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A B S T R A C T   

Accurate prediction of snow avalanche runout-distances in a deterministic sense remains a challenge due to the 
complexity of all the physical properties involved. Therefore, in many locations including Norway, it has been 
common practice to define the runout distance using the angle from the starting point to the end of the runout 
zone (α-angle). We use a large dataset of avalanche events from Switzerland (N = 18,737) acquired using optical 
satellites to calculate the α-angle for each avalanche. The α-angles in our dataset are normally distributed with a 
mean of 33◦ and a standard deviation of 6.1◦, which provides additional understanding and insights into α-angle 
distribution. Using a feature importance module in the Random Forest framework, we found the most important 
topographic parameter for predicting α-angles to be the average gradient from the release area to the β-point. 
Despite the large dataset and a modern machine learning (ML) method, we found the simple linear regression 
model to yield a higher performance than our ML attempts. This means that it is better to use a simple linear 
regression in an operational context.   

1. Introduction 

Snow avalanches, hereafter called avalanches, are a rapid flow of 
snow moving down-slope due to gravity. Avalanches release as a result 
of a number of factors including meteorological conditions, snow 
metamorphism and a triggering event. Several factors control the like
lihood of an avalanche release, such as snowpack stratigraphy, slope 
steepness and aspect, precipitation rate, wind transported snow, air 
temperature, and vegetation. An avalanche has a start zone where the 
avalanche releases and accelerates, a track where the avalanche reaches 
its maximum speed and potentially entrains more snow and the runout 
zone where the snow decelerates and deposits. The transition between 
these zones can vary by avalanche path and size. The size of the resulting 
avalanche’s track and runout zone are a function of the terrain and the 
volume of snow included in the avalanche event. Slab avalanches can 
occur wherever there is sufficient snow on the ground and a slope steep 
enough to slide. The systematic identification of starting zones has been 

restricted to slope angle (terrain between 30◦ and 50◦, occasionally 60◦) 
and vegetation (no forest) (Schweizer et al., 2003). While the location 
where the avalanche stops, i.e., the runout distance, can be estimated 
using a diverse range of numerical models (e.g., Bartelt et al., 2013; 
Christen et al., 2010; Volk and Kleemayr, 1999, Mergili et al., 2017), 
these models require estimates of a number of parameters, including the 
snowpack conditions, depth and area of release, and rely on assumptions 
on the friction and turbulence parameters. 

Since the 1980s, several numerical models have been developed to 
simulate runout distance, flow height and velocity. These models are 
able to follow terrain features (e.g., bends in gullies) and provide 
additional understanding to the nature of the avalanche flow and 
resulting impacts, beyond solely estimating runout distance. Today, 
these models are frequently used as a tool for assessing mitigation 
measures (Håland et al., 2015). One of the most well-established models 
is the Rapid Mass Movement Simulation (RAMMS) from the WSL Insti
tute for Snow and Avalanche Research (SLF), which is applied for legally 
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binding hazard zonation in Switzerland and other countries (Bartelt 
et al., 2013; Christen et al., 2010, Rudolf-Miklau et al., 2015). 

However, as noted above, a challenge with numerical models is that 
they are highly dependent on friction parameters and the initial volume 
(i.e., fracture depth and release area size). Friction parameters cannot be 
measured in real time for every event and need to be estimated based on 
a limited number of recalculations of known events or estimates of ex
pected flow dynamics as a function of the snowpack conditions. The 
models are also highly sensitive for the release volume, hence the frac
ture depth and release area size in each scenario can be decisive for the 
results of the model run. The models are typically calibrated to known 
maximum runouts and each input parameter are calibrated to these 
events with respect to the runout distance. 

Numerical models are also more challenging to apply across large 
spatial extents, though recent advances in computing power make this 
possible (e.g., Bühler et al., 2018; Harvey et al., 2018; Bühler et al., 
2022). Therefore, due to these challenges, it has been common in Nor
way and some other countries to use a mathematical relationship as a 
first pass indication of possible maximum runout as a function of topo
graphic parameters and climate, especially in the case of large-scale 
assessments (e.g., Larsen et al., 2020). This is commonly described as 
a statistical approach in snow avalanche literature, despite the fact that 
there is no explicit use of a statistical distribution. Oller et al. (2021) 
introduced the term empirical approach which is more accurate, and we 
will use this term in this paper. 

When considering rapid gravitational flows, and not employing nu
merical models, it is common to use the angle of reach from horizontal 
(α) to define avalanche runout distance (e.g., Heim, 1932; Lied and 
Bakkehøi, 1980; Scheidegger, 1973). Using eq. 1 we can calculate the 
α-angle from the vertical distance Hα and the horizontal distance Lα. The 
distances are measured between the uppermost point of the release area 
and the lowermost point delimited by the avalanche debris (α-point) 
(Fig. 1). It is not explicitly stated whether we should use the straight-line 
length or the natural flow path (centerline) of the avalanche for Lα. We 
suspect, in practice, that most people have applied the α-angle using the 
straight-line approach. Therefore, we use the flow path when calculating 
the α-angle throughout this manuscript. 

α = arctan
(

Hα

Lα

)

(1) 

Empirical methods play an essential role in avalanche risk 

assessment and mapping and have been used as a baseline in most 
extreme avalanche runout scenarios worldwide (Oller et al., 2021). 
When assessing the characterization of avalanche runout models, there 
are two main approaches: (1) the α-β model and (2) the runout ratio 
model (McClung and Lied, 1987; Keylock, 2005). In this study we will 
focus on the α-β model developed by Lied and Bakkehøi (1980) as this 
model is commonly used in Norway. The α-β model relates the α-angle to 
a β10-angle that represents the angle between the starting point and a 
β-point where the avalanche path reaches a slope incline of 10◦ (Fig. 1). 
The β10-angle can be calculated by replacing Hα and Lα with Hβ and Lβ in 
eq. 1. 

When the α-β method was applied to 285 avalanches in the French 
Alps, a valid β10-angle was found within the avalanche in 79% of the 
avalanche events (Adjel, 1995), similar to 75% in Norway (Lied and 
Bakkehøi, 1980). Adjel (1995) also found that some avalanche events 
have several β10-points; however, this is similar to what Lied and 
Bakkehøi (1980) documented in their data from Norway. Therefore, due 
to the dependency of the β10-angle, the α-β method cannot be applied to 
all avalanche sites (Adjel, 1995; Lied and Bakkehøi, 1980). 

Empirical approaches have been the focus of a number of studies 
over the last four decades, but all of them have been based on small 
datasets ranging from 30 to 216 samples (Oller et al., 2021). However, 
due to the low number of samples in each study, and variable method of 
path and event selection, these studies could be heavily biased as a 
function or a combination of the regional topography, or other unknown 
factors. Therefore, to understand empirical avalanche runout models 
more fully, and not solely for extreme events, we need to use a more 
extensive data set of avalanche events. Furthermore, given the limita
tions of the current α-β model, and its widespread use, there is a need for 
an updated model, based on this framework, that can be applied to all 
avalanche events, regardless of the presence of a β10-angle. Both of these 
limitations can be addressed with a larger data set of avalanche events, 
and an updated analysis methodology of α-angles. 

