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Abstract: Leak-off pressure (LOP) is a key parameter to determine the allowable weight of drilling
mud in a well and the in situ horizontal stress. The LOP test is run in situ and is frequently used
by the petroleum industry. If the well pressure exceeds the LOP, wellbore instability may occur,
with hydraulic fracturing and large mud losses in the formation. A reliable prediction of LOP is
required to ensure safe and economical drilling operations. The prediction of LOP is challenging
because it is affected by the usually complex earlier geological loading history, and the values of LOP
and their measurements can vary significantly geospatially. This paper investigates the ability of
machine learning algorithms to predict leak-off pressure on the basis of geospatial information of
LOP measurements. About 3000 LOP test data were collected from 1800 exploration wells offshore
Norway. Three machine learning algorithms (the deep neural network (DNN), random forest (RF),
and support vector machine (SVM) algorithms) optimized by three hyperparameter search methods
(the grid search, randomized search and Bayesian search) were compared with multivariate regression
analysis. The Bayesian search algorithm needed fewer iterations than the grid search algorithms to
find an optimal combination of hyperparameters. The three machine learning algorithms showed
better performance than the multivariate linear regression when the features of the geospatial inputs
were properly scaled. The RF algorithm gave the most promising results regardless of data scaling.
If the data were not scaled, the DNN and SVM algorithms, even with optimized parameters, did
not provide significantly improved test scores compared to the multivariate regression analysis.
The analyses also showed that when the number of data points in a geographical setting is much
smaller than that of other geographical areas, the prediction accuracy reduces significantly.

Keywords: leak-off pressure; machine learning; hyperparameter optimization; geospatial informa-
tion

1. Introduction

The leak-off pressure (LOP) is the pressure in a well that can onset leakage of fluid in
a formation. If the well pressure exceeds the LOP, the excess pressure can cause serious
wellbore instability, for example, lost circulation and mud loss and hydro-fracturing [1].
The leak-off pressure is an important input to ensure safe and economical drilling operation
offshore. It determines the upper limit of the mud-weight window that avoids well
fracturing. LOP pressures are usually measured from leak-off tests, which pressurize a well
after drilling below a new casing shoe and measures the deflexion point on the linear curve
of the measured well pressure versus injection volume. As an alternative to in situ well
tests, the fracture gradients can be estimated from an elastic uniaxial strain model [2–4] or
empirical correlations obtained from a database of leak-off test results [5]. However, the
alternatives to in situ LOP tests are usually only used as preliminary or supplementary
estimates because those alternative methods, especially models considering the depths as
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only geospatial input parameters, cannot consider the effects of 3D geospatial effects that
have been induced by non-linear geological processes on the LOP [6].

Over the past decade, machine learning (ML) has received increasing interest as a
novel and successful approach to predict different aspects of predictions. Machine learning
presents outstanding advantages in recognizing and predicting “hidden” patterns and
relationships among variables. Conventional methods are usually based on pre-defined
and deterministic relationships between inputs and outputs (e.g., linear, polynomial as
well as non-linear equations). Machine learning modeling offers flexibility in defining the
relationship(s) between inputs and outputs and an ability to represent complex phenomena
more accurately. In geoscience, ML algorithms have been actively adopted only within
some areas that have a big seismic database (e.g., seismic interpretation [7,8]) or periodic
monitoring database [9]. However, in general, ML algorithms have been rarely introduced
in the geosciences because of a limited number of public-accessible data in the geosciences.
In particular, for LOP prediction, a limited amount of publicly-available data has been a
main barrier in data-driven prediction (e.g., ML algorithms). Industrial standards for LOP
prediction have been field testing. The field tests are quite costly and mostly performed by
non-public oil and gas companies. Thus, the field test results have been mostly non-public
operator-owned data. However, the recent development of a public domain database
provided by NPD (Norwegian Petroleum Directorate) [10] make it able to obtain a mean-
ingful number of data points for the data-driven approach with the data of the Norwegian
continental margin. Recently, deep neural networks (DNN) have been tested to predict
the leak-off pressure using the public domain data [11]. The DNN predicted a LOP better
than a conventional multivariate linear regression model. The prediction can, however, be
significantly affected by the selection of the hyperparameters [11,12]. A hyperparameter
in ML is one that controls the learning process, while non-hyperparameters are the ones
that are derived via training. In addition, different ML algorithms can result in differ-
ent predictions. Deep neural networks (DNN) have resulted in a superior performance
compared to other machine learning algorithms when the input data are complex and in
very large quantities (order of millions). However, most databases in the geosciences have
a limited number of data (often less than tens of thousands) and the data are generally
spatially-scattered. For the limited and spatially scattered datasets, the performance of
different ML algorithms is not well reported in the geosciences community.

