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A B S T R A C T   

The current state-of-practice for time-domain modelling of seismic slope stability is to apply a single horizontal 
ground motion component in the downslope direction. However, several numerical and experimental studies 
have demonstrated the importance of multidirectional shaking on seismically induced permanent displacements. 
To understand better the effect of multidirectional shaking on seismically induced permanent slope displace
ments, we performed 28,100 three-dimensional finite element slope stability analyses using 230 ground motion 
record pairs, 48 soil profiles, and four different combinations of ground motion components. We then performed 
traditional regression analyses and applied machine learning techniques to develop simplified models that es
timate the permanent displacements due to multidirectional shaking from the results of analyses where only one 
component of the ground motion is applied downslope. The simplified model has R2 

= 0.91 and uses the 
displacement from a unidirectional shaking analysis as its only input variable. The standard deviation decreases 
as the predicted unidirectional shaking displacements increase.   

1. Introduction 

Earthquake induced landslides pose a constant and major risk to 
many areas of the world. One of the deadliest examples is the magnitude 
8.0 Haiyuan earthquake of 1920, which triggered more than 7000 
landslides in north–central China that created 126 dammed lakes and 
killed 32,000 people [1]. A more recent example is the April 25, 2015 
Gorkha, Nepal earthquake sequence, which caused thousands of land
slides that killed hundreds of people and blocked vital road and lifeline 
routes to many villages [2]. 

There are numerous methods to predict displacements of slopes due 
to earthquake shaking. These methods vary in complexity from equa
tions based on simplified slope and ground motion parameters (e.g. Bray 
et al. [3], Bray and Macedo [4]), to Newmark sliding block models that 
incorporate the full acceleration time series but assume that the failing 
soil acts as a rigid body [5], to two-dimensional (2D) or 
three-dimensional (3D) numerical finite-element or finite-difference 
simulations that incorporate the full slope geometry and use an accel
eration time series to represent earthquake shaking. However, common 
for all these methods is that the current state-of-practice uses only a 
single horizontal component of a selected representative ground motion 
applied in the downslope direction [6] to simulate the slope stability 

during strong shaking. This approach is founded on the basic assumption 
that the earthquake excitations in the vertical and cross-slope directions 
are negligible, which substantially reduces the complexity of slope sta
bility analyses (e.g. by permitting analyses in 2D rather than 3D) and 
allows sensitivity studies with only moderate computational efforts. 
However, Carlton and Kaynia [7] and Kayen [8] found this assumption 
to be unconservative and to underestimate the seismic slope de
formations in many cases. Therefore, it is important to understand the 
effect of multidirectional shaking on predicted slope displacements to 
ensure safe design of slopes and infrastructure built on or near slopes. 

Much of the research related to multidirectional shaking is primarily 
concerned with liquefaction analyses or site response analyses for level 
ground conditions. Several laboratory [9–11], centrifuge [12,13] and 
numerical studies [14,15] focusing on liquefaction have shown that 
multidirectional shaking causes an increase in settlements and excess 
pore pressures compared to unidirectional shaking. However, the 
magnitude of the difference depends on many factors, such as the in
tensity of the shaking and density of the soil [16]. Several researchers 
have also investigated the effect of multidirectional shaking on site 
response analyses for level ground [17,18]. These studies found that 
using two components of a ground motion gave results that more closely 
matched the measured response in the field. This is due in part to the 
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redistribution of seismic wave energy when movement can occur in 
multiple directions simultaneously [17]. 

Despite the large body of research related to multidirectional shaking 
for liquefaction and site response analyses, there is relatively little 
research related to the effect of multidirectional shaking on slope sta
bility. Rutherford [19] developed a multi-directional direct simple shear 
device and found that shearing in a figure eight pattern developed more 
permanent deformations in fewer cycles than unidirectional cyclic 
shearing, and that the shear strains tended to accumulate in the same 
direction as the initial horizontal shear stresses (i.e. downslope), inde
pendent of the orientation of the cyclic loading. Anantanavanich et al. 
[20] used the advanced constitutive model MSimpleDSS (Anantanava
nich et al. [21]) to perform nonlinear dynamic slope stability analyses 
for two generic offshore soft clay sites with depths of 20 m and 100 m 
and four ground motion pairs. They found that multidirectional shaking 
predicted about a 20%–40% increase in permanent displacements at the 
soil surface compared to unidirectional shaking. Carlton and Kaynia [7] 
conducted 27 three-dimensional seismic slope stability analyses in 
PLAXIS 3D, applying one, two, and three ground motion components. 
They found that accounting for two horizontal components rather than 
just one increases the predicted total displacements on the slope by 
25%–50%, but that adding the vertical component has a negligible ef
fect. Kayen [8] performed analyses for gently sloping marine slopes 
using a modified compliant multidirectional Newmark sliding block 
model. He found that adding the second component across the slope 
always gave a larger and more realistic shear stress vector and increased 
downslope displacements. 