One method to obtain a more extensive data set is through remote 
sensing. In recent years, there has been tremendous progress in detecting 
avalanches using different remote sensing methods. One example is 
Malnes et al. (2015) which found a radar backscatter increase with 
avalanche debris. The increased backscatter could be identified using a 
change detection algorithm (Eckerstorfer et al., 2016, 2017, 2019). 
Another method is using optical imagery. Bühler et al. (2019) used 
SPOT6 imagery to manually delineate each avalanche event. Using 

Fig. 1. The α-angle can be calculated when Hα and Lα are known, using eq. 1. These variables could be derived from a digital elevation model (DEM) when the 
starting point and α-point for an event are known. The same equation can be used to calculate the β10-angle using Hβ and Lβ. 
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optical imagery, Bühler et al. (2019) were able to identify 18,737 ava
lanches ranging from size 1–5 (defined using area, Table 1) during an 
avalanche cycle in Switzerland in January 2018. Hafner et al. (2021) 
analyzed the quality of the satellite-based mapping and found it to be 
more accurate and complete than manual mapping. Utilizing these 
remotely sensed data from major parts of the Swiss Alps (Fig. 2), the 
number of samples is two orders of magnitude larger than the most 
extensive published dataset to date. These data can provide insights on 
how different topographic, snow-climate, and other parameters affect 
the runout distance, and provide us with the opportunity to reevaluate 
the current α-β model. 

Therefore, we will focus on three linked research questions:  

• Is it possible to determine the α-angle and associated topographic 
parameters from satellite observed avalanche events?  

• How do topographic parameters influence the α-angle and resulting 
runout distance?  

• Can we improve the prediction of α-angles for a larger range of 
avalanche events compared to previous studies using machine 
learning (ML) or linear regression? 

2. Background 

2.1. Empirical runout models 

One of the big advantages of the empirical approach is that the inputs 
are relatively simple, static in time and not based on observed or 
modeled snowpack conditions. Starting with a dataset of 850 avalanche 
events, Lied and Bakkehøi (1980) calculated the α-angle for each event. 
We note that the term α-angle has been conflated with extreme events 
but is a parameter that can be estimated for any size event. Next, they 
removed the avalanches that didn’t have a free outlet into the valley 
bottom, which left 423 avalanche events from 111 avalanche paths. 

Finally, they performed a multiple regression analysis on the most 
extreme event from each of the 111 avalanche paths, using eight 
different terrain parameters. The β10-angle resulted in the highest cor
relation compared to other features when only using one predictor (Eq. 
2). 

α = 0.97β10 − 1.4◦( ± 3.5◦) (2) 

Our study will expand on these methods, and apply them to our data 
set of 18,737 avalanche events, to explore if more data, from a different 
region provides different insights on the most important topographic 
parameters. 

2.2. Machine learning 

ML is a branch within artificial intelligence where statistics are used 
in combination with a computer to learn and make predictions from 
large amounts of data (Mohri et al., 2018). How much data is needed to 
make a good model depends on; (1) the complexity of the problem, and 
(2) the complexity of the ML algorithm. The physics describing the 
release and flow of avalanches are very complex and have only recently 
been simulated in 3D (Gaume et al., 2019; Li et al., 2021). However, 
these models require knowledge of the initial state of the snowpack prior 
to avalanche release. ML in combination with a large enough dataset can 

learn and approximate complex behavior based on relatively few input 
parameters. The drawback is that ML models act as black boxes not 
resolving why or how a certain input influences the model output. Lied 
and Bakkehøi (1980) found a simple linear regression model approach to 
provide the best balance between complexity and performance when 
developing the α-β model. 

One commonly used ML algorithm is the Random Forest (RF). The 
algorithm work by training many decision trees on random subsets of 
the features, then averaging out their predictions. Such models 
composed of many other models are called ensembles: they are capable 
of boosting the performance of the underlying model (in this case, de
cision trees). Decision trees are versatile ML algorithms that can perform 
both classification and regression tasks, and even multioutput tasks 
(Geron, 2022). 

When the sample sizes are sufficiently large, using RF, which is a 
nonlinear ML algorithm, is advantageous over a simple linear regression 
model as this approach can learn nonlinear relationships between input 
and output features. In addition, it is more flexible which means that it 
can estimate how many features are needed to make a good prediction 
and how important each input feature is. However, this added flexibility 
and capability comes at the cost of requiring a lot more data (number of 
samples). Previous avalanche datasets examining α-angles have been too 
small (i.e., 30 to 216 samples (Oller et al., 2021)), to fully leverage these 
more powerful ML methods. This study provides an opportunity to fully 
examine this more advanced methodology. 

3. Study area 

All our remotely sensed avalanche data are from the Hafner and 
Bühler (2019) dataset, as presented in Bühler et al. (2019), which was 
collected after an avalanche cycle in January 2018 in Switzerland. The 
Swiss Alps cover 60% of Switzerland’s total surface area, including the 
majority of the highest mountains in the European Alps, making it one of 
the world’s most alpine countries. The study area within Switzerland 
consists of 12,500 km2 stretching from the East to West of the Swiss Alps 
(Fig. 2). The south-eastern part of the Swiss Alps is not covered by the 
data set from Hafner and Bühler (2019) as it was not affected by extreme 
snowfall. 

3.1. Description of the avalanche data 

Bühler et al. (2019) tasked SPOT6 imagery after two large avalanche 
cycles in Switzerland on the 24th of January 2018. The 2017/2018 
winter season started with a lot of snow across the Swiss Alps, including 
a recent snowfall event on the 5th of January. Then, from 8th through 
the 10th of January, southwestern Switzerland experienced an excep
tional snowfall event of up to 200 cm of new snow reported in some 
areas. Further, between the 15th and 19th of January, another snow
storm with 30–100 cm, and in some areas up to 160 cm was reported. 
The snowstorm was associated with strong winds causing large amounts 
of snowdrift and resulted in the first cycle of extensive avalanche 
activity. 

The second period from 21st to the 23rd of January was Switzer
land’s most extensive avalanche cycle since 1999 with another 60–150 
cm of new snow above 2200 m. As a result, long-term snow measure
ment stations with 80-years of data observed record snow depths in 
many areas. The extreme avalanche cycle resulted in widespread 
avalanche activity including all avalanche sizes (Table 1) following 
200–300 cm of new snow (locally, even more in the central Swiss Alps) 
over 15 days. SLF forecasted very high avalanche danger (level 5) three 
times during this 15-day period (Zweifel et al., 2019). 

Each avalanche event was manually delineated using visual inter
pretation and GIS software. Contrast and brightness were tuned to 
improve the illuminated and shaded areas. Bühler et al. (2019) found 
that using a false-color band combination NIR (green, red, and near- 
infrared) made the snow avalanche debris stand more out. It made 

Table 1 
Avalanche size as defined by Bühler et al. (2019).  

