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This paper develops a framework for and explores the use of Case Based Reasoning 4 

(CBR) to predict seismically induced liquefaction manifestation. CBR is an 5 

Artificial Intelligence process that solves new problems using the known answers 6 

to similar past problems. CBR sorts a database of case histories based on their 7 

similarity to a design case and predicts the outcome of the design case as the 8 

observed outcome of the most similar case history or majority outcome of the most 9 

similar case histories. Two databases of liquefaction case histories are used to 10 

develop and validate numerous CBR models. Different input parameters and 11 

aspects of the CBR method and their influence on the predictive capability of the 12 

models are evaluated. Some of the developed CBR models were shown to have a 13 

better predictive power than currently existing models. However, more research is 14 

needed to refine these models before they can be used in practice. Nevertheless, this 15 

study shows the potential of CBR as a method to estimate liquefaction 16 

manifestation and suggests several avenues of future research.  17 

 18 
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INTRODUCTION 19 

The most widely used methods to evaluate liquefaction triggering are based on the simplified 20 

stress-based procedure developed by Seed and Idriss (1971). This method compares the cyclic 21 

stress induced in a soil layer by an earthquake with the cyclic strength of the soil to provide a 22 

factor of safety against liquefaction. Numerous liquefaction triggering models have been 23 

developed based on this procedure using laboratory test, cone penetration test (CPT), standard 24 

penetration test (SPT) or shear wave velocity (Vs) data to model the soil resistance. However, 25 

Cubrinovski et al. (2019) showed that these models do not accurately account for system 26 

effects, which refer to the dynamic (seismic wave propagation) and pore pressure (water flow) 27 

interaction between layers. This led to both the overestimation and underestimation of 28 

liquefaction hazard at numerous sites during the Canterbury earthquake sequence in New 29 

Zealand. In addition, liquefaction triggering models are often used in conjunction with 30 

susceptibly models (e.g. Bray and Sancio, 2006) to evaluate whether the soil can liquefy, as 31 

well as liquefaction manifestation models that predict liquefaction severity (e.g. Iwasaki et al., 32 

1978), ground settlement (e.g. Ishihara and Yoshimine, 1992) or lateral spreading (e.g. Zhang 33 

et al., 2004). However, liquefaction susceptibility, triggering and manifestation models 34 

developed by various authors and separate datasets are often used together, and the collective 35 

uncertainty and accuracy of these different combinations is unknown. Finally, Geyin et al. 36 

(2020) found that simplified stress-based liquefaction triggering models developed since 1998 37 

show little improvement in their predictive capabilities, despite a significant increase in case 38 

history data. Geyin et al. (2020) suggested that real demonstrable improvement would only 39 

occur with "disruptive innovation" to the in-situ test method or modelling approach. Because 40 

many manifestation models are explicitly linked to triggering models through their predicted 41 

factor of safety, this applies to manifestation models as well. Therefore, this paper evaluates 42 

the use of Case Based Reasoning (CBR) to estimate liquefaction manifestation. This is an 43 

innovative and intuitive technique that has rarely been explored in geotechnical engineering, 44 

and similar to geospatial models that predict liquefaction manifestation, CBR models 45 

inherently merge liquefaction susceptibly, triggering and manifestation. As a result, accuracy 46 

is clearly defined for the entire liquefaction analysis. 47 
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CBR is an Artificial Intelligence process in which new problems are solved using the 48 

known solutions to old problems (Aamodt and Plaza, 1994). A new problem, or design case, 49 

is compared to a database of old problems, or case histories, and the outcome of the case history 50 

that is the most similar to the design case (or majority outcome of the most similar case 51 

histories) is used to predict the result of the design case. In essence, CBR is reasoning by 52 

analogy or association based on experience from previous similar cases. This is a technique 53 

that people use all the time in their everyday lives. For example, lawyers use it to justify 54 

arguments in new cases, and doctors and car mechanics can use it to quickly diagnose problems 55 

and suggest solutions (Kolodner, 1992). CBR is particularly useful in domains where there is 56 

incomplete information, which is often the case in geotechnical engineering where subsurface 57 

data is limited. This is even more true for regional geotechnical analyses. Therefore, CBR could 58 

be beneficial for liquefaction hazard evaluations at the site and regional level. 59 

The CBR method is not a new technique, but it has only been applied to geotechnical 60 

engineering purposes for very limited proof-of-concept studies (e.g. Engin et al, 2018, Roberts 61 

and Engin, 2019). To date, the majority of CBR applications in civil engineering have been in 62 

the construction management field where it is used to estimate project cost (Kim and Shim 63 

2014, Lesniak and Zima 2018), construction hazard identification (Goh and Chua 2009), and 64 

construction planning and project delivery method selection (Yau and Yang 1996, Yoon et al. 65 

2016). Instead, geotechnical engineers have preferred various artificial neural network (ANN) 66 

methods for applications such as predictions of liquefaction triggering, pile capacity, 67 

foundation settlement, and slope stability (Juwaied 2018). However, one of the main 68 

advantages of CBR over ANN is that it is a fully transparent method and allows users to follow 69 

the reasoning on every level. Although powerful tools have recently been developed for 70 

visualization of ANN network strength (e.g. tensor flow), the relationship between the input 71 

and output is still difficult to quantify, leaving users with a system that is more like a black 72 

box. As a result, adoption of these methods has been limited, especially in the geotechnical 73 

community where a mechanistic framework is traditionally desired. 74 

Accordingly, the objective of this study is to evaluate the predictive capability of CBR 75 

to estimate liquefaction manifestation. This is achieved by (1) developing a framework to apply 76 

CBR to liquefaction manifestation analyses; (2) investigating a large range of input parameters; 77 

(3) testing numerous meta-parameters/aspects of the CBR method; (4) developing models 78 
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based on a spectrum of available information for use at the site or regional scale; (5) comparing 79 

the CBR models with existing state-of-practice models; and (6) identifying avenues of future 80 

research. The analyses are performed using the Global database (Geyin and Maurer 2020) and 81 

the Canterbury database (Geyin et al. 2021), which contain 275 and 14,948 well-documented 82 

CPT liquefaction case histories, respectively. 83 

EXISTING MANIFESTATION MODELS 84 

There are several liquefaction manifestation models, sometimes referred to as Liquefaction 85 

Demand Parameters (LDPs), already commonly used in practice and academia to characterize 86 

the response of a liquefiable soil profile. LDPs aim to link the seismic demand to ground 87 

failure, thereby providing a quantitative assessment of the ground damage severity (e.g. Holzer 88 

et al. 2006, van Ballegooy et al. 2014, Cubrinovski 2019, Shinde et al. 2019). One of the first 89 

LDPs, the Liquefaction Potential Index (LPI), was proposed by Iwasaki et al. (1978). LPI is 90 

calculated as: 91 

𝐿𝑃𝐼 = ∫ 𝐹(𝐹𝑆𝑙𝑖𝑞) ∗ 𝑤(𝑧)𝑑𝑧
20 𝑚

0
    (1) 92 

where z is depth in meters, FSliq is the factor of safety against liquefaction at depth z, F(FSliq) 93 

= 1-FSliq for FSliq ≤ 1 and F(FSliq) = 0 otherwise; and w is the depth weighting factor, w(z) = 94 

