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Abstract: In any geological subsurface fluid injection, a viable top seal is required to contain the
vertical movement of the injected fluid plume. However, seal integrity assessment is challenging
because of the uncertainties possessed by various parameters. A probabilistic solution might be
more appropriate when significant uncertainties are present. In this study, we evaluate Drake shale
caprock structural reliability using a stochastic method. Drake shale is the primary top seal in the
Aurora CO2 storage site, located in the Horda Platform area in the northern North Sea. Based on the
lithological variations, Drake caprock shale is divided into two parts designated by upper and lower
units. Six model scenarios from the upper and lower Drake units have been tested. The probabilistic
structural failures of varying model scenarios are estimated using the First-Order Reliability Method
(FORM). Drake Formation shale shows a considerably low probability of failure (~0) with a high
reliability index in the initial stress-state condition and after-injection scenarios. Moreover, the
parameter sensitivity study indicates that horizontal stress and cohesion are the most influential input
parameters during reliability estimation. Comparative analysis between the caprock properties and
failure probability reveals that rock strength properties such as cohesion and friction angle strongly
dictate the probability of failure estimation. Moreover, comparing two caprock shale formations
indicates that the structural failure values are not correlatable; hence, a formation-specific failure
assessment is recommended.

Keywords: caprock integrity; structural reliability; probability of failure; drake shale; aurora site;
factor of safety; longship CCS project

1. Introduction

The planned Aurora CO2 storage site is located in the Horda Platform (south of Troll
Field), in the northern North Sea, and was selected as a possible geological CO2 storage
site under the Longship full-scale CCS (carbon capture and storage) project. Longship is
the first project of its kind, where a gigaton-level of CO2 will be injected into the subsur-
face saline aquifers. Although the subsurface geological CO2 sequestration has already
been demonstrated as a safe and reliable solution by several pilot projects worldwide
(i.e., Snøhvit, Norway, [1]; In Salah, Algeria, [2]; Sleipner, Norway, [3]; Ketzin, Germany, [4];
and Otway, Australia, [5]), the Longship project needs to evaluate potential geomechanical
failure risks for safe CO2 storage. Caprock integrity is a crucial parameter to assess during
subsurface CO2 injection because the caprock acts as a top seal and prevents the upward
movement of the injected fluids. Mechanical fracturing by either shearing or tensile stresses
can occur within caprock shale when reservoir pore pressure exceeds the formation rock
fracture strength stress [6]. The risk can be even higher in any CO2 injection project (i.e., the
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Longship project), because injecting CO2 into a saline aquifer will produce an increase in
the induced reservoir pressure and influences the mechanical rock deformation and failure.
Therefore, caprock’s reliability assessment is crucial to prevent unexpected leakage risks of
injected CO2 and in assisting project decisions.

Caprock shales or mudstones mainly consist of clay and silt-sized particles and sig-
nificantly differ from other clastic rocks in composition, fabric, heterogeneity, etc. [7–10].
Caprock shales can deposit in a broad range of environments (i.e., floodplains, lakes,
shorefaces, prodeltas, abyssal plains, etc.), and based on the provenance, the type of clay
minerals vary significantly [11]. These variations in paleodepositional conditions influence
the diagenesis processes [12] and inherent uncertainties in subsurface rock properties.
Moreover, laboratory-based caprock strength properties data are limited due to the lack of
coring from the caprock section during drilling. Therefore, the number of input parameters
is limited, adding additional uncertainties on top of the inherent one. The 3D seismic
inverted properties might reduce this data uncertainty range compared to limited wells,
and laboratory test data provide better control on lateral rock property variability.

It is highly unlikely that the Drake caprock shales will fail due to capillary break-
throughs because they have high percentages of clay minerals with considerable thick-
ness [6,13]. Instead, injection-related top seal shear failure and tensile fracture are the
main likely caprock failure risks in the Aurora storage site. The poroelastic effect of the
injected fluid will also be influenced by the mechanical behavior of the rock and the stress
path of any injection site [14–17]. The elastic behavior of the pore fluid under the drainage
condition (i.e., fluid flow behavior) is also unknown in a saline aquifer due to no production
history, which adds more uncertainty to the system. Generally, the local stress-state condi-
tion (i.e., the principal stress values and directions) is also very complex and challenging
to assess.

The deterministic assessment of caprock integrity is somewhat questionable, consid-
ering the number of uncertainties that are present [18–20]. The deterministic approach
might oversimplify the complex behavior of caprock as a top seal by assuming the high
certainty and constant one-scenario-based input parameters. Generally, all the variables in
subsurface structures are stochastic to a certain degree. A probabilistic approach can be
more suitable, where the input uncertainty range can be used as an input with a proba-
bilistic failure output [21,22]. The failure probability of an event is a numerical measure
of the chance of its occurrence. This outcome will help in choosing the design alternative
to improve structural reliability and minimize the failure risk [19]. Structural reliability
(SR) can be illustrated by the ability of a structure that comprises given requirements
under specific conditions during its intended design life [19,20,23]. In the 19th century,
reliability theory was originally developed by maritime and life insurance companies to
predict the probability of death for a given population. The intention was to estimate
the profitable rates to charge customers. Biological organ failure is in many ways similar
to structural system failure (i.e., aircrafts, cars, ships, bridges, etc.). Therefore, the same
concept (i.e., reliability methods) were rapidly implemented in various applications in the
multidisciplinary design environment, mainly in the engineering realm. This is because the
engineering system requires stringent performance, a narrow safety margin, liability, and
market competition [19,20].