Count Size Name Area (m2) 

87 1 Small avalanche 10 to 500 
5413 2 Medium avalanche 501 to 10,000 
9863 3 Large avalanche 10,001 to 80,000 
2857 4 Very large avalanche 80,001 to 500,000 
157 5 Extremely large avalanche > 500,000  
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forested areas more visible compared to a regular RGB image. Images 
were overlayed with an orthophoto and a slope angle layer of 30◦ at a 
scale of 1:5000. All avalanche events were mapped manually by one 
person. 

In total, Bühler et al. (2019) mapped 18,737 avalanche events. The 
total area of all avalanches summed, was 936 km2. Thus, making up 
7.5% of the 12,500 km2 large study area. They mapped 33% of the 
avalanche events with an exact outline, 58% had a partially estimated 
outline, while 9% of the avalanche events had the outline created by 
expert interpretation. Slab avalanches was the most common avalanche 
type at 72% of the mapped avalanche events, 11% where glide ava
lanches, and 3% where loose snow avalanches. The remaining ava
lanches are categorized as unknown. Bühler et al. (2019) divided their 
avalanche dataset into five classes (small, medium, large, very large, 
extreme) according to measured avalanche debris areas (Table 1). 

4. Methods 

Due to the large number of avalanche events analyzed in this analysis 
(N = 18,737), we developed an automated workflow using Python and 
GIS to extract topographic parameters for each individual avalanche 
event. We then applied a RF algorithm to create a model for variable 
importance and to predict avalanche runout length from the topo
graphic parameters. All relevant Python code used can be found at 
GitHub (Toft, 2022). 

4.1. Source data and parameters 

The source data provided by Bühler et al. (2019) includes 18,737 
polygons with additional metadata for each avalanche. We created two 
additional data formats to represent each avalanche event (Fig. 3). 

Fig. 2. The study area in Switzerland (upper left) and example of the avalanche data (Hafner and Bühler, 2019) at high resolution (red polygons in upper right and 
bottom maps, map source: Swiss Federal Office of Topography). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 3. Both figures represent the same avalanche path with reference number 5452. Left: A 3-dimensional centerline that represents the flow path through the 
avalanche from the starting point to the outermost point. Right: A 2-dimensional array of points where the z-axis is elevation, and the x-axis is the avalanche’s 
horizontal length. 

Fig. 4. Flowchart highlighting how each topographic parameter is derived from the DEM and avalanche polygons. Parameters are defined in Table 2.  
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To generate all the terrain-based metrics, the avalanches had to be 
within the extent of the Swisstopo swissALTI3D DEM (Swisstopo., 
2018), resampled to a spatial resolution of 5 m (original data 2 m) to 
extract meaningful data. Reviewing the avalanche data from Hafner and 
Bühler (2019), we found that 79 avalanches were in adjacent countries 
which was outside the swissALTI3D DEM extent, leaving us with 18,658 
avalanches for the analysis. 

Using a combination of data from the DEM, avalanche polygons, 
polylines, and array, we defined all our metrics (Fig. 4, Table 2). 

Our flowchart in Fig. 4 illustrates how we derived each topographic 
parameter from the original data. 

4.1.1. Average gradient of avalanche flow path (α-angle) 
The horizontal length (flow path) of the entire avalanche event (Lα) 

and the vertical elevation drop (Hα) are needed to calculate the α-angle. 
The known extent of the avalanche means that we can calculate the 
α-angle from the vertical and horizontal displacement using eq. 1. This is 
different from previous studies where the α-angles are measured with a 
clinometer in the field, or determined from a map with coarse contour 
lines (McClung and Lied, 1987). 

4.1.2. Average gradient of avalanche track (β-angle) 
The β-angle can be calculated when the horizontal length and ver

tical elevation change to the β-point are known (Fig. 1). To find the 
β-point, we fit a polynomial function to each flow path profile using a 2D 
array representing each avalanche event. Using this polynomial func
tion, we use the derivative to find the intersection of β-point. We found a 
7th degree polynomial to be the best representation of each avalanche 
profile (highest R2). When the β-point is known, we can calculate the 
β-angle using eq. 1. 

Some path profiles have several β-points. We resolve this by defining 
the β-angle as the first β-point after k, where k is the horizontal length of 
the avalanche in percentage from the starting zone (using a 7th degree 
polynomial fit to the avalanche profile). We examined multiple different 
βdegrees-angles. For β5–15 we have defined k = 50, while for β20–25 we 
have defined k = 5. If there is no valid β-angle, the path is assigned the 
value 0. Due to the size of the dataset, we had to apply an automated 
method for selecting an appropriate β-angle. The method presented 
above could differ slightly from the older studies, which were often 
based on manual profiling on topographic paper maps (i.e., Lied and 
Bakkehøi, 1980). However, the problem of selecting the correct β-angle 
is something that has been done in most studies, without defining a 
common way of doing it. 

4.1.3. Inclination of starting zone (θ) 
We have defined the inclination of starting zone as the angle between 

the upper release point and where the avalanche path drops below 30◦. 
Using this threshold, we could use the same approach used in section 
4.1.2, where we calculated the average gradient of the avalanche track. 
Using a threshold angle of 30◦ and k = 5, we can calculate each starting 

zone’s average inclination (θ). We acknowledge that the selected defi
nition is a simplification and may not fully capture the start zone 
inclination. 

4.1.4. Total vertical displacement 
We calculated the vertical displacement (Hα) for each avalanche 

using the DEM. Using the tool, add surface information in ESRI ArcGIS, it 
is possible to calculate the highest (altmax) and lowest (altmin) point 
within a polygon. We did this for all avalanches. When exporting the 
attribute table to Python, and calculated H for each avalanche using eq. 
3. 

Hα = altmax − altmin (3)  

4.1.5. Terrain profile of avalanche path 
The shape of the avalanche path may potentially affect how the 

energy is dissipated on its way down the slope. A linear slope would 
cause no sudden energy loss, while an abrupt transition in the slope 
would. We applied two different approaches to examine this potential 
impact. 