10 - 0.5z.  95 

Based on the work of Ishihara (1985), Maurer et al. (2015b) proposed a modified LPI 96 

termed LPIISH that accounts for the crust thickness (H1), and uses a different depth weighting 97 

factor, w(z) = 25.56‧z-1. The crust thickness parameter is defined by Ishihara (1985) as the depth 98 

from the top of the soil to the first liquefiable layer. A third commonly used LDP is the 99 

liquefaction severity number (LSN) (van Ballegooy et al. 2014). The LSN is based on the 100 

predicted post-liquefaction volumetric strain, which is a function of FSliq and relative density 101 

(Ishihara and Yoshimine 1992) or FSliq and the equivalent clean sand normalized CPT tip 102 

resistance (qc1Ncs) (Zhang et al., 2002). 103 

Common for these three LDPs is that (1) they consider the top 20 meters of the soil 104 

profile; (2) the layers closer to the soil surface have a greater weight than deeper soil layers; 105 

(3) they require an estimate of the FSliq against liquefaction triggering; and (4) they require 106 

selection of a threshold index(s) to differentiate between surface manifestation severity levels. 107 
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There are numerous liquefaction triggering models that estimate FSliq based on CPT data (e.g., 108 

Robertson and Wride 1998, Youd et al. 2001, Architectural Institute of Japan 2001, Moss et 109 

al. 2006, Boulanger and Idriss 2016), all of which may yield somewhat different FSliq. 110 

Therefore, LDPs are unique to the selected triggering model used, as discussed in Maurer et 111 

al. (2015a). Likewise, Geyin and Maurer (2020) pointed out that the optimum threshold index 112 

is also dependent on the assumed misprediction consequences (i.e., is it worse to predict 113 

manifestation when it does not happen or to not predict manifestation when it does happen?).  114 

A more recent method was proposed by Hutabarat and Bray (2022). Their model 115 

compares the liquefaction ejecta demand parameter (LD) against the crust resistance parameter 116 

(CR) to estimate the severity of liquefaction ejecta. This method is unique in that it specifically 117 

predicts the severity of liquefaction ejecta, whereas LPI, LPIISH and LSN predict severity of 118 

liquefaction manifestation due to not only ejecta, but also other forms of manifestation such as 119 

cracking or settlement. LD is a measure of the upward seepage pressure developed in a critical 120 

zone due to earthquake shaking and is a function of the excess hydraulic head (hexc) and vertical 121 

hydraulic conductivity (kv) of soils in the critical zone. LD is estimated as: 122 

𝑟𝑢 =

{
 
 

 
 

1.0
 

0.5 +
𝑠𝑖𝑛−1(2 ∗ 𝐹𝑆𝑙𝑖𝑞

−5 − 1)

𝜋 
0

 

for 𝐹𝑆𝑙𝑖𝑞 ≤ 1.0 

(2) for 1.0 ≤ 𝐹𝑆𝑙𝑖𝑞 ≤ 3.0 

for 𝐹𝑆𝑙𝑖𝑞 ≥ 3.0 

 123 

ℎ𝑒𝑥𝑐 =
𝑟𝑢∗𝜎𝑣

′

𝛾𝑤
       (3) 124 

 125 

𝑘𝑣

𝑘𝑐𝑠
= 10(0.952−3.04∗𝐼𝑐) (3 ∗ 10−5)⁄  for 1.0 ≤ 𝐼𝑐 ≤ 3.27   (4) 126 

 127 

𝐿𝐷 = {
𝛾𝑤 ∗ ∫

𝑘𝑣
𝑘𝑐𝑠

∗ (ℎ𝑒𝑥𝑐 − ℎ𝐴)𝑑𝑧
𝑧𝐵

𝑧𝐴  
0

 

for ℎ𝑒𝑥𝑐 ≥ ℎ𝐴 

(5) 
otherwise 
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where ru is the excess pore pressure ratio, σ'v is the initial vertical effective stress, γw is the unit 128 

weight of water, Ic is the soil behavior type index, kcs is the value of kv for clean sand (Ic =1.8), 129 

hA is the value of hexc at depth z required to produce artesian flow and is set equal to z, zA is the 130 

depth from the ground surface to the top of the shallowest layer below the ground water table 131 

that has Ic < 2.6 and is at least 25 cm thick, and zB is the depth from the ground surface to the 132 

top of the shallowest soil layer between zA and 15 m with Ic > 2.6 and at least 25 cm thick. 133 

CR is a measure of the strength and thickness of the non-liquefiable crust layer and is 134 

estimated as: 135 

𝐶𝑅 = ∫ 𝑠𝑢𝑑𝑧
𝑧𝐴
0

{

𝑠𝑢 = 𝐾0 ∗ 𝑡𝑎𝑛(𝜙𝐶𝑆),    𝑖𝑓 𝐼𝐵 > 22
 

𝑠𝑢 =
(𝑞𝑡−𝜎𝑣)

𝑁𝑘𝑡
,           𝑖𝑓 𝐼𝐵 ≤ 22 

             (6) 136 

where su is the shear strength of the crust, K0 is the coefficient of lateral earth pressure (assumed 137 

to be 0.5), 𝜙𝐶𝑆 is the critical state friction angle (assumed to be 33°), qt is the CPT tip resistance, 138 

σv is total stress, Nkt = 15, and IB is the modified soil behavior type index (Robertson, 2016). 139 

For larger values of LD and smaller values of CR the model predicts that the liquefaction ejecta 140 

severity increases. This method only considers soils in the top 15 meters of a soil profile and 141 

was developed using FSliq estimated from the Boulanger and Idriss (2016) triggering procedure 142 

at a probability level of 0.5. Hutabarat and Bray (2022) define threshold levels of LD and CR 143 

combinations that differentiate between liquefaction ejecta severity levels. 144 

DATA 145 

The Global database (Geyin and Maurer, 2020) and the Canterbury database (Geyin et al., 146 

2021) were used in this study. The Global database is a compilation of 275 liquefaction case 147 

histories from 21 earthquakes that occurred in nine countries. Geyin and Maurer (2020) 148 

compiled the Global database from existing literature. Older case histories were refined with 149 

information from newer studies, if available. Each case history consists of the peak ground 150 

acceleration (PGA), moment magnitude (Mw), ground water table depth (GWT), measured CPT 151 

tip resistance (qc) and sleeve friction (fs) at a given depth (z), latitude and longitude of the CPT, 152 

and a binary classification of whether surface manifestation due to liquefaction was observed 153 

or not. Geyin and Maurer (2020) also included thin layer corrected qc and fs values according 154 

to the procedure of Boulanger and DeJong (2018), however, in this study, the original, 155 
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uncorrected CPT data was used. Approximately 58% of the case histories in the global database 156 

have observed surface manifestation, and 42% do not. 157 

 The Canterbury database consists of 14,948 case histories from the Mw 7.1, September 158 

4, 2010, Darfield earthquake, the Mw 6.2, February 22, 2011, Christchurch earthquake, and the 159 

Mw 5.7, February 14, 2016, Christchurch earthquake. The Canterbury database contains similar 160 

information as the Global database except the manifestation is classified as none, minor, 161 

moderate or severe. To be consistent with the Global database, we reclassified all case histories 162 

with minor, moderate and severe labels to "observed manifestation", and those with none to 163 

"no observed manifestation". The groundwater depth and the PGA values at individual CPT 164 

locations were estimated from regional models derived from measured data. Approximately 165 