One argument for ignoring multidirectional shaking in 2D slope 
stability analyses is that 2D analyses are inherently more conservative 
than 3D analyses due to the constrained geometry, and therefore the 
increase in displacements due to multidirectional shaking will be 
cancelled out by the decrease in displacements due to 3D geometry ef
fects. This assumption is based on the observation that the static factors 
of safety computed from 3D analyses are almost always higher than from 
2D analyses [22]. However, for dynamic analyses, this is not always the 
case. Ferrari [23] performed 3D seismic slope stability analyses for a 
slope dipping in two directions and compared the displacements to an
alyses of 2D cross sections of the slope. He found that the 3D analyses 
predicted larger permanent displacements than the 2D analyses due to 
the additional static shear stresses acting in the out of plane direction. 
Even for slopes dipping in only one direction 2D analyses cannot always 
be assumed to be more conservative than 3D analyses. For example, 
Azizian and Popescu [24] performed 3D seismic slope stability analyses 
by extruding 2D models in the out-of-plane direction to defined widths 
and applying fixed boundary conditions to the sides of the slope. They 
found that the difference in predicted permanent displacements at the 
slope crest depends on the width-to-height ratio (W/H) of the slope, with 
a reduction of less than 15% for 3 ≤ W/H ≤ 5, and negligible differences 
for W/H ≥ 5. Therefore, the increase in displacements due to multidi
rectional shaking cannot be assumed to be cancelled out by a reduction 
in displacements due to 3D geometry effects, and both should be 
considered in dynamic slope stability analyses. 

The objective of this research is to understand better the effect of 
horizontal multidirectional shaking on slope stability and how it can be 
incorporated in a simple yet effective manner to modify the results from 
traditional unidirectional shaking slope stability analyses. To address 
this need, we performed 28,100 three-dimensional (3D) slope stability 
analyses using 230 ground motion record pairs, 48 soil profiles, and four 
different combinations of ground motion components. We then per
formed regression analyses and used a suite of machine learning tech
niques to estimate the permanent displacements due to multidirectional 
shaking applied in the downslope and across slope directions from 
traditional analysis results where only one ground motion component is 
applied downslope. The resulting models can then be used to modify the 
permanent displacements computed by traditional unidirectional slope 
stability analyses to account for multidirectional shaking. 

2. Database of simulated seismic slope displacements 

2.1. Analysis model 

We performed three-dimensional (3D) slope stability analyses in the 
time domain using the finite element program OpenSees [25]. We used a 
modified version of a model originally developed by McGann and 
Arduino [26] to simulate 3D site response analysis of a system repre
senting an infinitely wide uniform slope. The model consists of a column 
of 3D single integration point cubic brick elements with 1 m × 1 m x 1 m 
sides supported vertically at the base (Fig. 1). Tied boundary conditions 
[27] are applied in the two horizontal directions (x and y) at each 
elevation to constrain the column to deform as a shear beam. In the x and 
y directions at the base, we applied earthquake loading using the 
method of Joyner and Chen [28] and used viscous dampers (dashpots) to 
simulate the radiation of energy into the underlying infinite elastic 
half-space [29]. In this way, the model is capable of exactly reproducing 
vertically propagating shear waves and pressure waves without any 
unwanted reflections from the boundaries. 

To model sloping ground conditions in the column, we applied in
clined gravity loads with components in the vertical (z) and downslope 
(x) directions according to the desired slope angle. This generates static 
shear stresses in the column in the downslope (positive x) direction that 
simulate an infinitely wide slope. We modelled slopes of finite height by 

Fig. 1. Schematic overview of the 3D slope stability analysis model 
in OpenSees. 
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adjusting the depth of the inclined gravity loads and using purely ver
tical gravity loads below this depth. The advantage of modelling the 
slope as a single column is that it requires very few elements compared 
to a “full” 3D model. As a result, the model is computationally extremely 
fast, with typical run times for a single analysis on an ordinary laptop 
computer between 10 and 100 s depending on the length of the applied 
ground motion. 

2.2. Soil properties and material model 

We modelled soil profiles 100 m deep with slope angles of 5, 10 and 
15 degrees, slope heights (depths with static shear stresses) of 30 m and 
100 m, dynamic shear strength ratios of SR = τ/σ′

v = 0.2, 0.3 and 0.6, 
where τ is the dynamic shear strength and σ′

v is the vertical effective 
stress, and shear wave velocity profiles for NEHRP (National Earthquake 
Hazards Reduction Program) site classes C, D and E according to the 
correlations of Carlton and Tokimatsu [30]. Fig. 2 shows the variations 
in dynamic shear strength and shear wave velocity with depth. The total 
unit weight of the soil is constant at 19 kN/m3, and the water table is at 
the soil surface for all sites. The 100 m deep soil profile is situated on top 
of an infinitely deep elastic half-space (i.e. a compliant base). For sites 
with NEHRP D and E shear wave velocity profiles, the underlying elastic 
half-space had a shear wave velocity of 760 m/s, and for the NERHP C 
sites it had a shear wave velocity of 1211 m/s, the latter corresponding 
to the shear wave velocity at the bottom of the soil profile at 100 m 
depth. These geometry and soil property combinations result in 54 
unique sites. However, six combinations that included the lowest 
strength profile (τ/σ′

v = 0.2) and the largest slope angle (15 degrees) 
were not statically stable and were therefore excluded from the analyses, 
resulting in 48 unique sites. 