The first approach was using the radius of the path curvature as 
suggested by Lied and Bakkehøi (1980). The second derivative of a 2nd 
degree function is constant. The constant would express the type of 
curve of the 2D flow path of the avalanche. In our dataset, the value 
ranged from − 0.03 to 0.06. A negative value means that the avalanche 
path is convex, while a positive value would mean that the avalanche 
path is concave. When the value is nearing zero, the shape is linear (or 
convex and concave terrain cancels each other out). Bakkehoi et al. 
(1983) found that if we assume that the slope is a parabola, we could 
derive the β-angle from the second derivative of y (y”) and Hα using eq. 
4. 

tanβ =

̅̅̅̅̅̅̅̅̅̅
Hαy′ ′

2

√

+
tan10◦

2
(4) 

To derive y”, we performed a polynomial regression analysis for each 
avalanche path expressed as the equation y = ax2 + bx + c. The mean R2 

was 0.993 with a standard deviation of 0.003. When a is known, we can 
use the relationship shown in eq. 5 to calculate y”. 

y(x) = ax2 + bx+ c→y′ ′(x) = 2a (5) 

Our second approach used an unsupervised ML algorithm called K- 
Means clustering (Macqueen, 1967), which allows us to estimate the 
number of clusters in a dataset. Each cluster is categorical, and consists 
of a grouped set of data points due to their similarities. We used this 
algorithm to extract the most common avalanche path types (pathtype). 
The algorithm was trained using a 2D array with 100 samples repre
senting each avalanche event (Fig. 4). The centerline of each avalanche 
path is illustrated in Fig. 3. Here show and explain that we transform the 
3D data into 2D data by flattening the y-axis. We then end up with a 
number of 2D coordinates representing the avalanche path. These co
ordinates are all resampled to 100 values per path, and used as input for 
the K-Means algorithm. We found the number of 8 clusters to be optimal 
based on visual inspection of the resulting clusters (Appendix, A-1). 

4.1.6. Degree of confinement between starting zone and track 
A large degree of confinement between the starting zone and the 

track could create higher avalanche velocities than unconfined slopes 
(Lied and Bakkehøi, 1980; Perla and Martinelli, 1976; Salm, 1972). Lied 
and Bakkehøi (1980) found the maximum width of rupture Rmax, min
imum width of the track Tmin, and the maximum width of deposit Dmax 
to be the most efficient way of incorporating the degree of confinement 
into a multiple regression analysis. 

We calculated the length from the centerline to the polygon outline 
multiplied by two. We did this for every 5-m of the centerline. For this 
parameter, and recognizing that it is for the simplicity of the approach, 
we assume that the rupture area is the first 1/3 of the avalanche path 

Table 2 
Topographic parameters extracted from each avalanche used in the ML analysis. 
33 predictors and 1 target in total.  

Variable Unit Symbol 

Average gradient of avalanche path (◦) α 
Average gradient of track (◦) βdegrees 

Inclination of starting zone (◦) θ 
Total vertical displacement (m) Hα 
Elevation of deposits/release area (m) altmin, max 

Perimeter of avalanche (m) P 
Profile of 2nd degree fitted polynomial path  y” 
Profile of avalanche path described by path type  pathtype 

Minimum, maximum and mean width of rupture (m) Rmin, max, mean 

Minimum, maximum and mean width of track (m) Tmin, max, mean 

Minimum, maximum and mean width of deposit (m) Dmin, max, mean 

Aspect, 8 cardinal directions  aspect  
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(Rmin, max, mean). The avalanche track is the second 1/3 of the avalanche 
(Tmin, max, mean), while the deposit area is the last 1/3 of the avalanche 
path (Dmin, max, mean). While this method oversimplifies the delineation 
of avalanche areas, it provides a simple and consistent method to cap
ture the concept of avalanche path confinement. Bühler et al. (2013) 
used the same method to delineate release areas in their study. ML could 
be considered to help improve this predictor in future work. 

4.1.7. Elevation of release and deposit area 
We also included the value of the upper elevation of the release area 

(altmax) and the value of the lowermost elevation of the avalanche de
posits (altmin) as a topographic parameter. These values are important, 
as an avalanche event that releases above treeline could have different 
properties than avalanches that release below, i.e., in the valleys. 

4.1.8. Perimeter 
The perimeter (or circumference) of each avalanche path polygon (P) 

in meters. The perimeter was extracted from the avalanche outline 
polygons. 

4.1.9. Aspect 
The aspect of each avalanche was provided in the dataset by Hafner 

and Bühler (2019). Each avalanche event aspect is defined using the 
eight cardinal wind directions (N, NE, E, SE, S, SW, W, and NW). We 
defined the cardinal wind directions to integers using the values 1–8 
equivalently, where N was represented by 1 and NW by 8. 

4.2. Methods to predict α-angles 

Scikit-Learn is a Python module where a wide range of ML algo
rithms are made available to non-specialists in ML (Pedregosa et al., 
2011). The module is easy to use, using a consistent interface that en
ables us to compare different ML methods without making significant 
changes to our code. 

4.2.1. Linear regression 
Linear regression is one of the simplest statistical models available in 

the Scikit-Learn library, and will be used as a baseline for the more 
advanced RF model. A linear regression analysis is used to predict a 
value using a linear relationship towards one other dependent feature. 
It’s the same approach used by Lied and Bakkehøi (1980) when they 
suggested the α-β model. 

4.2.2. Random Forest 
RF is a well-documented ML method and is used in wide range of 

applications (Liu et al., 2012). RF is a supervised learning algorithm 
which means that it needs to know what the true answer is for each 
occasion. This is resolved by using two input data sets: (1) predictors and 
(2) target data. We use the topographic metrics as training data, while 
the α-angle is the target data (true reference value). Furthermore, the RF 
uses an ensemble learning method which means that it combines pre
dictions from many different decision trees obtained by bootstrap to 
make the best possible prediction. The RF algorithm can be used with 
both categorical and continuous data. Because our target data is 
continuous, we use the RF regressor. 

4.2.3. K-fold cross validation 
In ML, it is common to split the data into test and training data. 

Training the model on the same samples used for validation would cause 
the model to repeat the pattern it had just seen, resulting in an overfitted 
model. 

Cross-validation is a common method to avoid splitting the data into 
three groups (i.e., train, test, and validation) (James et al., 2013; Kuhn 
and Johnson, 2013). When using cross-validation, we train the model 
using k-1 of the folds as training data. We use the remaining fold of the 
data for testing. When the algorithm finds the best parameters for the 

first model, the algorithm retrains the model using different k-1 folds of 
the training data. When this iterative process is repeated k times, the 
model is fitted using all data as training data and test data. 

There is no formal rule for selecting a value of k. James et al. (2013) 
and Kuhn and Johnson (2013) found that using k = 5 or k = 10 neither 
suffer from a high bias nor very high variance. In our models, we chose 
to use k = 5. 

4.2.4. Feature importance 
ML models, such as RF, are mostly used to predict a result. However, 

using the feature importance, it is also possible to measure which met
rics that have the most effect on the model. Using this feature, we get the 
importance of each feature in percentage for a given model. As we want 
to find the optimal number of features, it is beneficial to learn how the 
model performs using selected features compared to all features. 

4.2.5. Recursive feature elimination with cross-validation 
Recursive feature elimination with cross-validation (RFECV) is a 

common way of removing features that are not important for the model 
(Guyon et al., 2002). It is reasonable to assume that some features are 
more important than others in predicting avalanche runout length. 
Therefore, we use RFECV to identify and remove unimportant features, 
intending to provide an improved model that is as parsimonious as 
possible, and therefore still relatively easy to apply for practitioners. 

RFECV is a backward feature selection method that fits the model 
with all available features. The least important feature is then removed. 
This procedure is iterated until there is only one feature left in the 
model. Using RFECV we could find the optimal number of features 
(highest performing model), which makes it possible to create a simpler 
model while still being robust (Appendix A-2). 