The present study tested three ML algorithms: the deep neural network (DNN), sup-
port vector machine (SVM), and random forest (RF) regression algorithms to predict LOP
offshore Norway using weakly correlated geospatial information. Three hyperparameter
search algorithms, the grid search, randomized search, and Bayesian search, were tested to
optimize the parameters for the ML algorithms. The accuracy and calculation time of each
ML algorithm were then compared in terms of their ability to predict the in situ LOP.

2. Database

The Norwegian Petroleum Directorate (NPD) provides large open databases on
petroleum activities on the Norwegian continental shelf. The information can be accessed
through NPD’s fact pages [10]. NPD’s fact pages include information from about 1800 ex-
ploration wells and more than 4600 development wells. The wellbore database includes
not only wellbore information (i.e., name, location, purpose, drilling depth, drilling and
operation date, and operator) but also detailed well and core information (e.g., history,
lithostratigraphy, composite logs, geochemical information, drilling mud, and leak-off
tests). All attributes are tagged in HTML. The large database freely available from NPD
makes LOP data a very accessible dataset to work with. The database is of high significance
for the research community with no access to the site-specific industry data.

To collect the LOP test information, a code was developed using an open source
python library Beautiful Soup 4 [13]. In total, the NPD database includes about 3000 leak-
off pressure test data from 1800 exploration wells. The LOP tests are grouped in three
geographical areas: the North Sea, the Norwegian Sea, and the Barents Sea (Figure 1).
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Figure 1. Leak-off pressure values collected from the Norwegian Petroleum Directorate (NPD) database (left) and geo-
graphical location of the three datasets (right).

This study used geospatial information (the water depth, spatial coordinates, and the
measured depths) as input features of the machine learning models to predict the leak-off
pressures. The database analyzed comprised 1943 data points from the North Sea, 708 from
the Norwegian Sea, and 268 from the Barents Sea. The data were from around 1800 wells and
some wells had several data points if the well tests were performed in the different depths.
Statistical information of the leak-off pressure values are summarized in Table 1. The data
showed that the mean and standard deviation (SD) of leak-off pressure on the Norwegian
Continental Shelf was 1.72 and 0.24 g/cm3, respectively. Comparing the statistics of each
geographical area (Figure 2), the Barents Sea showed more scatter in the leak-off pressure
(i.e., SD = 0.29) than the other two geographical areas (SD = 0.23 and 0.24).

Table 2 summarizes the statistics of the geospatial information in the three geograph-
ical areas: measured depth in mbsl (meters below sea level), water depth in m, latitude
in ◦ and longitude in ◦. The LOP-values as a function of the geospatial parameters can be
found in Figure 3. In the North Sea, the top of the petroleum reservoirs is often between
1500 and 3000 m below sea level. The LOP tests are usually conducted near the reservoir,
with the casing shoe located at the caprock of reservoirs. The mean depth was shallower
for the Barents Sea. The LOP data showed more scatter than the other two areas (the
green outlier dots on Figure 3). The scatter may be related to the glacier erosion and uplift
processes, which resulted in overconsolidation in the Barents Sea over the last few millions
of years [14].
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Table 1. Statistics of leak-off pressures in analysis.