For all sites and soil layers we used the hyperbolic elasto-plastic 
material model PressureIndependMultiYield (PIMY) in OpenSees [31, 
32]. PIMY models plasticity using the multi-surface concept with an 
associative flow rule and Von Mises type yield surfaces. Plasticity is only 
modelled due to deviatoric stresses and strains, and volumetric response 
is linear elastic and independent of the deviatoric response. We assumed 
a failure strain of 1% and simulated small strain damping using con
ventional Rayleigh damping with a target damping ratio of 3% specified 

at frequencies of 1 Hz and 5 Hz. 

2.3. Acceleration time series 

We selected 230 ground motions from the PEER NGA West 2 online 
database [33]. Each ground motion consists of two orthogonal hori
zontal acceleration time series (component A and B) and a vertical 
component (not used). The ground motions have time averaged shear 
wave velocities in the top 30 m (Vs30) between 500 m/s and 1500 m/s to 
be consistent with the shear wave velocity of the underlying half-spaces 
used in the finite element model, peak ground accelerations (PGA) 
greater than 0.05 g for at least one component, and no pulse-like char
acteristics. Fig. 3 shows the moment magnitude (Mw), Joyner-Boore 
distance (Rjb), and PGA of both components of the ground motions. 

One element of uncertainty in dynamic slope stability analyses is the 
orientation of the ground motion. When performing dynamic slope 
stability analyses, engineers do not know a priori which component or 
orientation of the design ground motion to apply downslope. Carlton 
et al. [34] found that for one ground motion, the estimated seismic slope 
displacements varied by 20–100% depending on the orientation of the 
ground motion and slope angle. While these findings were based on a 
small sample size, they illustrate the potential uncertainty due to ground 
motion orientation on predicted seismic slope displacements. Bray et al. 
[3] and Bray and Macedo [4] performed unidirectional slope stability 
analyses and accounted for ground motion orientation uncertainty by 
applying each component individually in its given orientation and in its 
opposite polarity. They then used the maximum of the two averages of 
the components in the different orientations in their regression analyses. 
In an attempt to capture some of the uncertainty related to ground 
motion orientation, we performed four analyses for each of the 230 
ground motions: (1) component A applied in the x-direction (down
slope); (2) component B applied in the x-direction; (3) component A in 
the x-direction (downslope) and B in the y-direction (across slope); and 
(4) component B in the x-direction and A in the y-direction. Based on the 
results of Carlton and Kaynia [7], who found that adding the vertical 
component had a negligible effect on the permanent displacements, we 
did not include the vertical component in any of the analyses. 

Fig. 2. a) Dynamic shear strength and b) shear wave velocity with depth for soil profiles used in the analyses.  
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2.4. Verification of analysis model 

Carlton et al. [35] verified the OpenSees model described above 
against dynamic time domain simulations in PLAXIS 3D and FLAC 3D 
using actual slope geometries. PLAXIS 3D and FLAC 3D are commercial 
finite element and finite difference programs, respectively, that are 
widely used in geotechnical engineering practice. The slope models in 
PLAXIS 3D and FLAC 3D were 250 m wide, 300 m long, 68.4 m tall at the 
top of the slope, and 55 m tall at the foot of the slope. The slope itself was 
13.4 m tall and 52 m long, with a slope angle of 15 degrees. Carlton et al. 
[35] found that all three programs (OpenSees, PLAXIS 3D, and FLAC 3D) 
gave similar predictions of permanent displacements due to earthquake 
shaking, and that none of the programs predicted consistently higher or 
lower permanent displacements. 