5. Results 

5.1. The α-angle distribution 

For our analysis we only considered avalanches with a calculated 
α-angle between 15 and 50◦. All of these avalanche events outside of this 
range are outliers, and are suspected due to errors in our automated 
workflow. 27 avalanche events had an α-angle below 15◦, and 264 
avalanche events had an α-angle above 50◦, which were removed. The 

Fig. 5. The distribution of α-angles from the large avalanche cycle in 
Switzerland, January 2018. 
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final dataset used for training consists of 18,367 avalanches. We found 
the α-angles to have a mean of 33◦, a median of 33◦ and a standard 
deviation of 6.1◦. The α-angle distribution is plotted and compared to a 
normal distribution in Fig. 5. 

5.2. Topographic features 

We extracted 33 different metrics for 18,367 avalanches to be used as 
predictors (Table 3), while α is used as our target data (Table 4). 

5.3. Feature importance 

To find how important each feature is, we ran ten different RF re
gressors with 5-fold cross-validation using a different random state each 
time. When we use all 33 metrics as predictors, we can achieve an RMSE 
of 1.65 (± 0.31) (Fig. 6). 

Reviewing the feature importance of the initial RF model using all 33 
features as input, we found the β15 (63.0%), β25 (4.5%) and β5 (4.0%) to 
be the three most powerful predictors (Table 3). The β-angles has a total 
summed feature importance of 84.29% The most important feature 
except the β-angles is the Hαy” with a feature importance of 4.0% 
(Table 3). 

5.4. Predicting the α-angle 

Unsurprisingly, the β-angles have the highest predicting power in 
terms of predicting the α-angle. Dividing the dataset into subgroups 
based on the type of β-angle therefore might yield information about 
what types of β-angles’ are of most importance. Therefore, we chose to 
divide our dataset into subgroups. The lowest βx available for each 
avalanche path is used to define each subgroup. Paths with a valid β5 is 
in group 1, paths where the lowest valid β-angle is β6–10 is in group 2, 

which similarly puts β11–15 in group 3 and β16+ in group 4) (Fig. 7). 
We also tried to divide the groups into smaller subgroups than 5◦

increments, which only improved the accuracy by a very small fraction 
(<0.01◦). 

We ran ten different RF regressors for each subgroup with 5-fold 
cross-validation. We used all 23–33 parameters as training data 
depending on the group. The accuracy metrics for each model are pre
sented in Table 5. We see that the model from group 1 has the best ac
curacy with an RMSE of 1.43◦, while group 2 has an RMSE of 1.52◦, 
group 3 has an RMSE of 1.57◦, and finally, group 4 has the lowest ac
curacy of all four models with an RMSE of 2.23◦. 

For group 1 and 2, which both have a valid β10, it is also possible to 
use the standard α-β model framework. Using linear regression, we 
found the best α-β model for this dataset with RMSE of 2.40◦, R2 of 0.86 
and a p-value of <0.01 (Eq. 6). 

α = 0.92β10 + 0.25◦( ± 2.40◦) (6) 

The RMSE is substantially higher when using the standard α-β model 
framework, compared to our RF approach (Table 5). However, having 
23–33 input parameters makes the model unwieldy, and essentially 
useless, from a practical standpoint. 

5.4.1. Using RFECV to find optimal number of features 
RFECV enables us to measure the performance of the model for a 

given number of features. It also enables us to remove features that are 
not informative. We apply the RFECV function to all of our four RF 
models and found that the best performance could be achieved with 27, 
20, 10 and 4 features for group 1 through 4, respectively. However, 
nearly the same performance could be achieved with fewer features. To 
select the number of features in our models, we apply a threshold of 
improvement. If a model does not increase its performance by >10 % 
when another feature is added, we do not add this feature, and use the 

Table 3 
Descriptive statistics and feature importance of all the predictors used in the RF regressor.  

Variable N Mean Range SD 5th 
percentile 

25th 
percentile 

50th 
percentile 

75th 
percentile 

95th 
percentile 

Feature 
importance 

Rank 

aspect 18,367 – – – – – N – – 0.2% 32 
pathtype 18,367 – – – – – Type 3 – – 0.5% 20 
sizedestructive 18,367 2.9 1–5 0.7 2 2 3 3 4 0.1% 33 
P (m) 18,367 1209 49–19,423 1264 221 486 827 1451 3534 2.8% 5 
altmin (m) 18,367 2019 453–3981 507 1281 1637 1970 2374 2898 0.9% 15 
altmax (m) 18,367 2320 824–4457 476 1631 1972 2266 2636 3161 0.6% 18 
β5 (◦) 8728 34 12–61 6 24 29 33 38 45 4.0% 3 
β6 (◦) 9232 34 12–61 6 24 29 33 38 45 2.3% 6 
β7 (◦) 9742 34 12–61 6 24 29 34 38 45 2.1% 7 
β8 (◦) 10,267 34 12–60 6 24 30 34 38 45 1.3% 12 
β9 (◦) 10,770 34 11–60 6 24 30 34 38 45 0.9% 16 
β10 (◦) 11,277 34 11–60 6 24 30 34 38 46 0.6% 17 
β11 (◦) 11,783 34 11–60 6 24 30 34 38 46 0.4% 23 
β12 (◦) 12,282 34 11–60 6 24 30 34 38 46 1.0% 14 
β13 (◦) 12,762 34 11–60 6 25 30 34 38 46 1.2% 13 
β14 (◦) 13,237 35 11–60 6 25 30 34 38 46 1.4% 10 
β15 (◦) 13,709 35 10–60 6 25 31 34 38 46 63.0% 1 
β20 (◦) 16,151 37 0–78 8 27 33 37 41 50 1.7% 9 
β25 (◦) 17,535 39 0–78 9 24 34 38 43 53 4.5% 2 
θ (◦) 17,970 40 0–79 10 22 35 41 46 56 1.3% 11 
Rmean (m) 18,377 57 0–402 43 10 27 46 74 137 0.3% 29 
Rmin (m) 17,625 44 0–113 24 8 23 42 63 87 0.3% 24 
Rmax (m) 18,377 86 0–515 14 38 68 114 220 515 0.3% 30 
Tmean (m) 18,377 74 0–507 62 11 30 57 98 194 0.3% 25 
Tmin (m) 17,401 60 0–499 51 9 24 46 81 157 0.4% 21 
Tmax (m) 18,376 94 0–517 14 39 73 124 250 517 0.3% 27 
Dmean (m) 18,377 48 0–387 39 8 22 38 62 123 0.3% 28 
Dmin (m) 17,137 40 0–119 22 8 22 37 56 78 0.4% 22 
Dmax (m) 18,357 76 0–516 64 12 32 59 100 199 0.2% 31 
Hα (m) 18,377 303 8.83–2674 249 66 133 224 389 811 0.3% 26 
P/Lα 18,377 2.41 1.8–9.3 0.5 2.0 2.1 2.3 2.5 3.3 0.5% 19 
y” (10− 3) 18,377 2.17 − 31.2–68.3 3.2 − 0.2 0.5 1.4 2.8 7.6 1.9% 8 
Hαy” (m) 18,377 0.38 − 2.6–4.2 0.4 − 0.1 0.2 0.3 0.5 1.1 4.0% 4  
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initial number of selected features. Using the threshold of improvement 
rule, we found the best number of features to be 1, 1, 1, and 3 for groups 
1–4 respectively. The RFECV plots can be found in the Appendix (A-2). 