35% of the case histories in the Canterbury database have observed surface manifestation, and 166 

65% do not. Both databases only include case histories for free-field level ground conditions, 167 

and sites with lateral spreading were excluded in this study. None of the data from the 168 

Canterbury database is included in the Global database and vice versa. The Global database 169 

only includes one earthquake from New Zealand, the 1987 Mw = 6.6 Edgecumbe earthquake, 170 

which occurred on the North Island about 700 km from Christchurch. Figure 1 shows the 171 

marginal plots of pairs of PGA-Mw and GWT-LPI for both databases with their manifestation 172 

classifications. 173 

 174 
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 175 

Figure 1. Selected parameters from the Global and Canterbury databases 176 

 177 

METHODOLOGY 178 

CASE BASED REASONING FRAMEWORK 179 

Case based reasoning is a method where new problems are solved using the known solutions 180 

to old problems. CBR takes a design case and compares it to case histories in a database. It 181 

then finds the case history that is the most similar to the design case and uses the observed 182 

outcome of that case history as the predicted outcome of the design case (or the majority 183 

outcome of the most similar case histories). In the context of liquefaction manifestation 184 

modelling for this study, case histories are defined as a peak ground acceleration (PGA), 185 

moment magnitude (Mw), ground water table depth (GWT) and CPT measurement for a given 186 

site, and the corresponding outcome of observed liquefaction surface manifestation or not.  187 

The essence of CBR is how to define how similar the case histories in the database are 188 

to the design case history. This is accomplished in two steps (Roberts and Engin, 2019). The 189 

first step is to compare a specific parameter of the design case to the same parameter of all the 190 

case histories in the database and calculate a similarity index for that parameter for each case 191 

history. This is then repeated for as many parameters as desired. The second step is to then 192 

calculate the overall similarity score for each case history as the weighted average of all the 193 
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parameter specific similarity indexes. The weights given to each parameter reflect their relative 194 

importance in predicting the correct result. This process is defined mathematically as:   195 

𝑆𝑗 = ∑ 𝐼𝑖,𝑗 ∗ 𝑤𝑖
𝑛
𝑖=1                            (7) 196 

where Sj is the overall similarity score for case history j, Ii,j is the similarity index for parameter 197 

i and case history j, wi is the normalized weight for parameter i, and n is the total number of 198 

parameters used. The outcome of the case history with the largest similarity score or the 199 

majority outcome of case histories above a given threshold level is then used as the predicted 200 

outcome of the design case. Figure 2 provides a schematic overview of this process as well as 201 

presents some of the different meta-parameters tried as part of this study. The following 202 

sections describe the CBR framework and meta-parameters in more detail. 203 

 204 
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 205 

Figure 2. Schematic of the CBR framework employed in this study 206 

 207 

Similarity functions.

There are possible alternatives for:

(1) Distribution types

(2) Width scaling (amplification 

or de-amplification) 

Weighting functions.

How to assign a parameter’s 

importance in a model.

  𝐶 −  𝑎𝑠 𝑑  𝑤𝑖,𝑅 =   𝐶𝑖

OR

Predicted outcome

Can be selected from the similarity score S as:

(1) Outcome of the single case history with the highest similarity score

(2) Majority outcome of X number of case histories with highest S values

(3) Majority outcome of case histories with S ≥ threshold value

Subscripts: 

i: parameter 

j: case history

n: # of parameters in a model 

R: raw (individual)

Where: 𝑤𝑖 =
𝑤 , 

∑ 𝑤 , 
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SIMILARITY INDEX 208 

The similarity index (I) is estimated using a similarity function f(Z) that assigns a value based 209 

on the relative difference (Z) between the design case parameter (D) and the same parameter 210 

for the case history (C): 211 

𝐼𝑖,𝑗 = 𝑓(𝑍𝑖,𝑗) = 𝑓((𝐷𝑖,𝑗 − 𝐶𝑖,𝑗) 𝜎𝑁,𝑖⁄ )              (8) 212 

where σN is a normalization coefficient to prevent differences in the magnitude of the different 213 

parameter values affecting the results. We tried three different similarity functions based on a 214 

normal distribution (base case), triangular distribution, and a modified normal distribution 215 

(Figure 3). When the design case parameter and the case history parameter are equal, the 216 

relative difference, Z, becomes zero and the similarity index equals one. The normal and 217 

triangular distributions decrease evenly on both sides of the peak, indicating that the larger the 218 

difference between the design case parameter and the case history parameter the lower the 219 

similarity index (i.e., they are less similar). The modified normal distribution is the same as the 220 

normal distribution except the similarity index for one side of the curve is kept equal to one 221 

out to either +infinity or -infinity instead of decreasing to zero. The reasoning behind this 222 

function is that if a case history reported surface manifestation for PGA = X, then if the design 223 

case was exactly the same but PGA > X, this would also be assumed to result in surface 224 

manifestation. Or vice-versa, if a case history reported no surface manifestation for PGA = X, 225 

then for a design case with similar parameters but PGA < X one would also expect no surface 226 

manifestation. The direction of the modified normal distribution changes depending on 227 

whether the parameter has a positive or negative correlation with manifestation (e.g., PGA and 228 

GWT have opposite modification directions), and whether surface manifestation was observed 229 

or not. 230 

We also tried three different values for the normalization coefficient (σN). We tried (1) 231 

the standard deviation of the given parameter for only the case histories with observed surface 232 

manifestations (σN = σmanif; base case), similar to Roberts and Engin (2019); (2) the amplified 233 

standard deviation (σN = A∗ σmanif), which increases the width of the similarity function and 234 

gives a larger similarity index to values further from the design case value; and (3) the de-235 

amplified standard deviation (σN = σmanif /A), which narrows the similarity function and reduces 236 
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the similarity index for values further from the design case value. In this work A was arbitrarily 237 

selected to be 4 to see the effect of σN on the CBR results.   238 

 239 

  240 

Figure 3. Similarity functions used in the CBR analyses 241 

 242 

WEIGHTING FUNCTIONS 243 

The weight applied to each similarity index reflects the relative influence of that parameter in 244 

estimating correctly whether surface manifestation will occur or not compared to the other 245 

parameters used in the CBR analysis. We tried two different methods to estimate the weight. 246 

The first was the same as Roberts and Engin (2019):  247 

𝑤𝑖,𝑅 =
𝐶𝑂𝑉 ,𝑎𝑙𝑙

𝐶𝑂𝑉 ,𝑚𝑎  𝑓
                           (9) 248 

𝑤𝑖 =
𝑤 , 

∑ 𝑤 , 
 
   

                              (10) 249 

where COVi,all is the coefficient of variation of parameter i for all case histories, COVi,manif  is 250 

the coefficient of variation of parameter i for only case histories with observed surface 251 

manifestations, and wiR is the raw weight. The raw weights are then normalized so that the sum 252 
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of all the weights is equal to one. As a result of the normalization, the similarity score (S) has 253 

values between zero and one. 254 

For the second method we calculated the raw weight of each parameter (wiR) as the area 255 

under (AUC) the receiver-operating-characteristic (ROC) curve. ROC curves plot the rate of 256 

true-positive predictions (RTP) (i.e. manifestation is observed and predicted) against false-257 

positive predictions (RFP) (i.e. manifestations are not observed but are predicted to occur) when 258 

using different threshold values to differentiate the outcome. AUC is an objective and 259 

standardized metric used to evaluate the ability of a parameter to differentiate between two 260 

outcomes for different threshold values, and is commonly used in geoscience and 261 

geoengineering (e.g. Lin et al. 2021, Upadhyaya et al. 2021, Upadhyaya et al. 2022, Ju et al. 262 