Geographical
Area

Number of Data
Points

LOP EMW a [g/cm3]

Mean SD b Min c 25% d 50% e 75% f Max g

North Sea 1943 1.74 0.23 1.02 1.59 1.74 1.89 2.53
Norwegian Sea 708 1.69 0.24 1.02 1.51 1.70 1.87 2.36

Barents Sea 268 1.65 0.29 1.03 1.47 1.62 1.80 2.87

All NCS h 2919 1.72 0.24 1.02 1.57 1.73 1.88 2.87
a Equivalent mud weight, b Standard deviation, c Minimum LOP in measured data, d–f 25, 50, 75 percentile, g Maximum LOP in measured
data, h Norwegian Continental Shelf.Geosciences 2021, 11, x FOR PEER REVIEW 4 of 17 
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Table 2. Statistics of geospatial information for leak-off pressures in the analyses.

Geographical
Area

TVD MSLa [m] Water Depth [m] Latitude [◦] Longitude [◦]
Mean SD Mean SD Mean SD Mean SD

North Sea 1905.7 1147.9 162.7 105.5 59.46 1.78 2.67 0.67
Norwegian Sea 2054.8 1123.6 420.9 313.1 65.08 0.99 6.96 1.36

Barents Sea 1417.2 845.1 333.3 131.2 71.94 0.65 21.95 2.86

All NCS 1901.7 1122.9 238.6 211.3 61.90 4.17 5.37 5.52
a True vertical depth below mean sea level.
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3. Machine Learning Algorithms

In this study, three machine learning models to predict the LOP were compared:
deep neural network (DNN), random forest (RF), and support vector machine (SVM).
The analyses were carried out in the Python programming environment with the machine
learning package of Scikit-learn [15] for the RF and SVM model and the Keras [16] with
TensorFlow backbone [17] for the DNN model.

3.1. Deep Neural Network

Deep neural networks (DNN) are a member of the deep learning family, which enables
the formulation of strong regressor or classifier models. The main parts of the structure
of a DNN include activation functions, the number and type of hidden layers and nodes,
optimization algorithm, and loss function [18]. The rectified linear unit (ReLU) has been
shown to enhance efficiency of the optimization [19], and therefore was adopted for the
input and hidden layers. The activation function for the output layer was determined
through optimization between ReLU and a linear unit. To avoid overfitting that could occur
in fully connected NN architectures, some connections between neurons were randomly
ignored using a drop-out technique. Learning rate and the dropout percentage were also
optimized to avoid overfitting.

3.2. Random Forest (RF)

The random forest (RF) algorithm is an “ensemble” machine learning method for
classification and regression. It consists of the construction of multiple decision trees [20].
The RF algorithm generates uncorrelated decision trees that operate together. The RF
algorithm, with its ensemble of random decision trees, forms a forest to develop a more
accurate prediction. Each tree is grown based on a re-sampling (bootstrap aggregating)
technique. A classification and regression procedure is established through a random
group of variables selected at each tree node. To ensure reliable predictions, at least two
conditions should be verified: the selected variables should have some predictive ability;
the different decision tree models need to be uncorrelated [21].

3.3. Support Vector Machine

The support vector machine (SVM) algorithm is a nonlinear regression forecasting
method [22]. SVM models map data into a high-dimensional feature space through a non-
linear transformation and then does linear regression within that space [23]. Particle swarm
optimization (PSO) is applied to search for the optimal parameters of the SVM model.
Inspired from the feeding behavior of a bird flock, the PSO is used for solving optimization
problems [24], where each particle in the algorithm is regarded as a potential solution to
the optimization problem. A fitness function is defined to search for the optimal solution
in the entire solution space.

3.4. Performance Indicators for Machine Learning (ML) Models

To measure and compare the performance of the ML models for predicting the leak-off
pressure, two performance indicators were adopted in this study: the root mean square
error (RMSE) and the coefficient of determination R2. Lower RMSE values (with minimum
of 0) and a higher R2-value (with maximum of 1) reflect good accuracy.

3.5. Hyperparameter Search Algorithms

The performance of machine learning algorithms can depend on the selected hyper-
parameters that control the learning process (e.g., number of hidden layers in a neural
network, number of leaves in a tree-based model, etc.) [12]. To find an optimal set of
hyperparameters resulting in the best performance, this study tested three algorithms: a
grid search, a random search, and a Bayesian search algorithm. Each method seeks to
find the set of parameters that give the highest score of the mean k-fold cross-validation.
The k-fold cross-validation splits the train dataset into k subsets and trains the model using
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k-1 subsets and validates the trained model with the remaining k subset. This training and
validation process is repeated k times by changing the subsets used for the training and
testing. The mean validation score of each score is the final performance indicator.