When we apply the rule of improvement, the metrics are only a small 

fraction lower than the previous models using all 33 features as input. 
The accuracy metrics for each model is presented in Table 6. We see that 
group 1 has the best accuracy with an RMSE of 2.41◦. Group 2 has an 
RMSE of 2.40◦. Group 3 has an RMSE of 2.22◦. Finally, group 4 has the 
lowest accuracy of all four models with an RMSE of 3.19◦. We also 
present the results from a linear regression model for group 1–3. Here we 
see that the linear regression model outperforms the RF model with a 
RMSE of 2.01◦ for group 1 (α = 0.95β5 + 0.06), 1.99◦ for group 2 (α =
0.93β10 + 0.29) and 1.84◦ for group 3 (α = 0.88β15 + 2.18). Group 4 has 
>1 target features and is thus not compatible for the simple linear 
regression model. A scatter plot for each model can be found in the 
Appendix (A-3). 

Table 4 
Descriptive statistics for the potential target data, where αflow is the only one being used.  

Variable N Mean Range SD 5th percentile 25th percentile 50th percentile 75th percentile 95th percentile 

α (◦) 18,367 33 15–50 6 22 28 33 37 43  

Fig. 6. A scatter plot showing the predicted α-angles vs. the measured α-angles 
for all 18,367 avalanches. 

Fig. 7. The dataset is split into four groups using β5, β10 and β15 as thresholds. The dashed line marks the intersection between each group. The colors mark the 
location in the avalanche path where the avalanche deposits stop. The normalized axis’ range from 0 to 100. If Lα was 1700 m, its normalized to a range of 100, 
meaning that each full integer value represents 17 m. The same applies to the y-axis, see resampled array in Fig. 4. 

Table 5 
The performance of the different RF models is compared using RMSE.  

Categorization RMSE N / % Training 
feature(s) 

Number of 
features 

All data 1.65◦ (±
0.31◦) 

18,367 / 
100% 

Table 3 33 

Group 1 1.43◦ (±
0.31◦) 

8728 / 
47.5% 

Table 3 33 

Group 2 1.52◦ (±
0.34◦) 

2555 / 
13.9% 

Table 3 – β5 32 

Group 3 1.57◦ (±
0.16◦) 

2511 / 
13.7% 

Table 3 – β5–9 28 

Group 4 2.23◦ (±
0.52◦) 

4573 / 
24.9% 

Table 3 – β5–14 23 

α-β model (Eq. 
6) 

2.40◦ 11,277 / 
61.73% 

β10 1  

H.B. Toft et al.                                                                                                                                                                                                                                  



Cold Regions Science and Technology 211 (2023) 103844

10

6. Discussion 

6.1. Definition of the α-angle 

An issue with the definition of the α-angle (Lied and Bakkehøi, 1980) 
is that it does not always make sense to measure the length between the 
highest and lowest point of the avalanche, instead we must ensure that it 
is always measured in accordance with the avalanche flow path. An 
example to illustrate this issue can be seen in avalanche number 2022 
with an incorrectly assessed α-angle of 8◦ (Appendix A-4). The 
avalanche was 1000 m wide and only 200 m long. The avalanche’s 
highest point was on the west side, while the lowest point of debris was 
on the east side. The calculated flow path, which according to our 
automated workflow would be represented as a line connecting these 
points, resulting in an impossible flow path almost parallel to the slope’s 
inclination (Appendix A-4). We, therefore, propose the following addi
tion to the definition of the α-angle to clarify type of flow path and avoid 
confusion (in italics): 

“α = arctan
(

Hα
Lα

)
, where Hα is vertical height and Lα is total horizontal 

displacement. Measured between the highest point of release and the 
outer end of the avalanche deposit from any avalanche event measured 
along the natural flow path of the avalanche.” 

In practice, we suspect that most people have applied the α-angle in 
this approach, using the natural flow path, but it is not explicitly stated, 
so we feel that this proposed addition reduces any potential ambiguity 
on this issue. 

6.2. α-angle distribution 

One of our main objectives was to find the α-angle distribution for all 
avalanche events using this historic avalanche cycle in Switzerland. 
Prior work in North America and the Alps only investigate large or 
extreme avalanche events. Lied and Bakkehøi (1980) are the only pre
vious study to our knowledge that have mapped avalanche events of all 
destructive sizes, but having a much smaller data set (N = 423). Our 
α-angles are a representation of all avalanche events for the given study 
area during this cycle. They do not necessarily capture the historically 
longest observed run out in these paths. We believe that there is a 
common misconception that people conflate α-angles with extreme 
avalanche runouts. An α-angle is not exclusively reserved for the most 
extreme event, they simply represent the angle from the upper release 
point to the deposits of a given avalanche, following the natural flow 
path, which does not explicitly connect to return period or maximum 

size. However, we do acknowledge, and consider it likely that this is the 
cause for the confusion, that a common application of an α-angle is to 
determine the runout distance of low frequency events for hazard 
management and planning. 

After the removal of outlier avalanche events outside the α-angle 
range of 15–50◦ our resultant data set decreased from 18,658 samples to 
18,367 (roughly 0.15% of the samples were removed). The resulting 
α-angle range is similar to the 18–50◦ range that Lied and Bakkehøi 
(1980) found in their dataset. The mean of 33◦ is identical to the 33◦

mean which Lied and Bakkehøi (1980) found in their dataset when 
reviewing all their 423 avalanches in Norway. We also found a standard 
deviation of 6.1◦ compared to 6.3◦ for Lied and Bakkehøi (1980). The 
mean and standard deviation suggest that the distributions in 
Switzerland and western Norway are nearly identical when considering 
all avalanches, rather than exclusively focusing on the most extreme 
events. 

It should be noted that Bühler et al. (2019), collected the Swiss 
dataset used in this study during extreme avalanche hazard (danger 
level 5) in January 2018. Therefore, we assume that most of the ava
lanches in the dataset are likely to be large or extremely large using the 
relative avalanche size scale (i.e., R4-R5 events), but for the entire range 
of destructive sizes (i.e., not just D4-D5 events). Based on the avalanche 
perimeters ranging from 50 to 20,000 m in our data we can assume that 
avalanches of all destructive sizes are represented. This could be 
investigated by historical studies or by numerical simulations with some 
standard parameters for all avalanche paths. One could then relate the 
observed avalanche to the modeled one and check for a relative size, 
however, this was considered outside the scope of the current work 
presented here. 