2020, Sarma et al. 2020). Figure 4 shows an example ROC curve and AUC for LPI using the 263 

Global database. Each point on the curve represents a different LPI threshold value. If LPI was 264 

a perfect predictor of liquefaction manifestation then the curve would go from (0,0) to (0,1) to 265 

(1,1) and have an AUC = 1. Random guessing is equivalent to a straight line from (0,0) to (1,1) 266 

with an AUC = 0.5. The AUC therefore provides an estimate of the predictive power of each 267 

parameter individually to evaluate manifestation. The AUC values were taken as wiR and then 268 

normalized as shown in equation 10 to predict S values between zero and one.  269 

 270 
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   271 

Figure 4. ROC curve using Global database and LPI as the diagnostic index. 272 

 273 

PREDICTOR PARAMETERS 274 

To find the best CBR model to estimate liquefaction surface manifestation, we evaluated over 275 

900 different predictor parameters. We included existing LDPs such as LPI, LPIISH, LSN, LD, 276 

CR and LD/CR described earlier. We calculated these parameters using FSliq estimated by the 277 

CPT triggering model of Boulanger and Idriss (2016), as it presents one of the highest 278 

prediction efficacies (Geyin et al. 2020) and is widely used in practice.  279 

Cubrinovski et al. (2019) found negligible difference in the LPI and LSN values for 280 

selected sites that had observed surface manifestation and no surface manifestation during the 281 

Canterbury earthquake sequence. They stated that the main differences between sites with 282 

observed surface manifestation compared to those with no observed surface manifestation was 283 

the presence of a vertically continuous liquefiable zone and the absence of a non-liquefiable 284 

crust. Therefore, we also evaluated parameters zA, zB, and zA-zB from Hutabarat and Bray 285 

(2022). Parameter zA is the depth from the ground surface to the top of the shallowest layer 286 

below the ground water table that has Ic < 2.6 and is at least 25 cm thick, and zB is the depth 287 

from the ground surface to the top of the shallowest soil layer between zA and 15 m with Ic > 288 

2.6 and at least 25 cm thick. Parameter zA represents the depth to the first layer susceptible to 289 



15 

 

 

liquefaction, similar to the H1 parameter defined by Ishihara (1985). Parameter zB is the depth 290 

to the bottom of the critical zone, and zA-zB is the thickness of the critical zone. Theoretically, 291 

for smaller values of zA and larger values of zA-zB, the probability of liquefaction manifestation 292 

should increase. We also included the GWT as a proxy for the depth to the first susceptible 293 

layer, as this is a common parameter in regional methods (Zhu et al., 2017) and was readily 294 

available in the case history databases. 295 

To represent the earthquake loading we used PGA and Mw. Several studies (Kramer 296 

and Mitchell 2006; Sideras 2019) have found that the cumulative absolute velocity (CAV) is a 297 

better predictor of liquefaction than PGA. However, the case histories in the databases used in 298 

this study only include PGA and Mw, therefore, other earthquake loading parameters could not 299 

be assessed. In the future, other intensity measures could be calculated for the case histories 300 

and incorporated into the CBR method. 301 

In addition to the above listed predictor parameters, we also evaluated depth dependent 302 

CPT derived parameters. Table 1 lists these parameters and the reference where they are 303 

defined. Because these parameters are depth dependent, we evaluated their mean, median, 304 

minimum, maximum, and standard deviation over depth intervals of 0-zA, zA-zB, 0-5m, 0-10m, 305 

0-15m, and 0-20m for soils with Ic < 1.8 (clean sands), Ic < 2.6 (susceptible soils) and all soils 306 

irrespective of their liquefaction susceptibility. Soil unit weight values that are necessary to 307 

calculate some of these parameters were estimated using the CPT correlation of Robertson and 308 

Cabal (2010). The factor of safety values were capped at a maximum of 10, which has an effect 309 

on the median, mean, standard deviation and maximum values of FSliq. 310 

We included both the mean and median values because the median value is less affected 311 

by large outliers than the mean value. The standard deviations of parameters were included to 312 

try and capture the homogeneity (i.e., interbedded characteristics) of the soil profiles (Durante 313 

and Rathje, 2021). The more interbedded the soils are the larger the standard deviation and the 314 

more homogenous they are the smaller the standard deviation. The values for the depth interval 315 

of 0-zA represent the properties of the overlying crust, and the values for the depth interval of 316 

zA-zB represent the properties of the critical zone. We considered other generic depth intervals 317 

down to 20 m to see if these are better at capturing manifestation than parameters based on the 318 
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critical zone or crust layer. Finally, values were also calculated filtering on Ic to see if 319 

parameters only for a given soil type controlled the response.  320 

Some combinations of the CPT derived parameters provide trivial results. These 321 

parameters were very poor predictors and were naturally filtered out in the regression analyses. 322 

For some case histories some of the calculated parameters do not exist. For example, if there 323 

are no soils with Ic < 1.8 in the top five meters then all the parameters based on this filtering 324 

were replaced with an arbitrarily large number (e.g. 10000). In this way, the CBR method can 325 

still match together case histories that do not have soils with Ic < 1.8 in the top five meters for 326 

parameters based on this filtering. However, the CBR method will return a similarity index 327 

equal to zero when comparing to case histories that have at least a small layer with Ic < 1.8 in 328 

the top five meters because the value calculated will be far from 10000.   329 

We also calculated the thickness of Ic < 1.8 and Ic < 2.6 over the depth intervals listed 330 

above and included them as predictor parameters. These parameters are zero if there are no 331 

soils meeting these criteria and therefore will give a high similarity index when compared with 332 

profiles where there are thin layers of soil meeting the filtering criteria. In addition, the 333 

thickness of Ic < 1.8 or 2.6 can also be used as a proxy to capture the finding by Cubrinovski 334 

et al. (2019) that the thickness of liquefiable soil, even above or below the critical zone, can 335 

affect the manifestation response. These simple parameters do not, however, consider whether 336 

the liquefiable layers are continuous or not.  337 

For the depth interval of 0 to the zA (the overlying cap), we also calculated the thickness 338 

of Ic > 2.6 (cap-thick), which is more meaningful for this depth interval than the thickness of 339 

Ic less than a given threshold. Finally, we evaluated the thickness of FSliq < 1.0 over the given 340 

depth intervals. The thickness of FSliq < 1.0 is similar to LPI and LSN but simpler in form and 341 

is over different depth intervals rather than just the top 20 m. 342 

 343 
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Table 1. CPT derived predictor parameters 344 

Parameter Name Reference 

DR Relative density Idriss and Boulanger (2008) 

Qtn Normalized tip resistance Robertson (2009) 

Fr Sleeve friction ratio Robertson (1990) 

qc1N Overburden corrected penetration resistance Boulanger and Idriss (2016) 

qc1Ncs Equivalent clean sand penetration resistance Boulanger and Idriss (2016) 

Ic Soil behavior type index Robertson and Wride (1998) 

CRRM=7.5,σ'v=1atm 
Magnitude and stress normalized cyclic 

resistance ratio 
Boulanger and Idriss (2016) 