We further verified the OpenSees model by comparing the results of 
unidirectional shaking with results from PLAXIS 2D for several analysis 
cases. We computed the response for a 60 m high slope with slope angles 
of 5, 10 and 15 degrees, and for a 100 m high slope with a slope angle of 
10 degrees. All analyses used the same ground motion recorded at the 
Wonderland station during the 1994 Northridge earthquake (Mw = 6.7, 
Rjb = 15 km, PEER NGA West 2 record sequence number = 1011). For 
computational reasons only the first 10 s of the response was computed; 
this contains more than 95% of the Arias Intensity of the record. In 
PLAXIS 2D, we used the NGIADP material model [36], which has a 
hyperbolic stress-strain shape similar to the PIMY material model. The 
same soil and material input parameters were used for both programs, 

and isotropic behaviour was assumed in the NGIADP model. 
The results presented in Fig. 4 show a reasonable agreement between 

the two computational models. There are some discrepancies, however, 
these are primarily due to inherent differences between the calculation 
models: (i) the NGIADP material model in PLAXIS 2D does not give 
identical stress-strain response as the PIMY material model used in 
OpenSees, and (ii) the way soil layering must be implemented in PLAXIS 
2D leads to somewhat different vertical discretization of the soil profiles. 
Nevertheless, these results together with the verification presented in 
Carlton et al. [35] demonstrate the appropriateness of the model for 
seismic slope deformation analyses. As a result, we chose to use the 
OpenSees model in this work, due to the faster computation time, which 
allowed us to investigate a larger range of soil properties and ground 
motions. 

2.5. Displacement database characteristics 

We performed 44,160 3D slope stability analyses in OpenSees using 
the 48 sites, 230 ground motions, and four analysis cases described 
above. Table 1 lists each of the parameters varied in the analyses and 
their values. For approximately 1250 of the dynamic analyses the im
plicit numerical time-integration algorithm failed to converge and these 
analyses were discarded. To prevent analyses with negligible displace
ments from dominating the regression analysis, we also removed all 
analyses with maximum permanent displacements less than 0.5 cm and 
the corresponding other three analysis cases. For example, if case 1 (only 

Fig. 3. (a) moment magnitude (Mw) vs. the Joyner-Boore source to site distance (Rjb); and (b) PGA of component A (PGAA) vs. PGA of component B (PGAB) for the 
selected 230 ground motions. 

Fig. 4. Comparison of slope displacements with time estimated from PLAXIS 2D and OpenSees for slope heights of 60 m and slope angles of a) 5 degrees, b) 10 
degrees and c) 15 degrees, and d) slope height of 100 m and slope angle of 10 degrees. 
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component A applied downslope) had a maximum permanent 
displacement less than 0.5 cm, then we excluded it as well as the cor
responding cases 2–4. This resulted in a final database of 28,100 ana
lyses, with 7025 analyses for each of the four cases. While the threshold 
permanent displacement that can be considered negligible would 
depend on the specifics of a given project, we chose a threshold per
manent displacement value of 0.5 cm similar to Bray et al. [3] and Bray 
and Macedo [4], which is small enough for most practical applications. 

We define the maximum permanent displacements due to seismic 
shaking as u1 when resulting from analyses with only a single compo
nent (i.e. case 1 and case 2) and as u2 when resulting from multidirec
tional shaking (i.e. case 3 and case 4). We define the ratio between the 
maximum permanent displacements as the multidirectional factor 
(MDF), where MDF = u2/u1. Fig. 5 shows histograms and lists the mean, 
median and standard deviations of u1, u2, and MDF for the final database 
(14,050 values of u1, u2, and MDF each). Fig. 5 shows that u1, u2, and 
MDF are roughly log-normally distributed, with mean values of 3.4 cm, 
6.0 cm, and 1.76, median values of 2.74 cm, 5.04 cm, and 1.64, and 
maximum values of 281 cm, 393 cm, and 10.98, respectively. 

The value of MDF is always greater than 1.0, illustrating that adding 
a second ground motion component results in larger expected perma
nent displacements than when only one component is used. This is most 
likely because by adding the earthquake component in the cross-slope 
direction the total energy applied to the slope increases and the 
loading pattern is more damaging to the soil. These results agree with 
the multi-directional direct simple shear tests of Rutherford [19], who 
found that shearing in a figure eight pattern increased permanent dis
placements compared to unidirectional cyclic shearing due to the 
combination of horizontal shear stress rotation as well as complete shear 
stress removal and reversal during loading. 

3. Development of regression models 

We developed regression models to estimate u2 from u1 and simpli
fied ground motion and site parameters using two different approaches. 
Section 3.1 describes the first approach using least squares regression. 
Section 3.2 outlines the second approach that utilises machine learning 
techniques. Both approaches are applied to the same dataset described 

in Section 2.4. 

3.1. Least squares regression 

We investigated the influence of 13 different predictor parameters to 
predict u2. Table 2 lists the parameters and gives a brief description of 
each. We investigated four site parameters, eight ground motion pa
rameters, and u1. Each of the site and ground motion parameters are 
readily available when conducting a seismic site response analysis, 
whereas u1 can be calculated using one of the methods for predicting 
unidirectional seismic slope deformations presented in Section 1. The 
parameter with the greatest predicting power was u1, which is not sur
prising because u1 is itself a result of an analysis that takes into account 
all of the other ground motion and site parameters considered. 