6.3. Topographic parameters 

One of our objectives was to develop automated methods for 
extracting the same topographic parameters that Lied and Bakkehøi 
(1980) used in their multiple regression model (Table 2) and investigate 
whether we could improve the α-β model. Utilizing a dataset with two 
orders of magnitude more data, we discovered that a simple linear 
regression still has the highest performance compared to the more 
modern RF algorithm. 

6.3.1. β-angle 
There are only limited studies that have examined different values 

for the β-point. McKittrick and Brown (1993) used a β-point of 18◦ for 24 
avalanche paths in southwestern Montana. Using the original β-point of 
10◦ would have been valid for only 20.83% of their avalanche paths. 
Another study is the estimation for short slopes done by Jones and 
Jamieson (2004) where they use a β-point of 24◦. We, therefore, 
calculated different β-angles using different threshold angles for the 
β-point. We believe that the relation between different β-angles could 
provide critical input to the RF model. 

Reviewing the feature importance, we were able to measure the 
significance of each topographic parameter. Our results support Lied 
and Bakkehøi (1980) findings, which found the β-angle to be the most 
important feature, with a total summed feature importance of 84.29%. 
We always found the lowest β-angle to be the most important factor for 
avalanches with a valid β-angle of β15 or lower. A prerequisite for this 
was that the given β-angle was available for all avalanches in the dataset. 
For example, with only valid β-angle of 6–10◦, the β10 would be the most 
important because all avalanches in the dataset have this angle. This 
makes sense as the lower the β-angle, the closer the β-point is to the true 
α-point. 

Another important issue in defining the β-point is the choice and 
resolution of the DEM for the study. Newer datasets based on high res
olution laser data give more detail in the terrain, often leading to mul
tiple beta angles as the resolution of the DEM increases. The original α-β 
model was developed based on 20 m isolines, not on gridded DEM data. 

Table 6 
The performance of the different RF models is compared using RMSE. N is the 
number of samples; percent is the group size compared to the sample with all 33 
features. The remaining features is the optimal number of features selected for 
the group model.  

Categorization Model RMSE N / % Target 
feature(s) 

Group 1 
Random Forest 

2.41◦ (±
0.27◦) 8728 / 

47.5% β5 Linear 
Regression 2.01◦

Group 2 
Random Forest 

2.40◦ (±
0.39◦) 2555 / 

13.9% 
β10 Linear 

Regression 
1.99◦

Group 3 
Random Forest 

2.22◦ (±
0.18◦) 2511 / 

13.7% β15 Linear 
Regression 1.84◦

Group 4 
Random Forest 3.19◦ (±

0.36◦) 4573 / 
24.9% 

Hαy”, β25, P 
Linear 
Regression 

N/A  
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The choice of a 5 m grid and the rule to choose the lowest of multiple 
β-points might influence the results but was considered outside the scope 
of this current work. 

6.3.2. Hαy” 
From the feature importance, we found Hαy” to be the second most 

important parameter after the β-angle with feature importance of 4.0%. 
Lied and Bakkehøi (1980) got the same result, thus not significant. If we 
assume that each avalanche follows a parabolic path, then the Hαy” is 
correlated with the β-angle (Bakkehoi et al., 1983). One considerable 
disadvantage with this parameter is that it is impossible to measure/ 
assess in the field without various assumptions. Neither Hα nor y” can be 
computed explicitly without knowing the whole avalanche path, 
meaning that we would have to make some assumptions to predict 
avalanche runout. Neither Hα nor y” had any significance on their own. 
Because of this, model 4 which uses Hα and y” inherit a higher 
uncertainty. 

6.3.3. Avalanche size 
Given the close relationship between avalanche size and avalanche 

danger in avalanche forecasting, we assumed that there would be a 
relationship between the α-angle and avalanche size. However, after 
reviewing the feature importance results, we found avalanche size to be 
negligible (0.16%), supporting Gauer et al. (2010), which found neither 
Hα nor volume dependency for avalanche runout distance. Plotting the 
α-angle for each avalanche versus destructive avalanche size, we find a 
small tendency towards larger avalanches produce longer runout dis
tances (and lower α-angles). The tendency is as expected, but we hy
pothesized that it to be more pronounced than what we found in our 
data set. Our measure of avalanche size is only based on area. We have 
no means to derive the total volume or even the destructive potential 
used to classify destructive size (American Avalanche Association, 2016; 
Canadian Avalanche Association, 2016). Thus, our relationship might 
not represent the complete relationship between avalanche size and 
α-angle. Given the sample size of our dataset, we believe it to be close to 
the real correlation. However, we do not explicitly address the case of 
different sized events in the same avalanche path. In that scenario, we 
would still expect an R1 vs. an R5 avalanche from the same path to have 
very different α-angles. 

6.3.4. Other parameters 
Compared to the β-angles (84.29%) and Hαy” (4.0%), there are no 

other topographic parameters of significance. The P (2.8%), y” (1.9%) 
and altmin (0.9%) were the third, fourth and fifth most important 
parameters. 

6.4. Model performance 

6.4.1. Model performance using selected features 
When we run RFECV, we find the optimal number of features in 

terms of maximum performance. The optimal number of features might 
not be the best with regard to ease of use by practitioners. For the model 
to be easy to use, we want to have as few input features as possible. 
Ideally, input parameters are easy to assess in the field. We resolved this 
by using a percentage threshold. To our knowledge, we have not seen 
this method being used to limit the number of features. The 10% 
threshold was set using our judgment of what we believed made sense 
and does build on similar concepts (i.e., the one standard deviation rule 
by Breiman et al. (1984)). The threshold reduced the number of optimal 
features significantly for all of our models. 

After reducing the number of features, we still found the β-angle to 
be the most important feature for all models. The model from group 3 
had the best ability to predict accurate results. This was surprising as we 
had expected the β5-angles which are the closest to the maximum runout 
to yield the best performance. 

If the higher valid β-angle yields lower accuracy, we should expect β6 

to be the most important parameter in model 2. This is not the case 
because β6 is not valid for all avalanches in the group. β6–10 is given, but 
only β10 is valid for all avalanches. It is always the lowest β-angle that 
provides the most robust predictions, but it must apply to all avalanches 
to be useful for the group. Because of this, β5 is the most important 
feature for group 1, β10 is the most important for group 2 and β15 is the 
most important for group 3. 

There is a considerable disadvantage in using model 4. The model is 
more complex using 3 input features. The models also depend on Hαy”. 
Both Hα and y” rely on knowing the whole avalanche profile in advance, 
something we do not know when predicting avalanche runout. The 
unknown avalanche profile, combined with the much lower perfor
mance for these models, makes us not recommend using them. Model 4 
would therefore not be relevant for hazard mapping and long runouts 
because high β-values limit both models. The high β-values mean that 
there are probably avalanches with a longer return period and a shorter 
runout, which are not a primary concern when making hazard maps and 
mapping long avalanche runouts. 