FSliq Factor of safety (at probability level of 15%) Boulanger and Idriss (2016) 

ru Excess pore pressure ratio Hutabarat and Bray (2022) 

hexc Excess hydraulic head Hutabarat and Bray (2022) 

 345 

MODEL DEVELOPMENT 346 

To evaluate which combination of predictor parameters resulted in the best CBR model we 347 

used Matthews Correlation Coefficient (MCC) as the goodness of fit measure (Mathews, 348 

1975). MCC is a scalar value that measures the correlation between the true and predicted 349 

values: 350 

𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
             (11) 351 

where TP is the number of true positives (manifestation is observed and predicted), TN is the 352 

number of true negatives (manifestation is not observed and not predicted), FP is the number 353 

of false positives (manifestation is not observed but predicted) and FN is the number of false 354 

negatives (manifestation is observed but not predicted). If MCC = 1 then the model predicts 355 

the correct response every time. If MCC = 0 then the model is no better than random guessing. 356 

The advantage of MCC over other classification metrics is that it is insensitive to class 357 

imbalance (e.g. more positive observations than negative or vice-versa) and only predicts a 358 

high value if all four confusion matrix categories (TP, TN, FP and FN) have good results. 359 

Another useful attribute is that the definition of positive and negative classes can be switched, 360 

and the score is the same. An inherent assumption in MCC is that reducing FP (over-361 

conservative result) is just as important as reducing FN (unconservative result), which makes 362 

it an impartial metric.   363 
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 To find the best combination of predictor parameters we first tried all combinations of 364 

parameters for models with one or two parameters. This resulted in 938 one-parameter models 365 

and 439,453 two-parameter models. However, repeating this for models with three parameters 366 

was too computationally expensive (137,109,336 models). Therefore, we chose the best 175 367 

predictor parameters based on the results of the one and two-parameter models and evaluated 368 

all combinations of three-parameter models based on these 175 predictor parameters (877,975 369 

models). Then, for the 100 best one, two, and three-parameter models, we performed a stepwise 370 

regression methodology using forward selection. In this approach, CBR was performed adding 371 

each remaining parameter one at a time to the base model. Then, the CBR model that gave the 372 

highest MCC value was retained, and the process repeated until the model had six parameters. 373 

Each model tried was then ranked according to MCC. 374 

 To find the optimum CBR parameters we regressed on the Global database (training) 375 

and used the Canterbury database for validation (testing). We performed the regression with 376 

the Global database using a leave-one-out approach. In this approach, one case history was 377 

selected as the design case. The design case was then compared to the remaining case histories 378 

in the database using CBR to estimate whether surface manifestation would occur or not. This 379 

was repeated for each case history in the database. This ensured that every case history in the 380 

database was used as the design case one time. Finally, the results from all analyses were 381 

aggregated to compute the MCC. 382 

We validated the CBR models developed using the Global database against the 383 

Canterbury database. For the validation, the case histories in the Canterbury database were the 384 

design cases and the Global database was the case history database. Each case history in the 385 

Canterbury database was evaluated against the Global database using a predefined set of 386 

parameters and weights derived from the Global database. Therefore, the validation is a true 387 

check as the CBR model has not seen the Canterbury data before and represents the scenario 388 

where a new earthquake occurs and the CBR model is used to predict liquefaction 389 

manifestation. 390 

The base case CBR models use the observed outcome of the case history with the single 391 

greatest similarity score as the predicted outcome for the design case. However, it is also 392 

possible to predict the outcome of the design case based on the observed outcomes of multiple 393 
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of the most similar case histories. To explore this alternative method, we evaluated predicting 394 

the liquefaction manifestation outcome for the design case based on the observed outcomes of 395 

the three, five or 10 case histories with the highest similarity scores, or the observed outcomes 396 

of all case histories with similarity scores greater than 0.75, 0.85 or 0.95. If half or more than 397 

half of the most similar case histories had observed liquefaction manifestation, then 398 

liquefaction manifestation was predicted for the design case. For example, if six of the 10 case 399 

histories with the highest similarity scores had observed liquefaction manifestation and four 400 

did not, then liquefaction manifestation was predicted for the design case. A useful benefit of 401 

this method is that probabilities of observing manifestation can also be calculated. Using the 402 

previous example, the probability of manifestation would be 60%, because six of the 10 case 403 

histories with the highest similarity scores had observed manifestation, whereas four did not. 404 

If no case history had a similarity score above the 0.75, 0.85 or 0.95 threshold, then the 405 

observed outcome of the single case history with the highest similarity score was used, similar 406 

to the base case. 407 

RESULTS 408 

WEIGHTS 409 

The first step was to estimate the raw weight values for each parameter (wR). As stated 410 

earlier, we tried two different sets of weights. The first set of weights was calculated as the 411 

coefficient of variation (COV) of all case histories for a given parameter divided by the COV 412 

of only those case histories with observed surface manifestation (COVmanif). The second set of 413 

weights were the AUC values of each parameter. Table 2 lists the AUC and COV derived 414 

weights (wR,COV = COV / COVmanif) for the global database. Only results for the five CPT 415 

derived parameters with the highest AUC scores, five CPT derived parameters with the highest 416 

wR,COV values, and all existing LDP parameters and other parameters are shown. The naming 417 

convention for the CPT derived parameters is generally based on four identifiers. The first part 418 

of the name is the CPT derived parameter. The next identifier and first subscript is the depth 419 

interval over which the parameter is calculated. If it is a number, the depth interval is from zero 420 

to that depth in meters, if it is fsl it signifies the depth to the first susceptible layer (0 to za), and 421 

if it is crl it signifies the critical zone (za – zb). The next identifier in curly brackets is the Ic 422 

filter. The last identifier after the hyphen is the statistics being calculated for that parameter. 423 
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In general, the CPT derived parameters with the largest AUC are based on ru, FSliq and 424 

hexc and the CPT derived parameters with the largest wR,COV are based on ru, FSliq, Fr and CRR. 425 

For the non-CPT derived parameters, LPI has the highest AUC and wR,COV value.  426 

Table 2. Area under the curve (AUC) and weights estimated from COV (wR,COV) for the global database. 427 
Only the five CPT derived parameters with the highest AUC scores and wR,COV values as well as all non-428 
CPT derived parameters are shown. 429 

