimposed theoretical wavefronts indicate that the
time-delays measured between the pairs of sensors at
the indicated frequencies is different to that predicted
by the plane-wave propagation model. To the left of
Fig. 4, we display the “matched field statistics” as for-
mulated in Eq. 8 evaluated for the covariance matrix
measured at the time 07:45:38.850 GMT on January
2, 2009, and an empirical steering vector ε(ωk, α) for
the first arriving P-wave for each of the seismic events
displayed.

A single steering vector is calculated for each of
the events displayed; in other words, we have not
attempted to calculate an ensemble covariance matrix
as discussed earlier. Each covariance matrix was eval-
uated over the nine vertical channels of the array
for a data window with length 256 samples (6.4 s)
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Fig. 3 Signals at USRK SHZ array sensors (trace normalized)
for the January 2, 2009, earthquake (left) and bubble-plot rep-
resentations of the signal coherence and phase-shifts between
sensor pairs (right). The symbols are scaled linearly with coher-
ence and the largest symbols displayed have coherence 1.0.
The dashed blue and red lines represent wavefronts of the
propagating plane wave with the predicted backazimuth and

apparent velocity for the frequencies indicated. Both theoreti-
cal (plane-wave model) and measured phase shifts are displayed
for narrow frequency bands centered on the frequencies as indi-
cated (details in text). Measurements are made on a 6.4-s-long
data segment starting at a time 07:45:38.850. A zoom-in on
the waveforms within the measurement window is shown in the
right-hand panel of Fig. 4

and frequency bands between 1.09 and 5.00 Hz. The
matched field statistics are uniformly weighted aver-
ages over this entire broad frequency band. We see
the highest values of the matched field statistic are
obtained for steering vectors calculated from seis-
mic events close to the great circle path between
the source and receiver. The matched field statistic
diminishes the further the template event is from this
fixed backazimuth path. It is noted that the events
close to the USRK array in the same direction have
relatively low matched field statistics. Most of these
are deep earthquakes with the wavefield arriving from
a far steeper angle than is the case for earthquakes in
Japan.

There are clear parallels between the maps of geo-
graphically evaluated matched field statistics (Fig. 4)
and the plane wavefront projections displayed in the
uppermost panels of Fig. 2. Both types of plot indicate
a direction from the array from which the wave-
front has most likely arrived. The slowness plots
cover densely theoretical angles of approach below
the array, and the indicated direction may differ from
the true direction due to heterogeneity and diffrac-
tion close to the array. The geographical estimates
likely correct for bias in the direction estimate, but are
sampled sparsely: only at coordinates at which pre-
viously observed seismic events have been located.
This limitation almost guarantees the continuation
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Fig. 4 Geographical matched field direction estimates on
the USRK array, integrated over discrete frequencies between
1.09 and 5.0 Hz. Empirical matched field statistics calculated
between the covariance matrix evaluated for the regional P
arrival at the USRK array at a time 2009–002:07.45.38.850
and the steering vectors calculated from the covariance

matrices evaluated for the first P arrival at USRK for each of the
events indicated. The star denotes the location of the earthquake
with origin time 2009–002:07.42.51.34 and epicenter (33.72,
138.15). Station to source backazimuth is 153.4circ at a distance
1279 km. To the right is a zoom-in of the signal arrival displayed
in Fig. 3

of classical plane-wave f-k analysis for the study of
incoming wavefields regardless of progress in empir-
ical signal processing; a correct identification of a
wavefront arriving from a location that no previous
seismic events have been observed is fundamental
to test-ban treaty monitoring. However, we iden-
tify a clear potential for returning enhanced param-
eter estimates for situations in which there exists
an steering vector for an empirical source α for
which

