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Abstract 

In this work, we evaluate the use of controlled-source electromagnetics (CSEM) for CO2 monitoring at Smeaheia, a 
possible candidate for future phases of the Norwegian full-scale CCS project. CSEM is sensitive to electrically 
resistive material replacing conductive pore water in the pore space, which enables to infer volumetric estimates of 
the injected CO2 in the formation. CSEM is often used in combination with high-resolution seismic reflection data 
due to the sensitivity of the two methods to complementary physical properties. Here, we present a technique to 
optimise the CSEM survey parameters for efficient 4D surveying. Realistic synthetic models prior to and after 
injection are derived from reservoir modelling and converted to electrical resistivities. Inversion tests are carried out 
in 2D for the baseline and monitor cases considering realistic data errors. We show that the resistivity changes due to 
CO2 injection can be monitored using CSEM. We discuss the optimal orientation of the receivers, frequency range 
and transmitter-receiver offset. We finally discuss a strategy for optimal survey design based on the sensitivity to the 
CO2 plume.   
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1. Introduction
An accurate and efficient monitoring strategy is essential 
for safe CO2 storage in compliance with laws and 
regulations. The reliability of monitoring technology is 
also crucial for the public acceptance of CCS, especially 
in case of large-scale storage and import of CO2 from 
other countries. The cost of a comprehensive monitoring 
program, covering the different phases of a storage 
project, however, could quickly become prohibitively 
high, if not carefully optimised. In this context, 
geophysical monitoring methods play a key role in any 
proposed measurement, monitoring, and verification 
(MMV) plan aiming to derive, from measured data,
estimates of the spatial distribution of selected physical
properties of the subsurface.
While seismic surveys will most likely be the backbone 
of any CO2 storage geophysical monitoring program, 
controlled-source electromagnetics (CSEM) can be a 
valuable complement. By providing an additional, yet 
essential, earth parameter (electrical resistivity), CSEM 
contributes to significantly better-constrained estimates 
of the pressure and saturation changes caused by CO2 
injection, and mitigates uncertainties in seismic data 
interpretation. The improved capability of quantitative 
characterisation by combining seismic and CSEM will 
therefore reduce risks and support the development of 
better tailored, sparser (in time and space) geophysical 
surveys and will consequently help to reduce costs. 
The resolution of CSEM is inherently lower than that of 
seismic and therefore resolution capabilities, time-lapse 
approaches, and optimum ways of combining seismic 