Fig. 6 shows u1 versus u2 and u1 versus MDF. As u1 increases, u2 in
creases and MDF decreases. In other words, for larger displacements, the 
ratio between predicted displacements from unidirectional and multi
directional shaking decreases. The effect of multidirectional shaking 
may be larger for smaller displacements because when u1 is large the soil 
is already yielding and adding a second component in a perpendicular 
direction only increases the displacements by a minimal amount. In 
contrast, when u1 is small, the applied cyclic shear stress in the down
slope direction may not be large enough to overcome the shear strength 
and cause yielding, but when adding stresses also in the perpendicular 
direction the combined stress may exceed the yield limit. 

We investigated a variety of functional forms including linear, log, 
natural log, exponential, power, and second and third order poly
nomials. We tried all the functional forms for each of the parameters 
individually against u2 and the natural log of u2. Equation (1) presents 

Table 1 
Overview of slope stability analyses.  

Parameter Values # combinations 

Ground motions 3.9 ≤ Mw ≤ 7.6, 10 ≤ Rjb ≤ 155 km 230 
Analysis cases A, B, A + B, B + A 4 
Slope angle (α) 5◦, 10◦, 15◦ 3 
Slope height (H) 30 m, 100 m 2 
Strength ratio (SR) 0.2, 0.3, 0.6 3 
Site class NEHRP C, D, E 3  

Fig. 5. Histograms and mean (μ), median (x̃), and standard deviations in natural log units (σln) of a) maximum permanent displacements due to all analyses with only 
a single component (u1); b) maximum permanent displacements for all analyses with two components (u2); and c) multidirectional factor (MDF = u2/u1). 

Table 2 
Parameters investigated.  

Parameter Description 

Site parameters 
α Slope angle 
SR Undrained shear strength ratio, su/σ′

v 

H Height of the slope 
Vs30 Time-average shear wave velocity over the top 30 m 
Input ground motion parameters 
Mw Moment magnitude 
Rjb Joyner-Boore distance 
PGA Peak ground acceleration 
PGV Peak ground velocity 
PGD Peak ground displacement 
Ia Arias intensity 
CAV Cumulative absolute velocity 
D5-95 Bracketed duration for 5–95% of Ia 

Derived parameters 
u1 Predicted maximum permanent displacement due to one component  
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the model with the highest coefficient of determination (R2 = 0.91) and 
lowest standard deviation in natural log units (σln), where u2 and u1 are 
in cm. The orange line in Fig. 6 shows equation (1). 

ln(u2)= 0.923 * ln(u1) + 0.663 (1) 

Fig. 7 shows the residuals from equation (1) versus the 12 remaining 
predictor parameters, where we define the residuals as ln(u2) from the 
numerical simulations minus ln(u2) predicted from equation (1). The 
orange lines and error bars represent the mean and standard deviation 
for ten equally spaced bins for the ground motion parameters, and one 
bin for each unique value for the site parameters. Fig. 7 shows that there 
is no clear trend with any of the predictor parameters except possibly D5- 

95. To determine if the increase in goodness of fit outweighed the 
increased complexity of adding another predictor parameter, we used 
Akaike information criteria (AIC) and Bayesian information criteria 
(BIC). Both measures apply scores to models based on their goodness of 
fit and penalties for a larger number of predictor parameters to prevent 
overfitting of models. AIC is based on information theory whereas BIC is 
based on Bayesian theory. When trying each of the functional forms 
described earlier with each of the 12 remaining predictor parameters 
against the residuals of equation (1), neither the AIC nor BIC metric 
supported adding a second predictor variable. This was further 
confirmed by the fact that adding a second or even third predictor 
variable did not increase R2 by more than 0.01 or reduce the standard 
deviation by more than 0.02 natural log units. 

Fig. 8 shows the predicted u2 using equation (1) versus the value of u2 
from the numerical simulations, and u1 versus the residuals of equation 
(1). The R2 of equation (1) is 0.91, indicating a good fit to the data. The 
mean and standard deviations of the residuals for ten equally spaced 
bins, shown as the orange lines in Fig. 8b, show that the mean values are 
centred on zero, indicating no model bias with u1. However, the stan
dard deviation tends to decrease with increasing u1. As a result, we fit 
equation (2) to the standard deviations of the ten bins: 

σln = − 0.051 * ln(u1) + 0.415 (2) 

Equation (2) has an R2 = 0.98 and u1 is in cm. The standard deviation 
decreases as u1 increases most likely for the same reason MDF decreases 
as u1 increases. For non-pulse like motions, Bray and Macedo [4] found 
σln = 0.72 for slope displacements due to earthquakes from active crustal 
regions, and Bray et al. [3] found σln = 0.73 for slope displacements due 
to earthquakes from subduction zones. These values are larger than the 
maximum standard deviation from equation (2) that ranges from 0.45 
for u1 = 0.5 cm to 0.125 for u1 = 300 cm. The reason for the smaller 
standard deviations found in this paper is most likely because equation 
(1) includes u1, which is a very strong predictor of u2 and provides a 

better fit than when only using simplified ground motion and site pa
rameters directly. 