In the engineering domain, structural reliability (SR) generally deals with load (S) and
strength (R) in terms of forces, displacements, and stress acting on the structures. The SR
theory is the estimation of failure probability considering the uncertainties originating from
poor knowledge of design quantities, such as the likelihood of events, lack of knowledge,
variability, degree of belief, inaccuracy, etc. [19]. These uncertainties are related to the loads
and the strength of the studied structure. The failure mode can be estimated from the
limit-state function, which is defined as the specific limit (borderline surface) between the
safe and failure states. There are two types of general limit-state categories: (1) ultimate
limit states indicate a structural collapse of part or all (i.e., corrosion, fatigue, deterioration,
fire, plastic mechanism, progressive collapse, fracture, etc.); (2) serviceability limit states are



Energies 2022, 15, 9598 3 of 23

related to disruption of the normal use of the structures (i.e., drainage, leakage, excessive
deflection, excessive vibration, local damage, etc.) [19].

Based on the strength (S) and load (R) random variables, Cornell [24] proposed the
relation for estimating the safety index or reliability index. This approach is a mathematical
optimization problem to find the point on the structural response surface (i.e., limit-state
approximation) that has the shortest distance from the origin to the surface in the standard
normal space. Hasofer and Lind [25] improved the method and introduced a geographic
interpretation of the reliability index, which improved the failure probability by transform-
ing the limit-state function into the so-called standard space. Based on the response surface
(g(u)) approximation at the most probable failure point, three (3) different methods were
projected: (1) First-Order Reliability Method (FORM), (2) Second-Order Reliability Method
(SORM), and (3) Higher-Order Reliability Method (HORM).

Structural reliability (SR) can be achieved by several methods (i.e., Monte Carlo, direc-
tional sampling method, FORM, SORM, numerical integration, machine learning approach,
etc.) that have the solutions for different structural problems (i.e., slope stability, under-
ground mining, fault reactivation, caprock integrity, etc.). For instance, the reliability of the
slope of a dam/embankment has been analyzed by several authors using various meth-
ods [18,26–30]. At the same time, Nomikos and Sofiamos [31] introduced a new approach
to the underground mining industry. Neural-network-based (machine learning) structural
reliability estimation methods have been practiced for several decades [32–35]. In offshore
marine structural design (i.e., offshore jacket structure, wind turbines, shipbuilding in-
dustry, etc.), reliability methods are also widely used [20,36,37]. The structural reliability
assessment of containment for CO2 sequestration (CCS) is relatively new. Pereira [38]
introduced SR methods during the probabilistic estimation of fault reactivation in CCS
injection-related pressure perturbation. Rahman et al. [39] estimated the fault system reli-
ability using the event tree methods. Moreover, the same method was used for caprock
integrity analysis [40]. The present study is a continuation of the earlier caprock characteri-
zation approach where the structural reliability of the Drake caprock shale was evaluated
by using a Mohr–Coulomb-failure-criteria-based analytical model. The probability of shear
failure and tensile fracture of Drake shale in different conditions (i.e., in situ stress state,
injected, and theoretical failure) were estimated. The effect of caprock mineralogy and
strength property (i.e., cohesion) were investigated. As this is a new approach for subsur-
face caprock characterization, a standard rock assessment chart needs to be established.
In this study, an initial caprock failure assessment chart is proposed based on the avail-
able database such as Drake Formation (this study) and Draupne [40] Formation caprock
shale reliability.

2. Study Area

The studied Aurora area is located south of the Troll Fields in the Horda Platform
area, in the northern North Sea (Figure 1a). This area experienced two main rifting events
during the Permo-Triassic and the Late Jurassic to Mid-Cretaceous times [41–43]. The first
rifting event was centered in the Horda Platform area with deep-rooted faults and thick
syn-depositional wedges, while the second event shifted westward into the deep basin with
less influence on the study area [44]. However, the major faults (i.e., Tusse, Svartalv, Troll, etc.)
were reactivated during the second rifting event and affected the paleodeposition [41–43,45].
N-S trending of those major faults is now demarcating the structural elements in the Horda
Platform (Figure 1a). For instance, the studied Aurora area is bounded by Tusse and Svartalv
Faults in the east and west, respectively (named the Tusse–Svartalv Fault block). Several
NW-SE oriented minor faults are also present, where the number of faults increases towards
the north (Figure 1c). Moreover, the overall structure is dipping in the southward direction.
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Figure 1. The location map of the study area representing major faults (e.g., TF = Tusse Fault; SF = 
Svartalv Fault; TrF = Troll Fault) with Troll and Brage Fields (e.g., TE = Troll East; TW = Troll West; 
B = Brage) and structural elements (i.e., HP = Horda Platform; LT = Lomre Terrace) as reference. The 
red rectangle is the recently drilled CO2 injection well (31/5-7). The Aurora storage site is located 
south of the Troll Fields (a). The Horda Platform generalized stratigraphic succession is representing 
the Jurassic and Lower Cretaceous strata. The vertical (MD = measured depth) lithology and rock 
property variations (e.g., GR = gamma-ray; RHOB = bulk density; DT = p-sonic) between the studied 
reservoir and caprock are also illustrated in well 31/5-7 (b). The seismic cross-section (A-B) shows 

Figure 1. The location map of the study area representing major faults (e.g., TF = Tusse Fault;
SF = Svartalv Fault; TrF = Troll Fault) with Troll and Brage Fields (e.g., TE = Troll East; TW = Troll West;
B = Brage) and structural elements (i.e., HP = Horda Platform; LT = Lomre Terrace) as reference. The
red rectangle is the recently drilled CO2 injection well (31/5-7). The Aurora storage site is located
south of the Troll Fields (a). The Horda Platform generalized stratigraphic succession is representing
the Jurassic and Lower Cretaceous strata. The vertical (MD = measured depth) lithology and rock
property variations (e.g., GR = gamma-ray; RHOB = bulk density; DT = p-sonic) between the studied
reservoir and caprock are also illustrated in well 31/5-7 (b). The seismic cross-section (A,B) shows
the seismic interpreted major horizons and minor faults with the well location (c). Note that the rock
layers dipped southward, and the fault intensity increased in the northern direction.