and CSEM data should be carefully investigated. Time-
lapse CSEM has not been used frequently in the past for 
CO2 storage or hydrocarbon monitoring. While several 
synthetic studies have concluded that time-lapse changes 
are detectable and resolvable (e.g., Colombo and 
McNeice, 2013), acquisition must be done very carefully 
to achieve sufficient repeatability (Tietze et al., 2018). 
Several publications have investigated the sensitivity to 
production-induced reservoir changes, e.g., movement of 
the injected waterfront (e.g., Lien and Mannseth, 2008; 
Orange et al., 2009; Zach et al., 2009). They have shown 
that CSEM monitoring is feasible, i.e., the responses 
from production-induced changes in hydrocarbon 
saturation exceed the measurement uncertainty, at least 
for simple models of the evolving fluid distribution. 
However, the feasibility of time-lapse CSEM in realistic 
3D reservoir geometry (e.g., based on seismic interpreted 
structure) has not been fully considered. Also, realistic, 
highly spatially variable small-scale changes of 
subsurface resistivity due to CO2 injection have not been 
studied (Streich, 2016).  
The use of CSEM imaging for onshore CO2 sequestration 
sites has been evaluated in some studies (Grayver et al., 
2014). Experience with marine CSEM for CO2 
sequestration monitoring, however, is very limited, and 
restricted to simple feasibility studies (Park et al., 2019; 
Shantsev et al., 2020, Morten and Bjørke, 2020) and a 
case study at Sleipner (e.g., Bøe et al., 2017) using real 
data monitor vintage.  
Large research efforts have been made during the last 
decades to improve solving large-scale non-linear 
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problems. This has resulted in CSEM inversion 
becoming tractable in 3D (e.g., Amaya et al., 2016; 
Patzer et al., 2017). Much less attention is, however, 
given to survey design strategies which conceptually 
aims at selecting the data acquisition that optimally 
resolve the subsurface model parameters 
(accuracy/resolution) of interest. Standard procedures are 
often suggested, and data redundancy considered to 
mitigate issues related to data inadequacy, but may result 
in unnecessary additional costs. In this context, 
experimental design can be used to find the best trade-off 
between data value and data collection cost. An overview 
of the techniques that can be used is provided in Maurer 
et al., 2010. Examples of applications to electromagnetics 
surveying are given in Maurer et al., 2000, Roux and 
Garcia, 2014, and Romdhane and Eliasson, 2018. 
In this work, we evaluate the use of CSEM for CO2 
monitoring at Smeaheia, a possible candidate for future 
phases of the Norwegian full-scale CCS project and 
analyse ways to optimise the survey design. In a first 
stage, the paper introduces the techniques used for CSEM 
inversion and for the acquisition design optimisation. The 
results from the synthetic study at Smeaheia are then 
described for the baseline and monitoring case (25 years 
after injection). Finally, the results from the optimal 
survey design analysis are presented and discussed in 
regard to electric field components, spatial distribution of 
instrumentation and signal frequency content.    

2. Methodology
This section briefly describes the algorithm used for 
CSEM inversion and for the acquisition design analysis. 

2.1 CSEM inversion 

The code used to invert the synthetic data for this study 
is the freely available modelling and inversion 
MARE2DEM software that can model magnetotelluric 
and CSEM data in frequency domain and incorporate 
anisotropic resistivity models (Key, 2016). The forward 
modelling is performed in 2.5-D (Key and Ovall, 2011) 
and adaptively refines the forward modelling grid for an 
optimum accuracy. The inversion is based on the Occam 
minimisation algorithm (Constable et al., 1987) with 
possibilities for incorporating available prior information 
and regularisation. The misfit function being minimised 
can be written as:  

U = ||Rm||2 + ||P(m-m*)||2 +-1||W(dobs – dcal)||2  
where m is the model parameter vector for 
log10(resistivity) values, m* is the prior model vector 
describing available prior information which can be 
weighted with the non-zero diagonal values in P. The 
diagonal matrix W contains the inverse standard errors 
for the observed data dobs. The data fit (last term) is the 
difference of the observed to the calculated data dcal 
divided by their respective errors squared. R denotes the 
model roughness regularisation. The Lagrange multiplier 
 is used to trade-off the data fit against the other two 

terms and is optimised automatically during the 
inversion. 

2.2 Acquisition design 

We quantify the quality of a given acquisition layout 
through the computation of the eigenvalue spectrum of 
the approximate Hessian on a defined target region. 
The approximate Hessian can be defined as: 

𝑯𝒂 ℜ{𝐉𝑻𝑪 𝐉∗} 

Where ℜ denotes the real part of a complex number. The 
superscripts T and * correspond to the ordinary matrix 
transpose and complex conjugate, respectively. 𝑪  is the 
data covariance matrix describing data uncertainties. 𝐉 is 
the Jacobian or sensitivity matrix including spatial 
derivatives which can be defined as: 

𝐉 𝜕𝐝cal
𝜕𝐦 . 

To efficiently compute the eigenvalue spectrum of the 
approximate Hessian, randomised SVD can be used 
following the approach described in Halko et al., 2011 
and Eliasson and Romdhane, 2017. General sensitivity in 
the dipole transmitter/receiver domain to changes in the 
model space can be performed in a selected target 
(Romdhane and Eliasson, 2018) which can be derived 
from reservoir modelling. In a CO2 storage context, the 
target would correspond to the spatial evolution of the 
plume within the storage reservoir. The spectra 
corresponding to a selected data trace can then be 
analysed and compared to the reference spectrum 
(Maurer et al., 2010). 