3.2. Machine learning approach 

For the machine learning approach, we used the same database as 
described in Section 2.4 and investigated the same predictor parameters 
as listed in Table 2. Machine learning (ML) is an umbrella term that 
covers a range of empirical approaches for both regression and classi
fication (supervised or unsupervised) analysis of nonlinear systems. 
Such systems can be massively multivariate involving anything from a 
few predictor parameters to more than one thousand. There are a wide 
range of regression algorithms available for ML. Common for the 
different ML approaches is their ability to use computational methods to 
automatically “learn” and improve directly from the data without being 
explicitly programmed. The algorithms adaptively improve their per
formance as the number of data points available for learning increases. 

We first split the data into overall training and testing datasets. The 
training dataset contains the data the ML algorithm will use to tune 
hyperparameters and evaluate the model, while the testing dataset is 
used for final validation of the tuned models using previously unseen 
data. This helps to prevent overfitting of the model. We used a ran
domized 80/20 training/testing split to ensure balance between suffi
cient training data for optimizing the ML models, and sufficient data for 
validation of the final models. 

Next, we evaluated the performance of each ML model using 
repeated k-fold cross validation with five splits and three repeats. This 
method repeats the cross-validation procedure multiple times and re
ports the scores from all runs as output. For each model, the mean and 
standard deviation of the R2 are used as the performance metric to 
evaluate the goodness of fit of the models. We then performed model 
hyperparameter tuning using a randomized search cross-validation al
gorithm that randomly samples points in a bounded domain of input 
hyperparameters and uses cross validation to evaluate the model per
formance for each sampled combination of hyperparameters. Finally, we 
evaluated each model with the hold-out testing dataset, using R2 to 
measure goodness of fit. 

The ML regression analyses are implemented in the programming 
language Python using primarily the scikit-learn (also known as sklearn) 
machine learning library [37]. Table 3 lists the six different ML algo
rithms that we tested. 

Fig. 9 shows the results from cross-validation model screening, 
where the mean and standard deviation of R2 are plotted for each model 
using the full set of input parameters in Table 2 to train the models. All 
models perform well, with the ensemble and boostrap models (Bagging, 

Fig. 6. Predicted maximum permanent displacements due to all analyses with only a single component (u1) versus a) maximum permanent displacements for all 
analyses with two components (u2) and b) the multidirectional factor (MDF = u2/u1). The orange line is the best fit line using equation (1). 
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Random Forest and Extreme Gradient Boosting) tending to perform the 
best, with R2 values of 0.96 or higher, and XG Boost with the highest 
score of all with R2 = 0.985. However, the multivariate linear least 
squares regression model also has a high R2 value of 0.925. Part of the 
explanation for this can be found in Fig. 10, which shows the permu
tation feature importance of the input parameters (Table 2) used in the 
Extreme Gradient Boosting method. The permutation feature impor
tance is defined to be the decrease in the model score when a single 
feature variable is randomly shuffled [38]. This procedure breaks the 
relationship between feature and the target so a drop in the model score 
is indicative of how much the model depends on the given feature. 
Fig. 10 shows that the input variable u1 is the most important input 

feature by a significant margin, indicating that a model that is primarily 
a function of u1 may be adequate to accurately predict u2. 

This is further demonstrated in Fig. 11 where the mean and standard 
deviation of R2 from cross validation are plotted for each model but 
using only u1 as the input parameter to train the models. Fig. 11 shows 
that the performance scores are only slightly lower than when using the 
whole set of input parameters in the model training (e.g. for linear least 
squares regression the R2 is now 0.91 vs. 0.925). 

Finally, Fig. 12 shows the u2-predictions by the Extreme Gradient 
Boosting model using the full set of input parameters in Table 2, applied 
to the testing dataset, i.e., on the hold-out data not “seen” by the model 
in the training phase. The performance scores of the models on the 

Fig. 7. Residuals (in natural log units) versus parameters investigated (see Table 2 for a description of the parameters). The orange lines and error bars represent the 
mean and standard deviation for ten equally spaced bins for the ground motion parameters, and one bin for each unique value for the site parameters. 
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testing dataset are in-line with the training scores (here approx. 0.99), 
indicating that the models are not overfitted to the training data. 