The grid search algorithm [25] checks all different combinations of hyperparameters
and finds the combination that results in the highest averaged validation score. It is
straightforward and robust since it examines all possible combinations, but it is also very
time-consuming. The random search algorithm [26] generates a random combination of
hyperparameters and searches for the hyperparameter resulting in the best performance.
The random search can be more efficient than the grid search if the random sets are well
distributed in the parameter space. However, the accuracy can depend on the number of
random trials. The Bayesian search algorithm [27] can efficiently optimize hyperparameters
by building and updating a probability of hypothetical model of the real objective function
that can sometimes be non-linear, non-convex, and implicit. It builds a surrogate probability
model of the objective function. Through iteration, the algorithm selects the most promising
hyperparameter(s) with an acquisition function based on the performance of the best
performed surrogate model and updates it. The gaussian processes and the expected
improvement were used as the surrogate model and the acquisition function for the
Bayesian optimization algorithm, respectively. Other hyper parameters were set as the
default value of the Scikit-optimize model [28].

4. Results of Analyses
4.1. Correlation Analysis of Leak-Off Pressure (LOP) Data

Correlation analysis and feature selection is an important step of the data pre-processing.
Table 3 summarizes the Pearson correlation coefficients r and p-values between the leak-off
pressure and the geospatial parameters. In this study, p-value was used to examine whether
two variables were correlated, and the r-value was used to quantify the correlation strength
between two variables. The p-value used in this study was used to evaluate how well the null
hypothesis, which assumes that the correlation between two variables occurred by chance,
can be rejected. If the p-value is high, it supports the null hypothesis and indicates that the
two variables are likely to have no correlation and occurred by chance. However, a low
p-value means that the null hypothesis can be rejected and there may be a correlation between
two variables. When the significance threshold of 0.05 is applied to the p-value, the tested
geospatial information seems to have statistically meaningful correlation with LOP in general.
However, the latitude of the Barents Sea and the longitude of the North Sea showed high
p-values (0.598 and 0.723, respectively) and indicates that there is no statistically meaningful
correlation to the LOPs. Using the correlation classification in Table 4, the strength of the
correlations was tested. The LOP in the North Sea only showed moderate correlation with
measured depth (r of 0.64). For the Norwegian Sea, the LOP showed moderate correlation
with measured depth (r of 0.58) and water depth (r of −0.42). For the Barents Sea, the
LOP showed low correlation with measured depth (r of 0.25) and water depth (r of −0.22).
The very low correlation coefficients for latitude and longitude indicate that these parameters
may have a minor effect on the LOP.
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Table 3. Pearson correlation coefficients r and the p-value between leak-off pressure (LOP) and geospatial information.

LOP
Geographical

Location

Depth of LOP
Measurement Water Depth Latitude Longitude

r p-Value r p-Value r p-Value r p-Value

North Sea 0.64 <0.001 −0.17 <0.001 −0.23 <0.001 −0.01 0.723
Norwegian Sea 0.58 <0.001 −0.42 <0.001 −0.10 0.028 0.15 <0.001

Barents Sea 0.25 0.004 −0.22 0.001 −0.07 0.598 0.16 0.004

All NCS 0.57 <0.001 −0.29 <0.001 −0.18 <0.001 −0.08 <0.001

Table 4. Correlation classification used for this study. Modified from Hinkle et al. [29].

Absolute Correlation Coefficient r Interpretation

0.9–1.0 Very strong
0.7–0.9 Strong
0.4–0.7 Moderate
0.2–0.4 Weak
0.0–0.2 Negligible