Type Description Notation AUC wR,COV 

CPT-based 

parameters 

with the 

greatest AUC 

Cumulative thickness of layers with Factor of 

Safety less than unity, in the top 10 meters 
FSthick10_{all} 0.77 1.429 

Mean ru of all soils, in the top 10 meters Ru10_{all}-mean 0.77 1.39 

Mean hexc of all soils, in the top 10 meters hexc10_{all}-mean 0.76 1.335 

Standard deviation of ru of all soils, in top 10 

meters 
Ru10_{all}-std 0.76 1.958 

Median Factor of Safety of soils with Ic < 2.6, 

in the top 15 meters 
FS15_{Ic<2.6}-median 0.75 0.838 

CPT-based 

parameters 

with the 

greatest wR,COV 

Minimum Factor of Safety of soils with Ic < 

2.6, in the top 10 meters 
FS10_{Ic<2.6}-min 0.72 4.382 

Minimum Fr of all soils, in the top 5 meters Fr5_{all}-min 0.63 4.052 

Minimum Fr of all soils, in the top 10 meters Fr10_{all}-min 0.60 4.049 
Median CRRMw7.5-1 of soils with Ic < 2.6, in the 

critical zone 
CRRcrl_{Ic<2.6}-median 0.61 4.024 

Minimum ru of soils with Ic < 2.6, in z = (0, za) Rufsl_{Ic<2.6}-min 0.50 3.865 

Existing LDPs 

and other 

parameters 

Liquefaction Potential Index LPI 0.76 1.303 

Ishihara Inspired Liquefaction Potential Index LPISH 0.76 1.278 

Liquefaction Severity Number LSN 0.71 1.156 

Normalized liquefaction ejecta demand LD/CR 0.70 1.13 

Liquefaction ejecta demand  LD 0.67 1.189 

Peak Ground Acceleration PGA [g] 0.65 1.127 

Crust resistance CR 0.64 0.664 

Moment Magnitude Mw 0.61 1.065 

Thickness of soils with Ic > 2.6 in z = (0, za)  cap-thick [m] 0.60 1.023 

Depth of first liquefiable layer zA 0.59 1.168 

Ground water table GWT [m] 0.56 0.955 

Thickness of critical zone zA-zB [m] 0.56 1.047 

 430 

SELECTED MODELS 431 

We first derived models using base case meta-parameters, which are the AUC values as 432 

weights, a normal distribution for the similarity function with σN = σmanif, and selecting only 433 

the observed outcome of the single most similar case history to predict the outcome of the 434 

design case.  Table 3 lists the normalized weights (w) and normalization coefficients (σN) for 435 
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the best models using one to six input parameters and base case meta-parameters (Models 1-436 

6). The w and σN are listed in the same order as their corresponding model parameter. The 437 

normalized weights are similar, showing that the parameters used in the selected models have 438 

similar AUC scores. Table 4 lists the Matthews Correlation Coefficient (MCC), true negative 439 

rate (RTN = TN/(TN+FP)), false positive rate (RFP = FP/(TN+FP)) false negative rate (RFN = 440 

FN/(TP+FN)) and true positive rate (RTP = TP/(TP+FN)) for each model. The larger the MCC, 441 

RTN and RTP, and the smaller the RFP and RFN, the better the model. If RTN is 0.5, this means the 442 

model is no better at predicting no manifestation cases than random guessing, and if RTP is 0.5, 443 

this means the model is no better at predicting manifestation cases than random guessing. If 444 

either RTN or RTP is less than 0.5, this means the model is worse than random guessing. RTN or 445 

RTP values of 1 mean that the model predicts these cases perfectly (all models in the training 446 

database are correctly predicted). The results present several interesting points, which are 447 

discussed below. 448 

As the number of input parameters increases the MCC increases up until five 449 

parameters, and decreases for the six parameter model. This is most likely because adding more 450 

parameters decreases the weight of the other more influential parameters. Therefore, simply 451 

adding more parameters and making the model more complex does not necessarily result in a 452 

better model. Moreover, the model with only one parameter already has a RTP = 0.77. Adding 453 

more parameters only marginally increases this value to 0.83. However, adding more 454 

parameters significantly increases the proportion of true negatives, from 0.61 to 0.79. 455 

All six of the models in Table 3 consist of one or more of PGA, ru, FSliq and hexc. This 456 

agrees well with the results shown in Table 2, where these parameters have the highest AUC 457 

values. FSliq is a direct indicator of liquefaction triggering and therefore a strong predictor of 458 

liquefaction manifestation. Parameters ru and hexc are correlated to FSliq (ru is a function of FSliq 459 

and hexc is a function of ru and σ'v) and therefore also performed well. It is interesting however, 460 

that other parameters such as LPI, LPIish, or LSN, which are also functions of FSliq as well as 461 

other factors such as crust thickness and depth, did not provide better models. These results 462 

may be attributable to the regional depth-weighting algorithms embedded into the existing 463 

LDPs not performing well for a global database. It is expected that manifestation models 464 

perform better with the implementation of regionalized w(z), Magnitude Scaling Factors (MSF) 465 

and stress reduction factors (rd), as highlighted in Green (2022). In addition, none of the models 466 



22 

 

 

includes parameters based on the depth interval of the crust (0 to zA) or the critical zone (zA-467 

zB), which we expected to be better predictors than the other depth intervals. Finally, Models 1 468 

and 2 only use CPT data over the top 10 and 5 m, respectively, and Models 4-5 only use CPT 469 

data over the top 15 m. This is in contrast to LPI, LPIish, or LSN, which take weighted averages 470 

over the top 20 m, but similar to the model proposed by Hutabarat and Bray (2022), which only 471 

considers the top 15 m of a soil profile. 472 

Table 3. Normalized weights (w) and normalization coefficients (σN) for the best base case models with 473 
one to six parameters. The w and σN are listed in the same order as their corresponding model parameter.  474 

Model 

Name 
Model Parameters w σN 

Model 1 Ru10_{Ic<2.6}-median 1.00 0.39 

Model 2 PGA, Ru5_{Ic<2.6}-mean 0.49, 0.51 0.16, 0.30 

Model 3 PGA, Ru5_{Ic<2.6}-mean, FS15_{Ic<2.6}-min 0.32, 0.34, 0.34 0.16, 0.30, 0.10 

Model 4 
PGA, Ru10_{Ic<2.6}-median, Ru5_{all}-std, 

FS15_{Ic<2.6}-min 

0.24, 0.26, 0.25, 

0.25 

0.16, 0.39, 0.15, 

0.10 

Model 5 
PGA, Ru10_{Ic<2.6}-median,Ru5_{all}-std, 

FS15_{Ic<2.6}-min, FS5_{Ic<1.8}-min 

0.20, 0.22, 0.21, 

0.20, 0.17 

0.16, 0.39, 0.15, 

0.10, 3.44 

Model 6 

PGA, Ru5_{Ic<2.6}-mean, FS15_{Ic<2.6}-min, 

Ru20_{Ic<1.8}-mean, hexc15_{Ic<2.6}-mean, 

hexc20_{all}-max 

0.17, 0.18, 0.18, 

0.15, 0.17, 0.15 

0.16, 0.30, 0.10, 

0.36, 1.91, 3.68 

 475 

Table 4. Matthews Correlation Coefficient (MCC), true negative rate (RTN), false positive rate (RFP) 476 
false negative rate (RFN) and true positive rate (RTP) for the best base case models with one to six 477 
parameters.   478 

Model 

Name 
Model Parameters MCC RTN RFP RFN RTP 

Model 1 Ru10_{Ic<2.6}-median 0.384 0.61 0.39 0.23 0.77 

Model 2 PGA, Ru5_{Ic<2.6}-mean 0.461 0.67 0.33 0.21 0.79 

Model 3 PGA, Ru5_{Ic<2.6}-mean, FS15_{Ic<2.6}-min 0.517 0.73 0.27 0.21 0.79 

Model 4 
PGA, Ru10_{Ic<2.6}-median, Ru5_{all}-std, 

FS15_{Ic<2.6}-min 
0.581 0.79 0.21 0.21 0.79 

Model 5 
PGA, Ru10_{Ic<2.6}-median, Ru5_{all}-std, 

FS15_{Ic<2.6}-min, FS5_{Ic<1.8}-min 
0.593 0.78 0.22 0.19 0.81 

Model 6 

PGA, Ru5_{Ic<2.6}-mean, FS15_{Ic<2.6}-min, 

Ru20_{Ic<1.8}-mean, hexc15_{Ic<2.6}-mean, 

hexc20_{all}-max 

0.574 0.74 0.26 0.17 0.83 

 479 

REGIONAL MODELS 480 
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In addition to the best fit models presented above, we explored three alternative models based 481 

only on PGA, Mw and GWT to evaluate the ability of CBR to predict liquefaction manifestation 482 

with limited input parameters. These models could therefore be used for regional analyses 483 

where geotechnical data is sparse. Table 5 lists the normalized weights (w) and normalization 484 

coefficients (σN) for three models (Models 7-9) using only these parameters, and Table 6 lists 485 

the results. The best model uses all three parameters and provides a similar fit to the data as 486 

the two-parameter model listed in Table 4 (Model 2). 487 

Table 5. Normalized weights (w) and normalization coefficients (σN) for the regional models. The w 488 
and σN are listed in the same order as their corresponding model parameter. 489 