4. Limitations and applications 

The intended use of the models developed in Section 3 are to give a 
quick, first order approximation of the increase in seismically induced 
permanent displacements due to multidirectional shaking based on the 
results of a traditional unidirectional seismic slope stability analysis. 
They are not intended to replace more detailed analyses for critical 
structures. We attempted to use a large enough parameter space that the 
multidirectional models should be applicable for most practical engi
neering design purposes. However, because the multidirectional models 
are empirical, they should not be extrapolated outside the range of pa
rameters used to develop them. The valid parameter range of the 
multidirectional models is 0.5 cm ≤ u1 ≤ 300 cm, 3.9 ≤ Mw ≤ 7.6, 10 ≤
Rjb ≤ 155 km, 0.2 ≤ SR ≤ 0.6, 5◦ ≤ slope angle ≤15◦, and NEHRP site 
class C, D, and E. We also only used ground motions from active crustal 
regions, half-space properties representative of active crustal regions, 
and no pulse like motions. Therefore, the models should only be used 
with extreme caution in stable continental and subduction zone regions, 
and should not be used at all for ground motions with pulse like 

Fig. 8. a) Predicted values of u2 from equation (1) versus the values calculated from the numerical simulations and b) residuals (in natural log units) versus u1. The 
grey line is the 1:1 line representing equality. 

Table 3 
Machine Learning models investigated.  

Model name Description 

Linear regression Multivariable linear regression that attempts to model 
the relationship between input and output variables 
by fitting a linear equation to the observed data. 

Ridge Regression An extension of linear regression that adds penalties to 
the loss function during training that encourages 
simpler models. 

Bootstrap Aggregation 
Regression (Bagging) 

An ensemble ML algorithm that combines many 
decision tree models to generate a higher performing 
model. 

Random Forest Regression An extension of bootstrap aggregation of decision 
trees. One of the most popular and widely used ML 
algorithms given its excellent performance across a 
wide range of modelling problems. 

Multi-Layer Perceptron 
(MLP) 

A “feed-forward” artificial neural network (ANN) that 
consists of multiple layers where each layer is fully 
connected to the following one through nonlinear 
activation functions. 

Extreme Gradient Boosting XGBoost is a gradient boosting algorithm that uses 
gradient descent optimization where trees are added 
one at a time to the ensemble to correct the prediction 
errors made by prior models.  

Fig. 9. Performance metrics for different ML regression models for predicting 
the displacement u2 when using the full set of input parameters listed in 
Table 2. The blue dots are individual results from cross-validation, and the 
orange lines and error bars represent the mean and standard deviation for each 
of the model results. 

Fig. 10. Premutation feature importance for input variables used in ML 
regression, determined from the XG Boost model. 
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characteristics (i.e. forward directivity). 
To develop the database of seismically induced permanent dis

placements we used the hyperbolic elasto-plastic PIMY model in the 
finite element program OpenSees. The PIMY model does not consider 
excess pore pressure generation or strain softening. Therefore, the 
multidirectional models should not be used for liquefiable soils or soils 
with strain softening behaviour that could lose significant strength 
during or after earthquake shaking. More advanced constitutive models 
for estimating displacements due to multidirectional earthquake 
shaking exist (e.g. Anantanavanich et al. [21]; Yang et al. [39]). How
ever, these constitutive models are not conducive to parametric studies, 
and the objective of this study was to develop a model that is applicable 
for a wide enough parameter space to be useful in practice. The method 
we used is similar to the state of the practice and is therefore consistent 
with how the multidirectional models are intended to be used. In 
addition, when comparing to similar types of parametric studies, the 
numerical and constitutive model used in this study are more realistic. 
For example, Newmark sliding block analyses or displacement models 
based on them (e.g. Jibson [40], Saygili and Rathje [41]) treat the 
sliding mass as a rigid block and neglect the dynamic response of the 
system. Therefore, these models are only valid for shallow stiff soil with 
a short fundamental period. The models of Bray et al. [3], Bray and 

Macedo [4] use a fully coupled, nonlinear, deformable stick-slip sliding 
model that takes into account the dynamic response of the system. 
However, this model uses an equivalent linear approximation that does 
not capture the change in dynamic soil properties with time, and it 
models permanent shear strains due to sloping ground through a coef
ficient of friction. 

The main application of the multidirectional models is in conjunction 
with a 2D finite element or finite difference numerical simulation where 
only one component of ground motion is applied in the downslope di
rection. However, the multidirectional models can also be combined 
with results from simplified displacement models (e.g. Jibson [40], 
Saygili and Rathje [41]; Bray et al. [3], Bray and Macedo [4]) to provide 
a quick initial estimate of seismically induced permanent displacements 
for a single slope, or for regional mapping of landslide hazard for a given 
earthquake scenario [42]. The multidirectional models could also be 
combined with a displacement model to conduct performance based 
probabilistic slope stability analyses [43,44], or combined with USGS 
ShakeMaps to generate SlideMaps [45], which provide near real time 
displacements based on ground motion conditions during the time of an 
earthquake event. 