The studied Drake caprock shale is part of the Dunlin Group, deposited in the Early
Jurassic post-rift time (Figure 1b). The Drake Formation mainly consists of marine shales
deposited in the distal part of the basin [45]. Coarser grain basin margin deposits are also
found [46]. Based on the lithological variation, the Drake Formation is divided into two
parts, where the upper unit consists of heterolithic deposits comprising sandstones, alter-
nating with siltstone and claystone, while the lower unit mostly consists of claystone [47].
In this study, the silty upper Drake shale is named the upper unit, while the shaly lower
Drake is called the lower unit. The main reservoir rocks in the Aurora injection site are
Cook and Johansen Formation sandstones, which were also deposited in the Early Jurassic
time. Although the upper Amundsen/Burton Formation is present between Cook and
Johansen Formations, both reservoir sandstones are in communication due to erosion/non-
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deposition of the clay layers (Figure 1b). Acoustic properties (i.e., Vp and Vs) and density
of upper and lower Drake shales show a considerable difference in well 31/5-7.

3. Materials and Methods

Top seal integrity depends on the geomechanical properties of shales and the stress-
state condition of the study area. This study assesses Drake caprock’s structural integrity
by using an analytical model defined by the Mohr–Coulomb failure criterion. We wanted
to keep our model simple; hence, Mohr–Coulomb failure criterion has been implemented.
However, we have a plan to test other criteria (i.e., Hoek–Brown, Barton, etc.) in the future.
The workflow used in this research is illustrated in Figure 2. Input parameters (i.e., stress
state, pore pressure, and rock strength) were scouted from the published database [48] and
estimated using wireline logs from well 31/5-7 and seismically inverted property from
the 3D seismic survey GN10M1. The Mohr–Coulomb-failure-criterion-based deterministic
factor of safety (FoS) equation was used to define the limit-state function for the proba-
bilistic model. The failure probability of the Drake caprock shale was estimated using the
First-Order Reliability Method (FORM) proposed by Hasofer and Lind [25]. The relative
importance of the input parameters was also assessed. A detailed description of each
section is discussed below.
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Figure 2. The workflow used in this study to assess the probabilistic structural reliability of Drake
caprock shale as a top seal (XLOT—extended leak off test).

3.1. Model Parameters
3.1.1. In Situ Stress-State Condition

Leak off test data in the study area and Gassnova report [48] reveal that the horizontal
stress gradient is lower than the vertical stress, which indicates a normal faulting regime
(Figure 3). We assume isotropic horizontal stress conditions to make our model simple.
The hydrostatic and overburden pressure gradients are calculated using the density logs
from the well 31/5-7. The water depth at the well location is 307 m. The horizontal stress
gradient is estimated using the leak off test data scouted from the Gassnova report [48].
From the report, the base case minimum horizontal stress profile is defined based on the
lower bound of the majority of the LOTs, which is adapted as the minimum horizontal
stress in this study.
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3.1.2. Rock Strength Properties

Laboratory-based caprock strength properties such as cohesion and friction angle
are limited due to the unavailability of core in the overburden section. However, the
seismic-inversion-based 3D property cubes can be used to resolve the data limitation issue
and have spatial control over it by estimating acoustic and elastic properties. The pre-
stack simultaneous inversion method is used to estimate the P-wave velocity (Vp), S-wave
velocity (Vs), and density (ρ). Poisson’s ratio (ν) cube is calculated using the equation below.

ν =
V2

p − 2V2
s

2
(

V2
p −V2

s

) (1)

The inversion methods are not described here, but readers are advised to read Fawad
et al. [49] for further information. The referred literature described seismic inversion
methodology using a database from the Smeaheia area. The same workflow was also
implemented to estimate properties in the Aurora site, which was used in this study.
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The Vp cube is converted into unconfined compressive strength (UCS) using the
Horsrud et al. [50] proposed empirical equation (Equation (2)).

UCS = 0.77
(
Vp
)2.93 (2)

Cohesion (S0) of rocks is estimated from UCS using the following equation:

S0 =
UCS

2
(3)

Top upper Drake, top lower Drake, and top Cook horizons were interpreted using
the post-stacked 3D seismic survey GN10M1. The horizons were then converted into time
surfaces and used to estimate the average cohesion strength of the upper Drake (from the
top upper Drake to top lower Drake surfaces) and lower Drake (from the top lower Drake
to top Cook surfaces) units. The distribution of cohesion property of upper and lower
Drake shales is illustrated in Figure 4. Spreading of the frequency indicated normal to
log-normal distributions. In contrast, lower Drake shale is slightly less cohesive than upper
Drake shale. The average and standard deviation values illustrated in the figures are used
as the model input parameter.
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3.1.3. Horizontal Stress Path