P̂ (α) > P̂ (s) (10)

for all theoretical slowness vectors s.
Figure 5 shows the signal from the 2009 earthquake

recorded on the KSRS array together with the phase-
relationships between the different sites displayed on
the co-array. The panels of Fig. 5 are entirely analo-
gous to the corresponding panels of Fig. 3, regarding
the frequencies, the colour scheme, and the quantities

displayed. We note that the x- and y-axes of the “bub-
ble plots” are different for the larger aperture KSRS
array. The greater number of sites in the array (19 ver-
sus 9) and their spatial distribution results in a more
uniform covering for elements of the co-array. The
banded pattern of phase-shifts is far clearer for the
KSRS array than for USRK. The empirically mea-
sured phase shifts for 1.25 Hz in Fig. 5 reproduce the
pattern of bands from the theoretical steering vectors
well. The diminishing signal coherence as a function
of distance between sensors is clearer in Fig. 5 than
in Fig. 3. For the higher frequency of 3.75 Hz, the
banded pattern is difficult to discern for the empiri-
cal phase shifts and the coherence is universally lower.
The fall-off of symbol size with distance from the cen-
ter of the plot is less clear for the 3.75 Hz panel than
for the 1.25 Hz panel, with some anomalously large
symbols displayed for pairs of sensors with large inter-
site distances. This is a warning sign that we may
be measuring rather coincidental waveform similarity
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Fig. 5 Signals at the KSRS SHZ array sensors (trace normal-
ized) for the January 2, 2009, earthquake (left) and bubble-
plot representations of the signal coherence and phase-shifts
between sensor pairs (right). The symbols are scaled linearly
with coherence and the largest symbols displayed have coher-
ence 1.0. The dashed blue and red lines represent wavefronts of
the propagating plane wave with the predicted backazimuth and

apparent velocity for the frequencies indicated. Both theoreti-
cal (plane-wave model) and measured phase shifts are displayed
for narrow frequency bands centered on the frequencies as indi-
cated (details in text). Measurements are made on a 6.4-s-long
data segment starting at a time 07:45:07.350. A zoom-in on
the waveforms within the measurement window is shown in the
right-hand panel of Fig. 6

that may not be characteristic of general wavefronts
from that particular source region.

Figure 6 displays a close-up of the first arrival on
KSRS from this earthquake. We see a larger moveout
of the signal onsets (with over a second between first
and last arrivals) and, again, a clear spatial clustering
of the signal shapes on sensors in different parts of the
array. Comparing the spatial distribution of matched
field statistics in Fig. 6 with that in Fig. 4 is similar
to comparing the slowness grids in the first and sec-
ond rows of Fig. 2. Just as the peak in slowness space
was smaller and more compact for the larger KSRS
array than the smaller USRK array, the earthquake
epicenters which display an elevated matched field
(MF) statistic on KSRS form a much thinner band

surrounding the great circle path between the source
and receiver than the corresponding epicenters in the
USRK plot. The values of the MF statistics are gener-
ally lower for KSRS than for USRK. On the smaller
aperture USRK array, the signal moveouts are smaller
and earthquakes from a far larger region result in simi-
lar temporal shifts. The number of degrees of freedom
and the size of the moveouts on KSRS are greater; it
is more difficult to match the moveouts/phase-shifts if
the sources are not in very similar locations.

Figure 7 shows the signals from the same earth-
quake on the MJAR array. At just over 300 km, this
array is considerably closer to the source than the other
two arrays. Since the backazimuth from station to the
source is 181circ (almost due South), the red and blue
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Fig. 6 Geographical matched field direction estimates on
the KSRS array, integrated over discrete frequencies between
1.09 and 5.0 Hz. Empirical matched field statistics calculated
between the covariance matrix evaluated for the regional P
arrival at the KSRS array at a time 2009–002:07.45.07.350
and the steering vectors calculated from the covariance

matrices evaluated for the first P arrival at KSRS for each of the
events indicated. The star denotes the location of the earthquake
with origin time 2009–002:07.42.51.34 and epicenter (33.72,
138.15). Station to source backazimuth is 110.9circ at a distance
1017 km. To the right is a zoom-in of the signal arrival displayed
in Fig. 5

bands are approximately horizontal. The empirical
coherence and phase-shifts measurements at 1.25 Hz
indicate a clear blue band for sensors with the shortest
inter-site distances in the North-South direction. How-
ever, the size of the symbols diminishes rapidly for
greater inter-site distances: a clear indicator of lacking
signal coherence. For the 3.75 Hz panel, there is even
less of clear correspondence between symbol colour
and the colour of the superimposed dashed lines.