Model Name Model Parameters w σN 

Model 7 PGA, Mw, GWT 0.33, 0.36, 0.31 0.60, 0.16, 1.45 

Model 8 PGA, GWT 0.54, 0.46 0.16, 1.45 

Model 9 PGA 1.00 0.16 

 490 

Table 6. Matthews Correlation Coefficient (MCC), true negative rate (RTN), false positive rate (RFP) 491 
false negative rate (RFN) and true positive rate (RTP) for the regional case models.  492 

Model Name Model Parameters MCC RTN RFP RFN RTP 

Model 7 PGA, Mw, GWT 0.423 0.65 0.35 0.23 0.77 

Model 8 PGA, GWT 0.322 0.57 0.43 0.25 0.75 

Model 9 PGA 0.289 0.58 0.42 0.29 0.71 

 493 

VALIDATION 494 

The models were validated against the Canterbury database. Each case history in the 495 

Canterbury database was compared to the Global database using CBR and the models 496 

described above. Table 7 presents the results of the validation for each of the models. Similar 497 

to the model development, as the number of input parameters increases, the MCC generally 498 

increases. However, the MCC values for the validation are less than the values found when 499 

developing the models, which is expected, because the models were not trained on the 500 

Canterbury data. The maximum true negative rate (rate that manifestation is not observed and 501 

not predicted) is 0.76 using the models with one or six parameters. The maximum true positive 502 

rate (rate that manifestation is observed and predicted) is 0.72 using the five-parameter model. 503 
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The three alternative models that do not require CPT data have lower MCC scores as 504 

well, which is expected. However, the model with only PGA performs the best, while the model 505 

with PGA, Mw and GWT performs the worst of the three. This is opposite the trend seen when 506 

developing the models, where the model with PGA, Mw and GWT performed the best and PGA 507 

by itself was the worst. This shows that the regional CBR models are sensitive to the database 508 

used to perform the CBR calculation and may not provide reliable results when extrapolated 509 

to design cases outside the case history database. 510 

Table 7. Model results validated against the Canterbury database. 511 

Model 

Name 
Model Parameters MCC RTN RFP RFN RTP 

Model 1 Ru10_{Ic<2.6}-median 0.311 0.76 0.24 0.45 0.55 

Model 2 PGA, Ru5_{Ic<2.6}-mean 0.356 0.68 0.32 0.31 0.69 

Model 3 PGA, Ru5_{Ic<2.6}-mean, FS15_{Ic<2.6}-min 0.392 0.72 0.28 0.31 0.69 

Model 4 
PGA, Ru10_{Ic<2.6}-median, Ru5_{all}-std, FS15_{Ic<2.6}-

min 
0.389 0.73 0.27 0.32 0.68 

Model 5 
PGA, Ru10_{Ic<2.6}-median, Ru5_{all}-std, FS15_{Ic<2.6}-

min, FS5_{Ic<1.8}-min 
0.427 0.72 0.28 0.28 0.72 

Model 6 
PGA, Ru5_{Ic<2.6}-mean, FS15_{Ic<2.6}-min, Ru20_{Ic<1.8}-

mean, hexc15_{Ic<2.6}-mean, hexc20_{all}-max 
0.435 0.76 0.24 0.32 0.68 

Model 7 PGA, Mw, GWT 0.108 0.59 0.41 0.48 0.52 

Model 8 PGA, GWT 0.179 0.58 0.42 0.39 0.61 

Model 9 PGA 0.233 0.65 0.35 0.41 0.59 

 512 

DISCUSSION 513 

EFFECT OF MODEL META-PARAMETERS 514 

As discussed in the methodology section, we evaluated several meta-parameters of the CBR 515 

model. These meta-parameters included (1) weighting functions based on either the AUC (base 516 

case) or the ratio of the COV of a given parameter for all case histories to the COV of the 517 

parameter for only the case histories with observed surface manifestation (wR,COV); (2) similarity 518 

function based on either a normal distribution (base case), triangular distribution, or a normal 519 

distribution with one half of the distribution equal to one (modified normal); (3) similarity 520 

function based on a normal distribution with a standard deviation calculated as the standard 521 
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deviation of the given parameter for only the case histories with observed surface 522 

manifestations (σN = σmanif, base case), or σN multiplied or divided by four, and; (4) using only 523 

the single most similar case history (base case) to predict the outcome, the majority outcome 524 

of the three, five or ten most similar case histories, or the majority outcome of all case histories 525 

with similarity scores greater than 0.75, 0.85 or 0.95 together to predict the outcome.  526 

 Table 8 presents the MCC for the models given in Table 4 and Table 6 for the base 527 

case and each of the different meta-parameter variations trained on the Global database. There 528 

is no one change in meta-parameters that consistently gives the best MCC for each model, and 529 

the base case meta-parameters do not give the best MCC for each model either. The difference 530 

in MCC ranges from -0.38 to +0.06. This result could change if the best models were initially 531 

derived using the change in the meta-parameters, or if multiple meta-parameters were changed 532 

simultaneously, however this is outside the scope of the current study.  533 

 Table 9 presents the MCC for the same models as in Table 8 but validated against the 534 

Canterbury database. For the validation exercise, taking the majority outcome of all case 535 

histories with a similarity score > 0.75 provides a consistently better MCC for all the models 536 

tested. The difference is significant, with an increase in the MCC of 0.43 for the model with 537 

only PGA (Model 9) and an increase of more than 0.10 for all other models except Model 1. 538 

This could be because the Canterbury database represents a distinct set of case histories that 539 

do not match any one event or case history in the Global database. As a result, taking all the 540 

most similar case histories above a threshold (S > 0.75) and taking the majority outcome 541 

ensures a more robust result than simply taking the single case history with the highest 542 

similarity score.  543 
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Table 8. MCC values for different meta-parameters trained on the Global database. The italic and bold 544 
numbers are the largest MCC per model. 545 