Stress approximation in any sedimentary basin is essential to define stress-state condi-
tions and estimate the effect of poroelasticity. Compaction-induced changes within total
vertical stress are minimal for laterally extensive reservoirs, assuming equal elastic proper-
ties for the reservoir and overburden. Hettema et al. [51] show in a numerical solution that
the stiffness contrast has a negligible effect on the vertical total stress change in a laterally
extensive reservoir. However, the horizontal stress path is very sensitive to pore pressure
changes. An explanation is that the earth’s surface is a free surface where strain is allowed
to absorb any change in pore pressure, while there are constraints in lateral strains [52].
Therefore, the change in horizontal stress is proportional to the change in pore pressure,
and the following is stated [51]:

γh =
∆σh
∆P

= α

(
1− 2ν
1− ν

)
(4)
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where ∆σh is the change in horizontal stress, ∆P is the pore pressure change, α is Biot’s
coefficient or effective stress parameter, and ν is Poisson’s ratio.

Considering that Biot’s coefficient is equal to 1, Equation (3) can be rewritten:

γh =

(
1− 2ν
1− ν

)
(5)

Using the seismic inverted Poisson’s ratio cube, the horizontal stress path volume
was estimated. The frequency distribution of Poisson’s ratio (ν) of upper and lower Drake
units also indicated normal to log-normal spreading (Figure 5). The average ν slightly
varied between the upper and lower shale units, 0.3 and 0.32, respectively. The average
and standard deviation of stress path values are estimated similar to the cohesion strength
property that has been defined.
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also shown.

3.2. Model Definition
3.2.1. Reliability Analysis and Limit-State Function

The probability of failure does not characterize the deterministic structural safety index
such as fail or non-fail; instead, it represents the failure likelihood. Hence, it indicates the
reliability of any structure. It provides a rational framework for dealing with uncertainties
of structural parameters and assists in making the project decision. The reliability of
a structural component depends on active load (S) and resistance (R) by the structure
itself [22]. Uncertainties of S and R are represented as random variables, assuming the
load and the resistance variables’ areas are statistically independent. If both the resistance
and load variables are normally distributed, the safety margin (random variable M) can be
determined by the following:

M = R− S (6)

and the probability of failure (Pf) is assessed through Equation (7), where Pf is determined
by the realization of the random variables R and S but not the overlapping of two curves.

Pf = P(R− S ≤ 0) = P(M ≤ 0) (7)
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where M is also normally distributed with the mean µM = µR − µS and standard deviation

σM =
√

σ2
R + σ2

S.

Failure probability is determined by the use of the standard normal distribution
function shown in Figure 6a, which mathematically states the following:

Pf = Φ
(

0− µM
σM

)
= Φ (−β) (8)

where µM/σM = β is called the safety/reliability index, which is the standard deviation
by which the mean value of the safety margin M exceeds zero or most likely exceeds the
failure point (Figure 6a).

Including uncertainties of the random variables, the probability of failure (Pf) can be
determined from the limit-state function (g(X)), which is a boundary between desired (g(X) > 0)
and undesired (g(X)≤ 0) performance of any structure and can be defined within a mathematical
model for functionality and performance [53].
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In this study, the Mohr–Coulomb-failure-criteria-based limit-state function is deter-
mined from the deterministic factor of safety (FoS) equation. Assuming an isotropic
horizontal stress condition within a normal faulting regime, the factor of safety (FoS) for
shear failure is defined as the following:

FoS_shear =
[
(
σ′1+σ′3

2

)
+ S0

tanφ ] sinφ

σ′1−σ′3
2

(9)

σ′1 = σ1 − pp (10)

σ′3 = σ3 − pp (11)

where σ′1 is effective vertical stress, σ1 is vertical stress, σ′3 is effective horizontal stress, σ3
is horizontal stress, pp is pore pressure, S0 is cohesion, and φ is friction angle.

The state of the structure is safe when the factor of safety is greater than 1 and fails
when it is less than 1. Therefore, the limit-state function is defined as the following:

g_shear(X) = FoS_shear− 1 (12)

where g(X) is the limit-state function, which is the boundary between the safe (g(X) > 0)
and failure (g(X) ≤ 0) state. This limit-state function only evaluates the shear failure and
fracture risks. There might be a tensile failure risk that must be considered when defining
the probabilistic failure limit. Therefore, the tensile failure risk limit-state function is also
defined as the following:

g_tensile(X) = σ3 − pp (13)

Equation (13) represents the tensile failure based on the Mohr–Coulomb failure enve-
lope, which is a pessimistic estimation. However, considering the Mohr–Coulomb–Griffith
failure envelope, we tested another two scenarios with a tensile strength cut-off. The tensile
strength cut-off is considered half of the cohesion of that rock sample.

3.2.2. Reliability Method

The studied model is executed using the method called First-Order Reliability Method
(FORM), which is proposed by Hasofer and Lind [25] and widely used in practical engi-
neering problems [22,54]. Let us assume two random variables with the limit-state function
g(X) are stated in physical space, where the grey zone represents the failure events and
the white zone is the safe region (Figure 6b). FORM normalizes the random variables
into normally distributed variables (Z1 and Z2) with zero mean and defines the limit-state
function g(Z) = 0. After that, the g(Z) surface is linearized at point z*, which is the shortest
distance from the zero mean and is called the design point (Figure 6c). The shortest distance
is called the reliability index (β), which is an indicator of structural stability. The higher
the distance, the safest the structure is. The normal vector direction to the failure surface is
denoted as α and indicates the random variable’s relative importance. Mathematically the
reliability index (β) can be expressed as the following:

β =
→
αz∗ (14)

where the normal vector to the failure surface
→
α is denoted as

→
α =

∇g(z∗)
|∇g(z∗)| (15)

where g(Z) is the gradient vector and assumed to exist:

∇g(Z) =
(

∂g
∂z1

(Z), . . . . . . . . . . . . . . . .,
∂g
∂zn

(Z)
)

(16)
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Therefore, an iterative method can be used to estimate the reliability index due to the
non-linear optimization problem [55,56]. The Python-based First Order Reliability Method
(FORM) can iterate and estimate the failure value with several iterative steps [39,40].