Given these coherence properties at the array, we
should not be surprised by the geographical distri-
bution of the MF statistics in Fig. 8. A preliminary
examination of the waveforms themselves emphasize
the signal dissimilarity which makes coherent pro-
cessing of high-frequency signals on this array so
problematic. While waveforms on selected subsets of
neighbouring stations show similarity, the overall lack
of coherent wavelet to align would mean that a human
analyst would struggle to align signals visually. The
only earthquake epicenters for which the empirical

MF statistics are significantly above the background
level are to the South of the station. However, unlike
for the USRK and KSRS arrays, the elevated MF
statistics do not form a clear band surrounding the
Great Circle path between source and receiver. An
almost co-located earthquake should indeed generate
similar phase shifts across the array to the refer-
ence event but, given the coherence patterns displayed
in Fig. 7, the significance of these similarities may
not be sufficient to make a robust direction indica-
tor. As a “spotlight detector” (i.e. a detector which
only triggers on events from the immediate vicin-
ity of the reference event) we would need a very
large number of reference event steering vectors to
cover existing seismicity, with a more or less unknown
capability for events some distance from reference
events.

In this section, we have covered only a small range
of the possibilities that EMFP provides for reduced-
bias parameter estimation on array stations in the
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Fig. 7 Signals at the MJAR HHZ, HHN and HHE array sen-
sors (trace normalized) for the January 2, 2009, earthquake
(left) and bubble-plot representations of the signal coherence
and phase-shifts between sensor pairs (right). The symbols are
scaled linearly with coherence and the largest symbols dis-
played have coherence 1.0. The dashed blue and red lines
represent wavefronts of the propagating plane wave with the
predicted backazimuth and apparent velocity for the frequencies

indicated. Both theoretical (plane-wave model) and measured
phase shifts are displayed for narrow frequency bands centered
on the frequencies as indicated (details in text). Measurements
are made on a 6.4 s long data segment starting at a time
07:43:56.675. A zoom-in on the waveforms within the measure-
ment window is shown in the right-hand panel of Fig. 8. Note
that traces from the three-component station are not used in the
array processing

region around the Sea of Japan. For example, in con-
sidering only a wide-band estimator, we have not stud-
ied how the performance varies with frequency band.
However, we have hopefully demonstrated the trans-
portability of the matched field estimators from very
small aperture arrays to significantly larger deploy-
ments and explained the associated limitations. The
geographical parameter spaces displayed in Figs. 4,
6, and 8 are potentially powerful tools for advanced
phase association algorithms when these projections
are combined for different stations with complemen-
tary parameters such as arrival times.

4 Incoherent processing for high-frequency signals
at MJAR

There are numerous situations where we would ide-
ally perform coherent array processing to estimate
propagation parameters of seismic wavefronts, but are
prevented from doing so because of signal dissimi-
larity. Gibbons et al. (2008) demonstrate how robust
estimates for high-frequency regional seismic signals
can be obtained for a large aperture seismic array
by calculating and transforming spectrograms prior
to delay-and-stack beamforming. Similar procedures
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Fig. 8 Geographical matched field direction estimates on
the MJAR array, integrated over discrete frequencies between
1.09 and 5.0 Hz. Empirical matched field statistics calculated
between the covariance matrix evaluated for the regional P
arrival at the MJAR array at a time 2009–002:07.43.56.675
and the steering vectors calculated from the covariance

matrices evaluated for the first P arrival at MJAR for each of the
events indicated. The star denotes the location of the earthquake
with origin time 2009–002:07.42.51.34 and epicenter (33.72,
138.15). Station to source backazimuth is 181.0circ at a distance
313 km. To the right is a zoom-in of the signal arrival displayed
in Fig. 7

were later applied to the detection and classification of
ground-coupled airwaves from volcanoes over sparse
seismic networks (Fee et al. 2016) and to parameter
estimation for seismic signals on large Ocean Bot-
tom Seismometer networks (Krüger et al. 2020). In
each of these studies, the incoherent method is both
possible and effective due to the relatively large move-
outs of the signal arrivals over the large aperture
arrays/networks.