3. Smeaheia case study

3.1 Geology and injection scenario 

A feasibility report on a full-scale CCS project in Norway 
(Gassnova, 2016) suggests the Smeaheia site, which is a 
fault block located east of the Troll gas field, north-west 

of Bergen, as one 
of the most viable 
storages in the 
Horda platform 
(Figure 1). 

Figure 1: Location 
of the Smeaheia 
site. The red line 
depicts the location 
of the CSEM 
profile used in this 
study (modified 
from Dupuy et al., 
2018).    

Significant efforts in research and development targeting 
a better characterisation and monitoring concepts for 
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Smeaheia are conducted, since the site is considered a 
good candidate for future phases of the full-scale CCS. 

The reservoir in Smeaheia consists of the Sognefjord, 
Krossfjord, and Fensfjord formations, which are well 
known in relation to the neighbouring Troll gas-
producing field. The CO2 injection is recommended to be 
done at 1200 to 1500 m depth in the Alpha structure 
located East of the Vette fault complex (Figure 1). More 
geological description of the reservoir is available in 
Dupuy et al., 2018. 

3.2 Resistivity models 

A reservoir modelling study carried out by the Northern 
Lights consortium considered the injection scenario in 
the Alpha structure with a CO2 injection rate of 1.3 
Mt/year for 25 years. In this injection scenario, both 
Vette and Øygarden faults are assumed to be sealing (no 
fault transmissibility), although this has been identified 
as a source of uncertainties at Smeaheia (Lothe et al. 
2018; Mulrooney et al., 2020). The derived pressure and 
saturation maps can be used to build synthetic dynamic 
geophysical models describing key properties like elastic 
properties or resistivities. In our study, the saturation 
changes (see example in Figure 2) are converted to 
resistivity changes using Archie's relationship (Archie, 
1942) with a saturation exponent equal to 2 and available 
information from CSEM survey data in the same area 
(Park et al., 2019). 

Figure 2: Reservoir saturation model after 25 years of 
injection (Park et al., 2019). 

The resulting 2D resistivity models for the baseline (i.e., 
before any injection) and after 25 years of injection are 
displayed in Figure 3, with the effect of the CO2 plume 
being observed as an increase of resistivity. The plume 
has a varying thickness between 10 and 50 m and a lateral 
extent of about 3000 m. These models are used to 
generate the reference data for the synthetic study.    

Figure 3: (Top): Baseline resistivity model. (Bottom): 
Resistivity model after 25 years of injection. Rectangle outlines 
the targeted area for the acquisition optimisation (section 3.4). 

3.3 CSEM synthetic study 

3.3.1. Forward modelling and data errors estimate 

To generate the reference data for the baseline and 
monitor cases, we consider a similar acquisition layout to 
the one used in Park et al., 2019. A horizontal electric 
dipole transmitter is towed at 30 m above the seabed with 
a regular spacing of 300 m, resulting in 41 transmitter 
positions. The signal is measured using 17 dipole 
receivers recording the horizontal (in line with the 
transmitter) and vertical electric fields. The receivers are 
positioned at the seabed with a spacing of 500 m. The 
modelled frequencies correspond to 0.1, 0.25, 0.5, 0.75, 
1, 2, 3, 4, and 5 Hz. An example of the modelled data is 
shown in Figure 4.  
At a first glance, the amplitude and phase data show 
sensitivity to the increased resistivity in the reservoir 
layer. The phase data are relatively more sensitive with 
several degrees difference between the observed and 
modelled data. The amplitude data show differences up 
to two magnitudes smaller than the actual data. The 
detectability will depend on the size of the data error as 
well. We therefore perform a data error analysis by 
perturbing navigational parameters (e.g., Gehrmann et al. 
2019) including: 

- transmitter and receiver azimuth errors with an
error value corresponding to 3o,

- errors (3 m) due to the transmitter depth and
transmitter dip (3o), and

- errors for dipole receiver positions along the x
and y directions (3 m).
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Figure 4: Synthetic data for inline electric field amplitude (a) 
and phase (c) for 0.75 Hz for baseline model (solid line) and 
model after 25 years of injection (dotted line). Data difference 
over frequency and transmitter-receiver offset with contours for 
amplitude data. Amplitude is on a logarithmic scale.  