The method (i.e., FORM) is initiated and run by using a python-based open-source
structural reliability analysis module called ‘PyRe’ [57], which was created using the core
function of the Finite Element Reliability Using Matlab (FERUM) project started in 1999 at
the University of California, Berkeley, for pedagogical purposes. In this study, only the core
reliability functionality was used, which focuses on the analytical solution of the structural
reliability assessment. The 2019 version of PetrelTM was used for seismic interpretation and
property extraction purposes.

3.3. Modeling Scenarios and Input Parameters

Based on various assumptions, six different scenario-based models were tested, where
both upper and lower Drake units were analyzed (Table 1). Case-1 and Case-2 are defined
based on the initial stress-state condition, while Case-3 and Case-4 represent the pressure
build-up scenario after CO2 injection into the saline aquifer adapted from the Gassnova [48]
reservoir simulation model. The Gassnova model used an injection rate of 3.2 MT per year
over a period of 50 years, which accounted for a total of 160 MT of CO2. This leads to
a reservoir pressure increase of 3.2 MPa. The average permeability and porosity in the
injection location are about 625 mD and 20%, respectively. The injection-induced pressure
increase near the well location is estimated at 3.2 MPa.

Table 1. Different model scenarios were tested in this study to evaluate Drake caprock shale’s reliability.

Unit Assumptions

Case-1 Upper Drake
Initial stress-state conditionCase-2 Lower Drake

Case-3 Upper Drake After the CO2 injection scenario
Case-4 Lower Drake
Case-5 Upper Drake Theoretical shear failure due to decreasing σ3Case-6 Lower Drake

Two theoretical failure scenarios were also analyzed, where the horizontal stress
decreases up to the failure point while the other parameters (i.e., σv and Pp) remain in
their initial condition. Please note that the shear failure horizontal stress is defined based
on the Mohr circles and Coulomb–Griffith failure envelope. However, considering the
tensile stress cut-off at zero (i.e., Coulomb failure envelope), we are within the tensile
failure zone (i.e., horizontal stress is lower than the pore pressure). Therefore, different
probabilistic tensile failure risk sensitivity was also evaluated using the limit-state function
stated in Equation (13). Tensile failure was estimated only for Case-5 and Case-6, because
considerable differences were observed between σ3 and Pp in Case-1 to Case-4. Note that
Case-5 and -6 are not real scenarios; instead, they are theoretical failure cases where σ3
decreases hypothetically until achieving shear failure. When σ3 reduced to a certain level
closer to the Pp value, there was a possibility of tensile failure; hence, we tested tensile
failure risk as well. Moreover, these theoretical failure models (i.e., Case-5 and -6) of
failure probability are necessary to define the caprock failure assessment chart, which is
not available for the subsurface characterization yet.

Stress parameters in the studied section were estimated based on well 31/5-7, con-
sidering this well as the potential injection point. The input database used in this study
is shown in Table 2. The properties also reflect spatial variability because of the use of
seismic inverted properties while estimating the average and standard deviation of the
horizontal stress path and cohesion strength. Stresses (i.e., vertical and horizontal) and pore
pressure were calculated using the gradient illustrated in Figure 3. To our knowledge, there
are no friction angle data available for Drake caprock shale; hence the Draupne caprock
shale value [40] was used. The random variables such as vertical stress (σv), horizontal
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stress (σh), pore pressure (Pp), cohesion (S0), and friction angle (φ) were used to run the
stochastic model, where the arithmetic average with standard deviation was used to define
the ranges. Three sigma rules ((maximum value-minimum value)/6) were implemented
during estimating standard deviation, which covers 99.73% of all values of a normally
distributed parameter [18]. Moreover, most geological processes follow a normal or log-
normal distribution [21], which is also revealed in Figures 4 and 5; hence, the normal
random distribution of the property was used in the studied models. In addition, standard
deviation serves as a measure of uncertainty, where a small value indicates clustered closely
around the mean with more precision and vice versa.

Table 2. The average and standard deviation of the model input parameters are presented with the
type of distribution and data sources. Please note that the superscript numbers in the property names
represent the case numbers explained in Table 1.

Parameters Average Unit Standard
Deviation

Random
Distribution Sources

Initial vertical stress (σv) 50.50 MPa 3.21 Normal [48]
Initial horizontal stress (σh

1–4) 36.50 MPa 1.33 Normal [48]
Initial horizontal stress (σh

5) 20.53 MPa 0.00 Normal [48]
Initial horizontal stress (σh

6) 21.84 MPa 0.00 Normal [48]
Initial pore pressure (Pp

1,2,5,6) 25.70 MPa 0.28 Normal [48]
Injected pore pressure (Pp

3,4) 28.90 MPa 0.28 Normal [48]
Horizontal stress path (γh) 0.60 - 0.11 Normal Inversion cube

Cohesion, upper Drake (S0
1,3,5) 12.23 MPa 3.98 Normal Inversion cube

Cohesion, lower Drake (S0
2,4,6) 11.26 MPa 3.06 Normal Inversion cube

Friction angle (φ1–6) 21.63 Degree 2.33 Normal [58,59]