The problem of coherent estimation of regional
phases on MJAR was addressed by Gibbons et al.
(2008) and it was demonstrated that spectrogram
beamforming provided an efficient signal detector
and a parameter estimator that provided qualitatively
correct slowness estimates more reliably than coher-
ent f-k analysis. However, due to differences in the
shapes of the transformed spectrograms, the incoher-
ent slowness estimates displayed considerable spread.
Gibbons (2014) demonstrated that this problem could
be mitigated by smoothing the spectrogram beamgrids
with an estimate of the array response function for a

wavefront with a period appropriate for the temporal
scale of spectrogram onsets.

In this section, we demonstrate a strategy for
improving incoherent slowness estimates at MJAR
using a slightly different approach. Instead of time-
domain stacking of the incoherent detection statistic
traces, Krüger et al. (2020) apply a bandpass fil-
ter in a suitably low-frequency band in order that
coherent f-k analysis can be performed. This filter-
ing captures those features of the detection statistic
traces which are common to all sensors in the net-
work and appears to provide more robust estimates
than the smoothing operator proposed by Gibbons
(2014). The Auto-Regressive Akaike Information Cri-
terion (AR-AIC) method for signal onset estimation
(e.g. Leonard and Kennett (1999, 2000), and refer-
ences therein) has become a workhorse for automatic
refinement of phase arrival time, and may constitute
a higher accuracy onset-time indicator than the trans-
formed spectrograms. Gibbons et al. (2016) demon-
strated a modification to the AR-AIC procedure which
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produces a continuous detection statistic with an
exceptionally robust arrival time. We demonstrate here
a mini-workflow which combines these techniques in
a new procedure for slowness estimation on MJAR.

The spectrogram beamforming procedure of Gib-
bons et al. (2008) provides an approximate signal
onset time for each channel, together with an estimate
of the frequency range in which the greatest SNR is to
be found. Since we are not processing the waveforms
coherently, we can consider far higher frequencies
than we would if we were to insist on some degree
of waveform similarity between sensors. Figure 9a
displays the raw waveforms on the vertical compo-
nent sites of MJAR for the 2009 earthquake. Panel b

displays the same waveforms following bandpass fil-
tering in a frequency band deemed to be optimal for
the SNR. There are no hard and fast rules as to which
frequency band to use. One alternative is to estimate
from spectrograms or a cascade of filtered seismo-
grams, another is to specify a fixed band (e.g. 2–8 Hz,
3–12 Hz). Even over the 12-km aperture of MJAR, we
see a moveout of the traces on the different sensors.
We also see great differences between the temporal
forms of the signals on different channels.

Figure 9c displays the continuous AR-AIC detec-
tion statistic demonstrated by Gibbons et al. (2016)
for each of the channels in panel b. Unlike the spec-
trograms, which depend upon the rate of change

January 2, 2009 UT MJAR array
07:43:40 07:44:00 07:44:20 07:43:40 07:44:00 07:44:20

07:43:40 07:44:00 07:44:20 07:43:40 07:44:00 07:44:20
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c)

d)

Raw data

BB-filtered (optimal band) BB-filtered (0.3-0.6 Hz)
(AR-AIC traces)

Continuous
AR-AIC trace.

Fig. 9 Stages of preparation of MJAR array data for an inco-
herent slowness estimate of a high-frequency regional signal. a
Raw waveforms from each of the vertical sensors of the MJAR
array, b bandpass-filtered in an optimal frequency band, c cal-
culation of continuous AR-AIC detection statistic traces using a
uniform set of parameters, and d bandpass filtering of the traces