For uniform slopes with fixed ends in the lateral direction, one could 
use the model of Azizian and Popescu [24] to estimate the decrease in 
displacements due to 3D geometry effects and equation (1) to estimate 
the increase in displacements due to multidirectional shaking effects. 
For these types of slopes, the two phenomena combined predict u2 =

(0.8–1.40) * u1 for 1 ≤W/H ≤ 2 and 0.5 cm ≤ u1 ≤ 20 cm. For W/H ≥ 2.5 
and u1 ≤ 100 cm, the effect of multidirectional shaking outweighs 3D 
geometry effects and u2 is always larger than u1. This shows the 
importance of multidirectional shaking and that it cannot always be 
assumed to be cancelled out by a reduction in displacements due to 3D 
geometry effects. 

While the ML models generally show better performance than the 
conventional least squares regression model (as measured by the cor
relation coefficient R2), they are more difficult to implement in practice. 
As a result of this limitation, combined with the fact that the perfor
mance is only moderately better than the linear regression model (R2 =

0.98 vs R2 = 0.91), we recommend using the least squares regression 
model displayed in equation (1) for practical engineering applications. 

5. Conclusions 

This paper developed a model to estimate seismically induced per
manent displacements due to multidirectional shaking on a slope using 
the results of a traditional unidirectional seismic slope stability analysis 
as input. To develop the model, we first created a simulated database of 

Fig. 11. Performance metrics for different ML regression models for predicting 
the displacement u2 when using u1 as the only input parameter. The blue dots 
are individual results from cross-validation, and the orange lines and error bars 
represent the mean and standard deviation for each of the model results. 

Fig. 12. a) Predicted values of u2 from the XG Boosting regression model using the full set of input parameters in Table 2 vs. the u2 values calculated from the 
numerical simulations, and b) residuals (in natural log units) versus u1. The grey line is the 1:1 line representing equality. 
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slope displacements due to both multidirectional and unidirectional 
shaking. The database consists of 44,160 three-dimensional finite 
element slope stability analyses using 230 ground motion record pairs, 
48 soil profiles, and four different combinations of ground motion 
components (see Table 1). The four combinations of ground motion 
components are (1) component A applied in the x-direction (down
slope); (2) component B applied in the x-direction; (3) component A in 
the x-direction (downslope) and B in the y-direction (across slope); and 
(4) component B in the x-direction and A in the y-direction. To prevent 
analyses with negligible displacements from dominating the regression 
analysis, we removed all analyses with maximum permanent displace
ments less than 0.5 cm and the corresponding other three analysis cases, 
which resulted in a final database of 28,100 analyses. 

The ratio of maximum permanent displacements calculated from 
applying two components to only applying one component (MDF) is 
always greater than one, which means that multidirectional shaking 
produces larger permanent displacements than unidirectional shaking. 
The mean value of MDF is 1.76 and the maximum value is about 11 for 
the ground motions and sites investigated in this study. However, MDF 
decreases as the expected displacements from unidirectional shaking 
increase. 

We performed least squares regression analyses as well as applied 
machine learning techniques to the simulated database of displace
ments. The model from least squares regression (equation (1)) is only 
dependent on the predicted displacement from unidirectional slope 
stability analysis (u1). It provides an efficient and straight-forward way 
to estimate displacement due to multidirectional shaking from analyses 
using only one component of a ground motion. The standard deviation 
(equation (2)) is also dependent on u1, and decreases as u1 increases. The 
standard deviations are similar or smaller than the standard deviations 
for other ground motion models. We investigated six different machine 
learning algorithms and found that the Multi-Layer Perceptron (MLP) 
model gave the best fit to the data when using only u1 as input and the 
Extreme Gradient Boosting Algorithm (XGBoost) when using all of the 
input parameters in Table 2. We have included the tuned MLP and 
XGboost models as an electronic supplement, however, we recommend 
using equation (1) for practical engineering applications due to its 
simplicity and only slightly lower predictive accuracy. 

The intended use of the models presented in this paper are to give a 
quick, first order approximation of the increase in seismically induced 
permanent displacements due to multidirectional shaking based on the 
results of a traditional unidirectional seismic slope stability analysis. 
They can also be used with simplified slope displacement models (e.g. 
Jibson [40], Saygili and Rathje [41]; Bray et al. [3], Bray and Macedo 
[4]) in regional landslide hazard assessments [42] or performance based 
probabilistic slope stability analyses [43,44]. However, the models are 
not intended to replace more detailed analyses for critical structures and 
should not be extrapolated outside the range of parameters used to 
develop them or for liquefiable soils or soils with strain softening 
behaviour that could lose significant strength during or after earthquake 
shaking. 

Finally, the results of this study showed that the increase in dis
placements due to multidirectional shaking cannot be assumed to be 
cancelled out by a reduction in displacements due to 3D geometry ef
fects, and both should be considered in dynamic slope stability analyses 
for critical slopes. 
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