3.4. Parameter Sensitivity

The OVAT (one variable at a time) technique [60,61] was used to estimate the determin-
istic sensitivity by alternatively assigning minimum and maximum values in each input
parameter when other parameters remain in their mean values. Usually, the output is illus-
trated as a tornado diagram, where the relative influence of each parameter can be assessed.
The sensitivity output from this study is shown in Figure 7, where the cohesion (S0) has the
most significant impact on the factor of safety in both upper and lower Drake units. In situ
stresses (i.e., vertical and horizontal) also have considerable influence. Pore pressure itself
has a negligible impact. A similar parameter impact trend was observed between upper
(Case-1) and lower (Case-2) Drake units. Only the initial stress-state condition scenarios
(Case-1 and -2) are presented here as an example.
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4. Results

The Drake caprock shale structural reliability (based on shear failure) for different
pressure conditions is summarized in Table 3. The corresponding reliability index (β)
and deterministic factor of safety (FoS) for shear failure values are also presented. The
estimated probability of failure (Pf) is close to zero in both in situ stress conditions (Case-1
and -2) and after-injection scenarios (Case-3 and -4). Based on the reliability index, the
lower Drake unit represents higher safety than the upper Drake shale in both scenarios (i.e.,
before and after injection). However, the calculated deterministic factor of safety values
demonstrates the opposite trend: the upper Drake shale is safer than the lower Drake unit.
In addition, the reliability index in the after-injection scenario slightly decreases than the in
situ stress-state condition.

Table 3. The deterministic factor of safety (FoS) and the probability of failure (Pf) of the Drake caprock
shale in different studied cases. Corresponding reliability index (β) values are also shown.

Model Scenarios Factor of Safety Probability of Failure Reliability Index

Case-1 (UD) 2.57 0.00 10.80
Case-2 (LD) 2.44 0.00 11.08
Case-3 (UD) 2.40 0.00 9.72
Case-4 (LD) 2.27 0.00 10.00
Case-5 (UD) 1.00 1.10 × 10−2 2.29
Case-6 (LD) 1.00 2.52 × 10−4 3.48

Drake caprock shale’s theoretical shear failure scenarios (Case-5 and -6) represent
significant variation between upper and lower shale units. The lower Drake shale has
a substantially lower failure probability (2.52 × 10−4) than the upper unit (1.10 × 10−2),
with both having the same deterministic factor of safety value of 1. Compared with
the other cases, the trend between the upper and lower units also repeats (i.e., higher
structural reliability in lower Drake than the upper unit) in theoretical failure scenarios.
The corresponding reliability index in failure cases also shows considerable variation.

4.1. Tensile Failure

Tensile failure risk was also evaluated for theoretical failure scenarios (i.e., Case-5 and -6)
using the same reliability method. Minimum (i.e., Coulomb failure envelope) and maximum
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(i.e., Griffith tensile extension) tensile stress cut-offs were assessed, where the minimum
cut-off used is zero (0), and the maximum cut-off used is half of the cohesive strength of
those specific intervals (Table 2). The initial stress state and injected scenarios were not
analyzed, assuming there will be no tensile failure risk because the value of horizontal stress
is significantly higher than the pore pressure even in the after-injection scenario.

The theoretical scenario models illustrated the high possibility of failure even in the
maximum tensile stress cut-off cases (Table 4). Based on the Coulomb failure cut-off, the
failure probability is ~100% with a negative reliability index value. However, using the
Griffith tensile extension cut-off (half of the cohesion), the failure probability relatively
increases with a positive reliability index value. Comparing the upper and lower Drake
shale results, the lower Drake shale is slightly less failure-prone than the upper unit.
Moreover, comparing the result between shear failure (Table 3) and tensile failure (Table 4)
of Case-5 and -6 reveals that the tensile failure probability is significantly higher than the
probabilistic shear failure in the case of caprock failure.

Table 4. Tensile failure and reliability index of Case-5 and -6 in different tensile stress cut-off values.

Model Scenarios Tensile Stress Cut-Off Probability of Failure Reliability Index

Case-5 (UD)
0 9.99 × 10−1 −3.89

6.115 2.39 × 10−1 0.71

Case-6 (LD)
0 9.98 × 10−1 −2.9

5.13 1.70 × 10−1 0.95

4.2. Probabilistic Sensitivity

The normal vector of the failure surface α (Figure 6 and Equation (15)), which is the
relative design sensitivity factor or the relative parameters’ importance factor, is often
referred to as probabilistic sensitivity and is very useful for the relative ranking of random
variables. The vector can be obtained during performing the probabilistic analysis by
treating every individual input parameter as a deterministic variable, where a positive
value indicates a direct relationship between the variables and the response and a negative
sensitivity suggests an inverse relationship [38,62].

The sensitivity factors of each case are illustrated in Figure 8. The effect of the vertical
stress (σv) in all cases is close to zero. Pore pressure (Pp) and friction angle (φ) show a direct
relation with the reliability value, while horizontal stress (σh), horizontal stress path (γh),
and cohesion (S0) are indicated as an inverse relation. The maximum influences during the
in situ stress-state condition (Case-1 and -2) and after-injection scenarios (Case-3 and -4) in
both upper and lower Drake units are represented by σh and S0, while a significant negative
relation is observed between S0 and theoretical failure structural reliability (Case-5 and -6).
In addition, overall, the variation between the upper and lower Drake units is negligible.