in panel c in the frequency band 0.3–0.6 Hz. The maxima of
the filtered AR-AIC traces (panel d) are not to be interpreted as
indications of the signal onset-times. The time-delays between
the maxima in the unfiltered AR-AIC traces (panel c) determine
the phase shifts between the wavelets of the traces in panel d
from which the direction of arrival is estimated
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of energy in the signal in the different frequency
bands, the shapes of the continuous AR-AIC functions
depend upon the variance of the error in the linear pre-
diction traces for the individual traces—and are less
sensitive to the signal amplitudes. While the times of
the local maxima of two AR-AIC traces may be insuf-
ficiently accurate to estimate robust relative delay-
times between the signal arrivals, the general shapes of
the AR-AIC traces are remarkably consistent between
sensors and are mostly dependent upon the parame-
ters of the AR-AIC estimates (e.g. the length of the
AR-models, the length of the data-window used for
measuring the AR-coefficients, and the length of the
linear prediction window). The effect of the fine detail
of the signal onset, which determines the exact time of
the AR-AIC local maximum, is removed by subjecting
the AR-AIC function to a lower frequency bandpass
(e.g. 0.3–0.6 Hz). This is essentially the procedure
applied by Krüger et al. (2020) and the resulting
traces are displayed in Fig. 9d). The bandpass filtered
AR-AIC detection statistic traces appear as almost
identical wavelets, between which the phase shifts
appear to correspond very well with the delay-times
between the signal arrivals.

In a final stage, we perform broadband f-k analysis
on these bandpass filtered AR-AIC wavelets (Fig. 10).
The f-k spectrum has a broad peak as would be antic-
ipated for the frequency band selected. However, the

fall-off of relative power is well-behaved and we can
have high confidence in the location of the peak in
(Sx, Sy)-space. There is no danger of selecting a spuri-
ous sidelobe. A backazimuth of 175.6circ is returned,
approximately 5circ off the estimated Great Circle
path from the Reviewed Event Bulletin location esti-
mate. However, other agencies’ location estimates for
this earthquake (ISC 2020) display some deviation
from the CTBTO estimate and many of the estimates
result in a backazimuth with a far smaller residual. The
primary caveat to this method for an array with the
dimensions of MJAR is the requirement of significant
SNR on each trace. Whereas classical f-k analysis can
estimate correctly the direction of a coherent incom-
ing wavefield below the noise level, the incoherent
method requires a visible signal (e.g. SNR over 2) on
a significant subset of the sensors used Gibbons et al.
(2008).

5 Conclusions and discussion

Monitoring compliance with the Comprehensive
Nuclear-Test-Ban Treaty using the International Mon-
itoring System requires that the signals generated by
a nuclear explosion be detected, correctly interpreted,
and associated with an accurate source hypothesis. We
have focussed on the region surrounding the Sea of
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Fig. 10 A condensed step-wise summary of the incoherent processing algorithm (left) and coherent broadband f-k estimate of the
bandpass filtered AR-AIC traces (right)
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Japan. This region is both a prolific source of seis-
mic signals from natural earthquakes and a region
of intense monitoring scrutiny. The only nuclear test
explosions to have taken place since the turn of the
century have taken place at the Punggye-ri Nuclear
Test Site in North Korea. The detection capability for
this region is dominated by three primary IMS seismic
array stations: USRK (Russian Federation), KSRS
(South Korea), and MJAR (Japan). Understanding the
properties of these three stations is key to evaluat-
ing and improving the monitoring capability for the
region.

We have presented the geometries of the stations
together with a discussion of the ability of the sta-
tions to characterize seismic signals. Many of the
properties can be explained by the geometry alone.
Others, such as the lack of signal coherence at MJAR,
have needed to be found out empirically. We have
demonstrated how empirical matched field process-
ing (EMFP) can provide an alternative interpretation
of seismic signals, mapping back into a geographical
parameter space as opposed to a slowness space. On
one level, this may allow for indirect estimations of
the fundamental slowness parameters, apparent veloc-
ity, and backazimuth. Such estimates are likely to be
subject to less bias than estimates made directly using
a plane wavefront assumption since EMFP calibrates
for persistent bias in measurement of wavefronts arriv-
ing from a given source. EMFPmitigates loss of signal
coherence to a point, in that wavefronts that show
persistent deviations from the plane-wave model can
be correctly identified and classified. EMFP allows a
calibration which changes with frequency.

Augmenting sets of plane-wave steering vectors
with empirical vectors from sources of interest is
likely to improve the ability to identify and resolve
sources. Processing pipelines in which EMFP plays a
major role will require dynamically updated banks of
templates in order to correctly characterize all seis-
mic signals observed so far. There needs to be an
understanding of how to maintain and update the set
of available templates. Our sensitivity studies have
demonstrated that on small aperture arrays, a rela-
tively small number of templates is likely to cover the
geographical parameter space admirably. On a small
aperture array, you can detect a phase from an earth-
quake at a location A using a template calibrated from
an event at a location B with a considerable distance
between the sources A and B. As the aperture of the

seismic array increases, the geographical footprint of
a matched field template from a given source will
decrease. The KSRS array would require far more
empirical templates than the USRK array to provide
adequate coverage of the same regions.