Figure 5: Data error analysis for transmitter position relative 
to all receivers at position 0. The total error (red) is the result 
of the summation of all individual data differences for each 
perturbation in quadrature. Perturbations are done for azimuth 
 and dip  and variation in x, y and z for the transmitter (Tx) 
or receiver (Rx). 

Forward modelling is performed for each perturbation 
and the total error is derived by adding data difference in 

quadrature. Figure 5 shows the individual data anomaly 
resulting from the difference between the cases without 
and with navigation perturbations. Differences for the 
inline (Ey) and for the vertical component (Ez) are 
considered. The differences are displayed in percentage 
(%) for the amplitude and show that the fields are most 
sensitive to the lateral position of the receivers and 
vertical position of the transmitter. 

3.2.2. Inversion results 

In a first stage, we run the inversion with the baseline 
data. We add noise based on the navigation error 
estimates from the previous section assuming a Gaussian 
distribution. The starting model for the inversion contains 
a water layer with fixed resistivity of 0.3 m and a 
homogeneous half space with a resistivity of 1 m. 
Individual inversions for the inline (Ey) and vertical (Ez) 
components (Figure 6) converge to root mean squared 
(rms) misfit values of 1.1 and 1.3 respectively, possibly 
not reaching the target misfit of 1 due to the data errors 
being too small when compared to the numerical noise. 
Both data sets are sensitive to the vertical structure.  
The inversion for both components using 14 iterations 
results in rms misfit of 1.2. The recovered resistivity 
model (Figure 7a) revealed sensitivity to the alternating 
conductive and resistive layers but with less vertical 
resolution than the true model. The first resistive layer is 
resolved, while the two thin conductive layers in ~500 
and ~700 m depth are resolved as one layer in the 
inversion. Especially with greater depth the inversion 
tends to resolve one thick layer instead of several thin 
ones, which is due to the roughness regularisation 
preventing large resistivity contrasts when the data loses 
resolution with depth. Data residuals are random and 
Gaussian distributed (Figure 8). 

Figure 6: Baseline model inferred from CSEM inversion using 
(a) inline (Ey) and (b) vertical (Ez) components of the electric
field.

In a second stage, we run the inversion with monitor data. 
We adopted a sequential time-lapse strategy where the 
resistivity model from the inversion of the baseline data 
is used as starting model for the inversion of the monitor 
data. The inversion parameters are the same as for the 
baseline case. The recovered resistivity model is 
displayed together with the reference model for 
comparison in Figure 7b. Updates compared to the result 
from the baseline inversion can be observed, especially 
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an increase of resistivity at depth between 1300 and 1600 
m (Figure 7c). The observed resistivity increase is 
located slightly below the true target location. Such 
deviation can be attributed to the smoothing 
regularisation.  

Figure 7: (a) Resistivity model inferred from CSEM inversion 
using inline and vertical components of the electric field for the 
baseline case; (b) for the monitor case, 25 years later; (c) 
Difference between the resistivity model in a and b.  