The input parameter contribution to the reliability function is represented by the
square of the sensitivity factor (α2), where the sum of all the parameters is equal to 1 [63].
Because of the similar trend between the upper and lower Drake units, only the lower
Drake unit (the primary caprock in the Aurora site) model contributions are illustrated
in Figure 9. The probabilistic failure values of Case-2 and -4, which are estimated using
the FORM technique, mainly depend on the horizontal stress, 76% and 70%, respectively.
A substantial influence from cohesion is also observed. However, the cohesion strength
property is controlled in the theoretical failure scenario (Case-6) by a 94% impact on overall
structural failure.



Energies 2022, 15, 9598 15 of 23Energies 2022, 15, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 8. The sensitivity factor (α) shows the relations between input variables (i.e., σv = vertical 
stress; σh = horizontal stress; Pp = pore pressure; γh = horizontal stress path; S0 = cohesion; and ϕ = 
friction angle) and the responses in upper Drake (a) and lower Drake (b) units using FORM. 

The input parameter contribution to the reliability function is represented by the 
square of the sensitivity factor (α2), where the sum of all the parameters is equal to 1 [63]. 
Because of the similar trend between the upper and lower Drake units, only the lower 
Drake unit (the primary caprock in the Aurora site) model contributions are illustrated in 
Figure 9. The probabilistic failure values of Case-2 and -4, which are estimated using the 
FORM technique, mainly depend on the horizontal stress, 76% and 70%, respectively. A 

Figure 8. The sensitivity factor (α) shows the relations between input variables (i.e., σv = vertical
stress; σh = horizontal stress; Pp = pore pressure; γh = horizontal stress path; S0 = cohesion; and
φ = friction angle) and the responses in upper Drake (a) and lower Drake (b) units using FORM.



Energies 2022, 15, 9598 16 of 23

Energies 2022, 15, x FOR PEER REVIEW 16 of 23 
 

 

substantial influence from cohesion is also observed. However, the cohesion strength 
property is controlled in the theoretical failure scenario (Case-6) by a 94% impact on over-
all structural failure.  

 
Figure 9. Square of the sensitivity factor (α2) shows the contribution of each parameter to the prob-
ability failure output in the lower Drake unit. The relative importance varied between cases. 

5. Discussion 
Failure probability of subsurface rock stability could be a possible approach to deal 

with highly uncertain input parameters [22], where the random variable method included 
the entire range within the final probabilistic output. The probability of failure of the Vette 
fault and Draupne caprock shale indicated this method’s practicality during quantifying 
the failure risks [39,40]. However, the difference in deterministic and probabilistic sensi-
tivities within the previous analysis indicated the limitation of the number of input pa-
rameter samples and the method used to define the standard deviation. The probabilistic 
model is also susceptible to the input parameter ranges; hence, emphasis is needed to de-
fine the uncertain parameter range before use as an input parameter in the failure proba-
bility estimation. Additionally, statistical analysis with more data points is needed to de-
fine the input parameters’ range to obtain a field-scale level reliable assessment. In this 
study, using seismic inverted properties with the six-sigma rule to define standard devi-
ation significantly improves the parameter’s uncertainty range. A consistency between 
deterministic and probabilistic input parameter sensitivities reflects the improvement of 
the studied method. According to the analysis, the most influential parameters are hori-

Figure 9. Square of the sensitivity factor (α2) shows the contribution of each parameter to the
probability failure output in the lower Drake unit. The relative importance varied between cases.

5. Discussion

Failure probability of subsurface rock stability could be a possible approach to deal
with highly uncertain input parameters [22], where the random variable method included
the entire range within the final probabilistic output. The probability of failure of the Vette
fault and Draupne caprock shale indicated this method’s practicality during quantifying the
failure risks [39,40]. However, the difference in deterministic and probabilistic sensitivities
within the previous analysis indicated the limitation of the number of input parameter
samples and the method used to define the standard deviation. The probabilistic model
is also susceptible to the input parameter ranges; hence, emphasis is needed to define
the uncertain parameter range before use as an input parameter in the failure probability
estimation. Additionally, statistical analysis with more data points is needed to define the
input parameters’ range to obtain a field-scale level reliable assessment. In this study, using
seismic inverted properties with the six-sigma rule to define standard deviation significantly
improves the parameter’s uncertainty range. A consistency between deterministic and
probabilistic input parameter sensitivities reflects the improvement of the studied method.
According to the analysis, the most influential parameters are horizontal stress and cohesion
strength of the rocks (Figures 8 and 9). However, the most influential parameter changes
dramatically in theoretical failure scenarios (Case-5 and -6), where the contribution of
cohesion is 94% (Figure 9).

Cohesion of the upper and lower Drake shales is high; hence, the effective stress Mohr
circle is away from the Coulomb failure envelope (Figure 10). As a result, the chances of
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shear failure are close to zero in the initial stress-state condition and injected scenarios
(Case-1 to -4). FOAM estimation is also dictated by horizontal stress and cohesion (Figure 9).
However, when we forced σ3 to have a theoretical shear failure (Case-5 and -6), the value
declined below pore pressure. In this scenario, we not only have the increased shear failure
but also the possibility of increased tensile failure risks. This explained the ~100% tensile
failure probability when using the tensile cut-off of zero (0) (Table 4).
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illustrated for an explanation of failure results.