We have demonstrated the difficulties in slowness
estimation of high-frequency regional signals on the
MJAR primary seismic array in Japan. Spectrogram
beamforming provides a powerful means of detecting
high-frequency regional signals on this station, but the
corresponding incoherent slowness estimates for such
phases are often poor, mainly due to the relatively
small aperture of the array. We suggest an alternative
procedure for enhanced incoherent slowness estimates
whereby

1. The high-frequency signals are bandpass filtered
in an optimal frequency band

2. A continuous AR-AIC detection statistic is calcu-
lated for each of the traces

3. The AR-AIC traces are bandpass filtered in a
lower frequency band

4. Coherent broadband f-k analysis is performed on
the filtered AR-AIC traces.

The filtering of the AR-AIC traces close to the
time of the local maxima results in a remarkably
similar set of wavelets which are far more coherent
across the array aperture than the transformed spec-
trograms as presented in Gibbons et al. (2008). Like
the spectrogram method, the AR-AIC incoherent esti-
mation procedure requires a somewhat higher SNR
for each channel than is, in principle, required by
coherent array processing. However, the incoherent
procedure described here obtains stable slowness esti-
mates for high-SNR signals for which coherent array
processing fails. This is why we advocate its use as a
supplementary pipeline process.

The performance of the AR-AIC-based procedure
for regional S-waves at MJAR is typically poor due
to the low SNR of the Sn waves on the vertical com-
ponent sensors. We see in Fig. 7 that, for the case
demonstrated here, the amplitudes and SNR of the
S-phases are significantly higher for the horizontal
components of MJAR than on the vertical. However,
there is only a single site with horizontal components
and so we cannot estimate the slowness vector for
S-phases over the array using the workflow described
above. The improvement in SNR of S-phases going
from vertical only to a 3-component array can only be
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determined by experimenting. Gibbons et al. (2019)
showed that the increase in SNR for S-phases on the
horizontal components at the ARCES array was mod-
est; but that the spatial coherence of the horizontal-
component S-phases was far higher than on the
vertical components. Given the degree of signal inco-
herence demonstrated at MJAR in this paper, it seems
unlikely that a modest improvement in the signal
coherence for S-phases on the horizontal component
sensors would be sufficient to provide robust direction
estimates.

We have demonstrated that there are many
approaches to signal detection and classification that
provide very different kinds of output and very dif-
ferent levels of performance on the three array sta-
tions considered. Looking further afield, and includ-
ing many different types of stations, will diversify
still the range of methods needed to provide opti-
mal characterization of the global wavefield. Methods
for processing general seismic processing pipelines
are changing. In the coming years, we are likely to
see a replacement of the Global Association system
for generating event hypotheses with the NET-VISA
Machine Learning approach (Le Bras et al. 2020).
Elsewhere in seismology, machine learning and deep
learning are making steady progress into operational
signal detection and characterization (Ross et al. 2018)
and reliable real-time signal classification (Meier et al.
2019). Comprehensive overviews into applications of
machine learning have recently been published both
for seismology (Kong et al. 2019) and, more generally,
acoustics (Bianco et al. 2019).

The problem of backazimuth estimation using 3-
component stations using deep neural networks is
addressed by Dickey et al. (2020) and it is likely
that a similar procedure could be extended to sen-
sor arrays. Advances in machine learning in seismic
processing pipelines may result in us thinking dif-
ferently about which inputs are needed for optimal
monitoring and we may end up running many paral-
lel processing pipelines, generating very diverse out-
puts. Our fundamental task is to input raw waveform
data and output a comprehensive and accurate report
of all seismic disturbances. We recognize that there
will be many ways of reaching this goal from the
available raw data and that advances in data process-
ing and machine learning may accelerate the speed
with which we need to re-evaluate our operational
pipelines.
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