4.2. Pre-Processed Data

This study used 80% of the dataset for training and the 20% of the dataset to test the
ML models. When the data were split, the proportion of the original dataset (i.e., North
Sea:Norwegian Sea:Barents Sea~19:7:3) was kept similar for the training and testing
datasets. Figure 4 shows the histograms of the probabilistic density of the training and
testing datasets. The training dataset was split into five subsets, and four of the subsets
were used to train the model and the fifth one was used to validate the model. This was
done iteratively, which is known as a 5-fold cross-validation, and was used to avoid overfit-
ting. The training and testing datasets were then normalized using feature scaling to bring
them into the same order of magnitude of differences between different measurements.
Two types of feature scaling were used. The “standardization” approach transformed
the data to zero mean and unit variance, and the “min-max normalization” scaled the
data to a range between 0 to 1. The probabilistic densities of the unscaled and the two
scaled datasets are shown in Figure 5. Figure 5 shows that without scaling, the values
of LOP varied by two to three orders of magnitude. For example, the water depth and
the measured depth range were 51–1721 m and 169–6619 m, respectively. Latitude and
longitude (in ◦) varied over a much smaller range (62–74◦ and 1–31◦). The normalization
results in a much narrower range of values, which are easier to work with.
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4.3. Accuracy and Calculation Time for Three Hyperparameter Optimization Methods

The hyperparameter optimization algorithms were tested to compare performance.
The comparison study used RF algorithms as reference ML algorithms. Seven hyperparam-
eters were optimized: the number of trees in the forest (i.e., n_estimator), the number of
features to consider when looking for the best split (i.e., max_features), the maximum depth
of the tree (i.e., max_depth), the minimum number of samples required to split an internal
node (i.e., min_samples_split), the minimum number of samples required to be at a leaf
node (i.e., min_samples_leaf), the Boolean data related to a reuse of the previous solution
for the “ensemble” (i.e., warm_start), and the Boolean data on whether bootstrap samples
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are used when building trees (i.e., bootstrap). The training datasets were normalized with
the min-max normalization technique.

Figure 6 presents the following results: the highest mean validation score, which
is an index describing model accuracy, increases with number of iterations and time.
The validation score is calculated from the average of k-folds cross validation scores.
The best validation score of the Bayesian search appears to increase gradually, whereas the
grid search takes a much longer time. If one compares the accuracy and optimization time
of the three algorithms in Table 5, the test scores are similar, with an R2 coefficient close
to 0.57. The test scores can be lower than the validation scores, as illustrated in Figure 6.
The grid search algorithm took a longer optimization time because it searches among every
possible combination of hyperparameters.
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Table 5. Accuracy and calculation times for three hyperparameter optimization methods.

Performance Parameter Grid Search Random Search Bayesian Search

Accuracy of test
dataset

RMSE a 0.158 0.157 0.158
R2 b 0.567 0.572 0.570

Accuracy of
train dataset

RMSE 0.055 0.079 0.055
R2 0.945 0.889 0.946

Total calculation time [s] 10,795.5 733.2 1251.9
Number of iterations 4536 100 100

Calculation time per iteration [s] 2.4 7.3 12.5
a. root-mean-square error, b. coefficient of determination.

To investigate the efficiency of the optimization, the values for seven hyperparameters
optimized by the Bayesian search algorithm were compared with the sample spaces during
optimization (Figure 7). Theoretically, the sample spaces for both the grid search and
random search should be uniform. The generated sample spaces for those two algorithms
look rather uniform in Figure 7. Non-uniform sample spaces for some parameters are
related to non-uniform search spaces (e.g., search space of the n-estimator for the grid
search is [100,200,400,600,800,1000] but other algorithms have the space from 1 to 1000).
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The Bayesian search generated more samples close to the optimal hyperparameter
because it suggests a new set of the most promising hyperparameters based on the previous
observation. This results in the Bayesian search becoming more effective as the number of
iterations increases.

4.4. Accuracy and Calculation Time for Three Machine Learning Algorithms

The three machine learning algorithms were used to model the datasets. The input
data were normalized with the min-max normalization. The hyper parameters of three
ML models (e.g., the number of layers and the number of nodes for each layer for the
DNN model, the maximum depth of layers and the number of nodes for each layer for the
DNN model, the maximum depth of the tree, and the number of trees in the forest for RF
model) were optimized with the Bayesian search algorithm. The search range and optimal
value of the hyperparameters for the three ML algorithms are summarized in Table 6.
The machine learning model performance was compared with the results of multivariate
linear regression.
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Table 6. Search range and optimized hyperparameters for the tested ML algorithms.