Figure 8: Amplitude and phase data for the inline (top four 
panels) and vertical (bottom four panels) component as well as 
standardised residuals (rS) for final resistivity model shown in 
Figure 7a 

3.3 Acquisition design 

After showing that the CSEM inversion can detect a 
resistivity change in the expected area, using all available 
transmitters, receivers, data components, and 

frequencies, we turn to the investigation of acquisition 
design. Data components here refer to inline or vertical 
components and amplitudes or phases. Following the 
eigenvalue spectrum approach described in Section 2.2, 
we identify the parts of the CSEM data containing most 
information for inversion of model parameters in a target 
region with lateral extension from 1500-5500 m and a 
depth range from 1000-1800 m, cf. Figure 3. The first 
selected data trace (transmitter-receiver pair for a specific 
frequency and data component) is the one that is most 
sensitive to resistivity changes in the target area, 
consequently offering the best possibilities to 
constrain/determine the target area properties during 
inversion. New traces are then selected iteratively based 
on how much additional information they bring to the 
previous traces. For the preliminary Smeaheia study 
described here, only 50 measurements are selected. This 
is a tiny fraction of more than 17000 used for the 
inversion described in Section 3.2. Visual inspection of 
the eigenvalue spectrum showed that the information 
content in this small subset of traces is, not surprisingly, 
smaller than in the full data set. However, an impressive 
amount of information is captured using those few traces, 
and they are, for example, shown to provide more 
information than 500 randomly picked traces (an 
otherwise often efficient way of decimating data with 
relatively little loss). 
While future work will study in detail how the inversion 
result itself is affected by using smaller, but optimised, 
surveys, we present here instead a few examples of what 
is considered optimal using the described strategy. Figure 
9 illustrates how the selected transmitter-receiver pairs 
always have a certain minimum offset (no markers along 
the diagonal). The traces are predominantly based on the 
phase of the electric field (more circles than squares). 
Lower frequencies are preferred, especially 0.1 Hz.  

Figure 9: Illustration of 50 selected optimal data traces using 
a survey design strategy based on eigenvalue spectrum 
analysis. The axes of the plot refer to the inline positions of 
transmitter-receiver pairs. The color indicates whether the 
inline (blue) or vertical (green) electric field has been chosen, 
and the shape whether the amplitude (square) or phase (circle) 
is used. In addition, the size of the markers represents different 
transmitter frequencies (from 0.1-5 Hz). Larger markers denote 
lower frequencies. 

The preference of lower frequencies becomes even 
clearer when plotting offset vs frequency, see Figure 10. 
This figure also shows an interesting trend in that the 
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lower frequencies in general are associated with longer 
offsets, while the selected higher frequencies are 
associated to pairs with small offsets. This is intuitively 
a good choice, since the lower frequencies have larger 
penetration depths. This figure also shows that in general 
favoured offsets range from 2.5-5 km, which is about 
twice the depth of the target. 

Figure 10: Transmitter-receiver offset vs frequency for 50 data 
traces identified using survey optimisation based on eigenvalue 
spectrum analysis. 

Conclusions 
In this work, we evaluate the use of CSEM for CO2 
monitoring at Smeaheia, a possible candidate for future 
phases of the Norwegian full-scale CCS project. Realistic 
synthetic models prior to and after 25 years of injection 
are derived from reservoir modelling and converted to 
resistivities. A CSEM time-lapse feasibility study is 
carried out showing the sensitivity of both vertical and 
horizontal electric field dipoles to resistivity changes due 
to CO2 injection. The optimal acquisition analysis reveals 
the highest sensitivity to the storage region at 1200 m 
depth for transmitter-receiver offsets between 2500 and 
5000 m. When considering electric field components, 
phase data contain more information than amplitude, 
which emphasises the requirement for accurate time 
logging during surveying. The chosen frequency range 
between 0.1 to 5 Hz is sensitive to the target area, but 
lower frequencies are preferred, especially for long 
offsets. Our work illustrates the benefit of an optimal 
survey design study using realistic subsurface models as 

a prerequisite for efficient time-lapse CSEM surveying. 
The CSEM method is sensitive to the presence of fluids 
in the pore space, including resistive CO2, offering the 
possibility to complement industry 4D-seismic surveying 
and quantify the volume of the CO2 in the reservoir. 
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