6.4.2. Model performance compared with the simple linear regression 
Initially, with all input parameters, the RF yielded better results than 

the simple linear regression. However, the numerous input parameters 
are nearly impossible for practitioners to apply in retrospect. We, 
therefore, applied RFECV and feature selection to reduce the complexity 
of the model. We found that the best balance between complexity and 
simplicity was by using one β-angle as input for model 1–3. The single 
input parameter makes it possible to compare the two different models 
with the same inputs. Using RMSE as a measurement of performance, we 
found the simple linear regression model to outperform the trimmed RF 
model. The simple linear regression model is also easier to apply by 
practitioners due to the output being a simple equation. 

Another consideration for the relatively poor performance in the RF 
models is the degree of correlation between the variables. Appendix A-5 
provides a correlation matrix for all the variables, which clearly shows 
the extent of the variable correlations. This has been demonstrated to 
impact the strength of predictors in other applications, which in turn, 
can influence overall model performance (Darst et al., 2018). 

6.4.3. Deterministic versus probabilistic prediction 
The α-β model is a deterministic prediction of the extreme runout to 

be expected in a given path (Eckert et al., 2008). The uncertainty con
siderations are only related to sample size and not a probability distri
bution. By contrast, other approaches exist, such as the runout ratio 
(McClung and Lied, 1987). The runout ratio uses a direct fitting of a 
probability distribution which means that it is possible to assess the 
likelihood of a certain runout length within a given path (more than one 
answer). The empirical relationship between runout distance and 
topography is the only similarity between the α-β model approach and 
the fitting of a distribution to the runout ratio model. We should 
therefore not interpret these two model types in the same way. 

6.5. Limitations and future work 

A limitation with our study largely inspired by the α-β model is that 
we are trying to make a model that outputs one single prediction for 
each avalanche path. In reality, it is possible with many different runout 
lengths for a single avalanche path. Lied and Bakkehøi (1980) solved this 
by choosing the most extreme avalanches in each path. Our RF method is 
similar, but we do not have the detailed information about whether the 
avalanches are the most extreme possible or not. We attempted to get 
around this by sorting our dataset into groups depending on where each 
avalanche stops in the path. The lack of detailed information about each 
avalanche means that it could be a natural variability within each group 
instead of a mean prediction plus an uncertainty like the results from 
Lied and Bakkehøi (1980). The improved performance of each group 
illustrates that having one single deterministic prediction of the runout 
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distance as a function of topography falls short of a probabilistic 
approach. 

One of the advantages of our work is the large data set we could use 
to train and test our models. Our data includes many samples across an 
area of 12,500 km2 from an extreme avalanche period over 15 days. 
Therefore, we believe that most of them are large to extreme size for 
their path, but we have no local knowledge of each avalanche event to 
confirm this. The lack of control of each avalanche event makes it 
challenging to know with a high degree of certainty what kind of 
avalanche events our model is good at predicting. When we consider the 
work by Lied and Bakkehøi (1980), they had excellent control of their 
avalanche events, selecting representative samples of avalanche events 
with the most extreme runout in each path. Local knowledge about each 
avalanche is more important for small data sets where outliers will have 
a larger impact on the analysis. Such a selection of events could also 
cause a bias in the dataset. 

Another limitation is that because the β-angle is the only predictor, 
the parameter is scale independent. One given avalanche slope could 
have several different avalanche runouts which would yield different 
α-angles. In contrast, the topography remains constant, and thus the 
β-angle remains constant. This means that the model cannot reveal scale 
effects in runout distances which are definitely present in extreme 
runout data (McClung, 2022). 

Future work could validate the model against avalanches in other 
regions outside of Switzerland. The validation could be done using real 
case studies and comparing the model against other numerical models 
such as RAMMS, Elba+, r.avaflow and the α-β model as done by Håland 
et al. (2015) and Oller et al. (2021). 

Further investigations could consider the merits of ML algorithms or 
neural networks to improve the results compared to a simple regression 
model. The model could also be adjusted so that it’s optimized for long 
runouts, i.e. the most extreme events, where incorrect assessments have 
the potential for the greatest impact. It would also be of interest if other 
datasets such as the Swiss dataset became available for other regions or 
climates. This would enable us to compare whether the overall α-angle 
distribution is different in other climates. 

7. Conclusion 

We use a large data set of over 18,000 avalanche events from 
Switzerland acquired using optical satellites to calculate the average 
gradient of avalanche flow path (α-angle). Using GIS methods, we have 
derived several topographic metrics for each avalanche event. We 
considered all events from a large avalanche cycle and did not focus 
solely on the most extreme events. 

We developed methods to extract geometrical features from the 

avalanche polygons that are useful for statistics of avalanche events and 
model development or refinement. Given the increased availability of 
remote sensing data over the last decade we can expect to see more 
collections as provided by Hafner and Bühler (2019). Thus, our methods 
might aid in future analysis and comparison of e.g., mapped extreme 
avalanche cycles. 

We found that, when we use α-angle as a proxy for avalanche runout 
length for all these events, we can summarize the data as a normal 
distribution with a mean of 33◦ and a standard deviation of 6.1◦. The 
horizontal length of the α-angle should be measured using the natural 
flow path of the avalanche. We also re-iterate that an α-angle is simply 
the angle of reach from the top to bottom for any event, and we should 
not conflate it with only extreme events. 

Using the feature importance in a RF, we found that the most 
important topographic parameter for predicting α-angle is the average 
gradient from the release area to the β-point (β5, β10, β15). Other topo
graphic parameters reviewed were not of any significance compared to 
the β-angles. 

We explored a large dataset using a multitude of topographic pa
rameters using the RF algorithm, which is one example of a modern ML 
algorithm. Despite this, we found the simple linear regression model to 
yield the highest performance. Furthermore, we refine the application of 
the α-β model by grouping the avalanches, showcasing that the selection 
of the β-point is important. 

Our analysis provides additional understanding and insights into 
α-angle distribution, and the topographic controls thereof, across a 
range of avalanche sizes regardless of a valid β-point. 
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A-1: Using the K-Means algorithm it was possible to derive the eight most common path type profiles (data is normalized). The variable n is the number of samples in 
each path type profile.  
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A-2: Four plots showing the R2 value for a given number of input features for each group. These plots show us that it is not necessary to use all 33 features as input in 
the model to get a decent accuracy. The red dashed lines show the optimal number of features to achieve the highest possible accuracy. However, almost equally good 
accuracy is often achieved with much fewer features. Using a threshold of 10% (black dashed line) we can find the acceptable number of selected features (blue 
dashed line).  
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A-3: Scatter plots showing the predicted α-angles vs measured α-angles from the RF regressor for each subgroup using only the most informative features as input 
(Table 7). N and RMSE are shown in the upper left corner.  
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A-4: The definition of α-angle proved to not always be correct when using an automated workflow. The figure provides an example of where the flow-line from the 
highest point to the lowest point does not make sense. The black arrow on the red centerline marks the direction from the highest point to the lowermost point. 

A-5: A correlation matrix showing the correlation between all factors used in the RF analysis. It clearly illustrates the correlation between the different β-angles.  
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