ML Algorithms Hyperparameters Search Range Optimized Value

RF

max_depth 1–100 63
max_features [‘auto’, ‘sqrt’, ‘log2’] sqrt

min_samples_leaf 1–5 1
min_samples_split 2–10 2

n_estimators 1–1000 782
bootstrap [True, False] TRUE

warm_start [True, False] True

SVM
C 1–1000 1

gamma 0.01–100 69.077

DNN

batch_size 10–1000 345
epochs 100–1000 892
n_layer 1–10 5

n_node_in_layer 4–1024 958
drop_out_percent 0–0.9 0.05

learning_rate 0.0001–0.01 0.0008
activation_output [Relu, Linear] Relu

The calculated test score and required train time are summarized in Table 7. The three
machine learning algorithms showed higher test scores (R2 coefficient of 0.53–0.57) than
the multivariate linear regression (R2 coefficient of 0.42). The random forest model resulted
in a higher test score (0.57) than the other two machine learning models. In terms of
efficiency, the random forest regression resulted in a higher mean validation score and
shorter optimization times than the deep neural network model, as shown in Figure 8.

Table 7. Test scores and calculation times for three machine learning algorithms.

Test Score
Multivariate

Linear
Regression

RF SVM DNN

RMSE 0.184 0.157 0.164 0.162
R2 0.416 0.573 0.534 0.547

Calculation time
[s] <1 996 283 47,853
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The model inputs were also normalized by the standardization approach instead of the
min-max normalization. The test scores remained quite similar (Figure 9). However, when
the inputs were not scaled, the support vector machine and neural network regression
algorithms had lower scores than the linear regression. The random forest regression model
had similar scores, regardless of data scaling.
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4.5. Effect of Data Grouping on the Machine Learning Prediction

The effect of including categorized geographical area information on the machine learning
prediction of LOP was tested. A case without any geographical area information, in other
words all data placed into one single set, was analyzed with the random forest regression
algorithm. The data were scaled with the min-max normalization. Figure 10 compares the test
scores for the RF analyses with and without the geographical area information. The analyses
show that the case including the geographical information had essentially the same test scores
as the case without the geographical area information. The differences were also negligible for
the other two machine learning algorithms. The three machine learning models showed better
performance than the multivariate linear regression.
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The trained RF regression model was tested for each geographical area separately.
Figure 11 shows the resulting test scores for the predicted LOP-value. The test score was
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highest for the Norwegian Sea (0.75), and 0.60 for the North Sea. For the Barents Sea, with
only 268 data points, the test score was unsatisfactorily low (−0.09). Figure 12 compares
the measured and predicted LOP-values using the RF regression model. There was good
agreement for the North Sea and the Norwegian Sea. The predicted Barents Sea LOP
values, however, had only a very weak or no correlation with the measured values.
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5. Discussion
5.1. Performance of the Three Machine Learning Algorithms

Among the three ML algorithms tested, the RF algorithm gave the most promising
results. The performance of the RF model was not dependent of scaling because it is a
tree-based algorithm that does not require feature scaling [30]. The RF model gave better
results than the deep neural network (DNN), although DNNs have performed better than
other machine learning algorithms for many industrial applications (e.g., image processing,
language recognition) [31,32]. However, this was not the case for the LOP in offshore
formations. This may be due to the deep network showing poorer performance for lower
quantities of data: larger quantities of data would be needed for a good performance
of a more complex deep neural network. Figure 13 investigates the optimized neural
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network model in the sample space of the Bayesian search. The data showed that there
are more samples on the shallower (n_layer < 5) and wider neural networks (number of
node in hidden layer > 500) than in the deeper networks. The second largest of the
sampled hidden layers (n_layer in Figure 13) is a single layer only, which is recognized
as a shallow neural network. Figure 13 suggests that a shallower neural network may
perform better than a deeper neural network when there are a limited number of data
points (<3000 data points). It is well known that deep neural networks can perform better
than traditional algorithms when the number of data is large enough, which is known as
“big data” [33]. However, this study indicates that traditional machine learning algorithms,
especially RF algorithms, could well be a preferable solution if the data have a limited
amount and is geospatially scattered like typical geotechnical and geological borehole
data. Furthermore, other advanced ML algorithms that can combine the advantages of
algorithms (e.g., gradient boosting with random forest, kriging combined ML, etc.) can be
a useful way to enhance predictions.
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5.2. Correlation between LOP and Geospatial Information