5.1. Effect of Caprock Properties

The effect of rock properties on probabilistic failure was assessed by comparing the
studied upper and lower Drake shales with shallow organic-rich Draupne caprock shale.
Cross plots of the reliability index and caprock shale properties (cohesion and bulk clay
mineralogy) are illustrated in Figure 11. Draupne caprock shale results are adapted from
Rahman et al. [40,64]. The clay mineral fraction within the Draupne and Drake caprock
shales varies significantly, where the average Draupne clay mineral percentage is 65%,
and 40% and 20% represent the lower Drake and upper Drake, respectively. Although the
difference in cohesion strength of the upper and lower Drake shale is minimal, a consid-
erable variation with Draupne shale was observed. Furthermore, the studied Draupne
Formation is located within a mechanically compacted zone, while the Drake Formation
is chemically compacted [64–66]. The reliability indexes of upper and lower Drake shales
are significantly higher in initial stress-state conditions than Draupne shale, irrespective of
the percentage of soft clay minerals (i.e., ductile minerals). Moreover, a minimal reliability
index difference is also observed between upper and lower Drake units, though significant
variation was identified in bulk clay mineralogy. This indicates that the probabilistic failure
value does not directly correlate with ductile clay mineral percentages but depends on the
caprock strength property such as cohesion.
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On the contrary, the reliability index has a positive correlation with cohesion strength.
However, compared with the parameter sensitivity analysis, the relative influence of the
cohesion property varied significantly between Draupne and Drake caprock shales ([40];
Figure 9). Based on the probabilistic sensitivity, this reveals that caprock integrity in the
mechanically compacted shale (i.e., Draupne shale) is more affected by principal stresses.
In contrast, for the deeper caprock (Drake shale), the rock strength (i.e., cohesion) is a more
influential parameter.

The factor of safety in both Draupne and Drake caprock shales has a similar range,
while the reliability index dramatically increases in Drake shale (Figure 12). The differences
in probabilistic failure numbers between Draupne and Drake caprock shales indicated the
importance of the probabilistic approach over the deterministic while assessing the top
sealing reliability. In addition, this specifies that the relationship between deterministic
and probabilistic safety factors varied within different caprock shales. Different β values
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in failure scenarios indicate that the estimation of the probability of failure depends on
parameter uncertainty, and the boundary between safe and failure conditions has a range
instead of a constant number.
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The probabilistic assessment of top seal integrity facilitates decision-making in un-
certainty by explicitly showing the trade-off between the investment and the reduction in
potential failure risk [67]. In connection with the CO2 storage site, the probability of top
seal leakage risk might simplify future project decisions.

5.2. Initial Safety Chart

The reliability index and probability of failure in any structure are relative mea-
surements of the current condition and provide a qualitative estimation of the expected
performance [29]. However, top seal integrity is complex and depends on many factors
such as pressure, temperature, mineralogy, etc. There is no standard chart for subsurface
rock structural reliability to compare, because this method is a novel subsurface structural
reliability assessment approach. An initial safety boundary is proposed using the theoreti-
cal shear failure result from Draupne and Drake caprock shales (Table 5). The boundary
between safe and unsatisfactory performance is proposed based on reliability index val-
ues 2 to 3, based on the range obtained for theoretical failure cases. However, the proposed
safety chart is not directly comparable with the published expected performance level
for soil [29]. This chart is a proposal, but we need further work to use it for quantitative
assessment. In addition, the proposed safe and unsafe zones are not valid for tensile failure
probability. Nevertheless, a tensile failure estimation is highly recommended if the CO2
injection reservoir pressure increases to a range close to the horizontal stress value.

This study reveals that the probabilistic approach used to assess structural reliability
should be convenient and robust to capture the risks related to the uncertainty of the
parameters. FORM seems to be one of the appropriate methods for static subsurface
structural reliability assessment [55]. Therefore, the workflow used in this study can be
effective and useful to evaluate the shared structural failure risks in any subsurface injection
project, especially CO2 injection site evaluation.
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Table 5. The performance chart with the unsatisfactory events and reliability index ranges are
modified after [29]. The color represents the proposed subsurface structural safety boundary based
on analysis.

Expected Performance Level Probability of Unsatisfactory
Performance Reliability Index (β) Proposed Safety Boundary

High 0.0000003 5.0
Good 0.00003 4.0 Safe

Above average 0.001 3.0
Below average 0.006 2.5

Poor 0.023 2.0 Boundary

Unsatisfactory 0.17 1.5
Hazardous 0.16 1.0 Unsatisfactory

6. Conclusions

The reliability of the top seal is critical for any permanent storage of CO2 into the
subsurface. Therefore, Drake caprock shale’s low failure probability is crucial for safe CO2
storage in the Aurora site. The main findings of this study are stated below:
‚ The Drake caprock shale failure chance is zero in both the in situ stress-state condition

and after-injection scenarios. However, this method indicated a qualitative assessment
and requires further investigation to quantify the results.

‚ Horizontal stress and cohesion are the most influential input parameters when esti-
mating probabilistic failure.

‚ Shallow caprock shale units are more affected by the principal stresses, while the
rock strength properties influence the deep caprock shale units while estimating the
failure probability.

‚ A subsurface structural reliability safety chart is proposed to evaluate the safe and unsat-
isfactory caprock shales. However, as the failure probability values are formation-specific,
a standard universal chart might be impractical and requires further investigation.

‚ Tensile failure estimation should be carried out if the injected pore pressure and
horizontal stress have a similar range.

Although the Drake Formation shale indicates it is less likely to fail, the injection-
related potential risks can be affected by other factors (e.g., stiffness contrast between
reservoir and surroundings, geometrical effects, drainage condition, stress paths, etc.) and
require further evaluation using a numerical simulation.
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