The best test score of optimized algorithms, in this case, the random forest regression
model optimized by the Bayesian search, was about 0.57, which was not higher than the
highest Pearson correlation coefficient r (i.e., 0.57). Interestingly, the LOP prediction for
the Norwegian Sea had the highest test score among the geographical areas although (1)
the number of data points (700) was smaller than the dataset for the North Sea (1943 data
points) and (2) its highest correlation coefficient (0.58 for the measured depth) was lower
than that for the North Sea (0.64). The one difference is that the Norwegian Sea data had
moderate correlation with two parameters, the measured depth and the water depth, while
the North Sea data had moderate correlation with only one variable, the measured depth.
This may indicate that selecting the appropriate input parameters may be more important
than the number of data points. The poor prediction for the smaller Barents Sea dataset
with different geological characteristics may also support this hypothesis. An appropriate
selection and filtering of key parameters and elimination of irrelevant parameters can be as
important as the quantity of data. Other studies by Micheletti et al. [34] have highlighted
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the importance of feature correction and input selection for improved accuracy of machine
learning models. In addition to the tested ML algorithms, kriging methods could be better
predictors for the geospatial databases that have weak correlation [35]. However, these are
still hypothetical ideas from limited cases that need to be validated by further systematic
studies.

An interesting observation from this study is the poor correlation of LOP with depth
for the Barents Sea dataset. This observation is believed to reflect the complex geological
history of the Barents Sea. Much more significant erosion and uplift of the Barents Sea com-
pared to the North Sea and Norwegian Sea has resulted in a very different stress history for
the Barents Sea region. Large uncertainty has been observed in stress measurements in the
Barents Sea with strong local variations, both horizontally and vertically [36], and a weakly
defined stress regime. In the North Sea and the Norwegian Sea, the stress conditions and
geological processes are simpler and it is possible to define a normal stress regime within
the sedimentary basin [37]. This suggests that geological parameters such as tectonic stress
regime and uplift and overconsolidation, if included in the analysis, have the potential
to improve the prediction. Other parameters like the lithological variations for the LOP
measurements and distance to geological structures with local stress alterations (e.g., faults,
might also be relevant for inclusion in further studies of ML prediction capabilities).

6. Conclusions

In this paper, the leak-off pressures in deep formations offshore Norway were pre-
dicted using weakly correlated geospatial input and machine learning algorithms. The geo-
referenced dataset comprised about 3000 leak-off pressure tests from 1800 exploration
wells collected from the Norwegian Petroleum Directorate (NPD) “fact pages”. Three ma-
chine learning algorithms and three hyperparameter optimization algorithms were tested.
The main findings from the study are:

• The Bayesian search algorithm was able to optimize hyperparameters more efficiently
than the grid search and random search algorithms.

• The three machine learning algorithms (random forest, support vector machine, deep
neural network) showed higher predictive scores than the multivariate linear regres-
sion. However, if the inputs were not scaled, the support vector machine and the
neural network regression algorithms resulted in poorer scores than the multivariate
linear regression.

• When the geographical area information (i.e., North Sea, Norwegian Sea, and Barents
Sea) was taken separately in the machine learning analysis, the models performed
only slightly better than the models considering all data from the three geographical
areas together.

• However, even well-optimized models do not result in meaningfully higher test scores
than its highest correlation coefficient or the score of linear regression. This could
be related to the small number of data points (3000 or less) and the weak correlation
between the LOP and the input (i.e., geospatial) parameters.

• For geomechanics and geotechnics applications, where there are limited numbers of
data (e.g., less than 10,000 data points), this study clearly shows that the random forest
regression algorithm with Bayesian parameter optimization provides a promising
performance in terms of accuracy and short calculation times. However, test scores that
are not meaningfully higher than moderate correlation coefficients may suggest that
accurate predictions can depend more on the number of well-correlated parameters
available than the use of fancy ML algorithms and advanced optimization algorithms.
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