Meta-parameter 
Model Name 

1 2 3 4 5 6 7 8 9 

Base Case 0.38 0.46 0.52 0.58 0.59 0.57 0.42 0.32 0.29 

S > 0.75 0.42 0.32 0.39 0.45 0.47 0.46 0.19 0.22 0.20 

S > 0.85 0.38 0.38 0.45 0.44 0.42 0.41 0.26 0.31 0.20 

S > 0.95 0.41 0.36 0.39 0.50 0.44 0.47 0.23 0.11 0.19 

Best 3 0.33 0.42 0.48 0.46 0.43 0.43 0.34 0.35 0.11 

Best 5 0.38 0.47 0.41 0.35 0.33 0.49 0.30 0.22 0.20 

Best 10 0.38 0.43 0.45 0.45 0.39 0.50 0.26 0.28 0.20 

COV weights 0.38 0.45 0.52 0.57 0.58 0.58 0.42 0.32 0.29 

De-amplification 0.38 0.46 0.48 0.53 0.56 0.63 0.44 0.31 0.29 

Amplification 0.38 0.46 0.53 0.59 0.58 0.57 0.42 0.32 0.29 

Tail distribution 0.40 0.23 0.24 0.20 0.22 0.27 0.21 0.29 0.23 

Triangle Distribution 0.38 0.45 0.50 0.58 0.55 0.60 0.44 0.36 0.29 

 546 

Table 9. MCC values for different meta-parameters validated against the Canterbury database. The 547 
italic and bold numbers are the largest MCC per model. 548 

Meta-parameter 
Model Name 

1 2 3 4 5 6 7 8 9 

Base Case 0.31 0.36 0.39 0.39 0.43 0.44 0.11 0.18 0.23 

S > 0.75 0.38 0.54 0.53 0.51 0.54 0.54 0.27 0.37 0.66 

S > 0.85 0.38 0.50 0.52 0.47 0.48 0.46 0.16 0.45 0.61 

S > 0.95 0.38 0.47 0.45 0.41 0.44 0.43 0.00 0.41 0.53 

Best 3 0.31 0.39 0.46 0.48 0.48 0.48 0.03 0.21 0.25 

Best 5 0.35 0.42 0.47 0.49 0.49 0.50 0.02 0.28 0.29 

Best 10 0.34 0.47 0.52 0.50 0.52 0.54 0.04 0.37 0.34 

COV weights 0.31 0.36 0.39 0.39 0.43 0.43 0.11 0.18 0.23 

De-amplification 0.31 0.36 0.38 0.42 0.42 0.41 0.06 0.18 0.23 

Amplification 0.31 0.36 0.39 0.39 0.42 0.43 0.11 0.18 0.23 

Tail distribution 0.34 0.26 0.30 0.26 0.35 0.47 0.28 0.37 0.46 

Triangle Distribution 0.31 0.36 0.38 0.41 0.42 0.43 0.05 0.19 0.22 

 549 

COMPARISON WITH EXISTING MODELS 550 

To understand the performance of the CBR models we compared them with existing models. 551 

Figure 5 presents confusion matrices for LPI against the Global database and the Canterbury 552 
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database. Confusion matrices are simply a graphical representation of RTN, RFP, RFN and RTP. 553 

In addition, Table 10 and Table 11 list the MCC, RTN, RFP, RFN and RTP when using LPI, LPIISH, 554 

LSN, and the method of Hutabarat and Bray (2022) (LD and CR) against the Global database 555 

and the Canterbury database, respectively. For LPI, LPIISH, and LSN, threshold values of 11.2, 556 

6.7, and 28.3 were used. These threshold values were chosen as the optimum operating point 557 

(OOP) obtained from ROC analyses using the Global database. The OOP is the best (optimum) 558 

threshold value that minimizes both the false positive and false negative counts. Therefore, 559 

using the OOP as a threshold assumes the cost of false positives is the same as false negatives. 560 

We then used the OOP value obtained from the Global database against the Canterbury 561 

database. This is similar to the validation of the CBR models and what would be done in 562 

practice if a new earthquake occurred and these LDPs were applied. For the Hutabarat and 563 

Bray (2022) model, we classified all cases in the "None" category (CR, LD pair below the line 564 

defined as [0, 2.5], [100, 2.5] and [250, 25]) as no manifestation and the rest as manifestation. 565 

There are a couple of key points that stand out when comparing the predictive capabilities of 566 

the existing models to the CBR models. 567 

 All the base models except Model 1, 8 and 9 have higher MCC than LPI, LPIISH, LSN, 568 

and the method of Hutabarat and Bray (2022) when using the Global database. This may seem 569 

trivial because the CBR models were trained against the Global database, but then so were LPI, 570 

LPIISH, and LSN. What this result shows then, is that when using the same input data and when 571 

trained on the same database of case histories, CBR can generate models with better predictive 572 

power than existing models. The Hutabarat and Bray (2022) model has a low RTP value because 573 

it was developed to estimate only manifestation due to ejecta, and not other forms of 574 

manifestation such as cracking or settlement, which are included in the Global Database. 575 

Therefore, even if it correctly predicts cases with ejecta manifestation, it misses other forms of 576 

manifestation because it was not strictly developed to predict their occurrence. 577 

 When validated against the Canterbury database, Models 2-6 still have higher MCC 578 

than LSN and the method of Hutabarat and Bray (2022). However, LPI and LPIISH have higher 579 

MCC than all the base case CBR models. This is only for the base case models. If we compare 580 

the CBR models when taking the majority outcome of all case histories with similarity scores 581 

greater than 0.75 to predict the outcome, Models 4, 5 and 6 have higher MCC for both the 582 

training database (Global database) and the validation database (Canterbury) than the existing 583 
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models (MCC = 045, 0.47, 0.46 for the Global database and MCC = 0.51, 0.54 and 0.54 for the 584 

Canterbury database for Models 4, 5 and 6, respectively, compared to MCC = 0.4 and 0.5 for 585 

LPIISH). These results show that the CBR method has the potential to generate models with 586 

greater predictive capabilities than existing models using the same input data, even when 587 

validated against previously unseen data. 588 

When using the OOP derived for the Global database against the Global database the 589 

RTN and RTP values reach about 70% for both LPI and LPIISH. However, employing the same 590 

OOP against the Canterbury database causes RTP values to decrease to 51% and 57% for LPI 591 

and LPIISH, respectively, while the RTN increases to 91% and 90%. This is because the optimum 592 

threshold values for the Canterbury database are lower than for the Global database. As a result, 593 

true manifestation cases are incorrectly predicted to be no manifestation while almost all the 594 

no manifestation cases are correctly predicted. Therefore, even though the MCC value actually 595 

increases for LPI and LPIISH, the RTP is less than all the base case models except Model 1 and 596 

Model 7 when validated against the Canterbury model. When validated against the Canterbury 597 

database the MCC for LSN is about the same as for the Global database. The Hutabarat and 598 

Bray (2022) method has a higher MCC for the Canterbury database than the Global database, 599 

which is expected because it was developed based on case histories from the Canterbury 600 

sequence.  601 
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 602 

Figure 5. Confusion matrix for LPI using the Boulanger and Idriss (2016) triggering method for the a) 603 
Global database and LPI threshold = 11.2 (MCC = 0.38) and b) Canterbury database and LPI threshold 604 
= 11.2 (MCC = 0.48). 605 

 606 

Table 10. Matthews Correlation Coefficient (MCC), true negative rate (RTN), false positive rate (RFP) 607 
false negative rate (RFN) and true positive rate (RTP) and threshold index based on the optimum operating 608 
point (OOP) for existing models trained against the Global database 609 

Model Name MCC RTN RFP RFN RTP OOP 

LPI 0.38 0.69 0.31 0.30 0.70 11.2 

LPIISH 0.40 0.71 0.29 0.31 0.69 6.7 

LSN 0.31 0.65 0.35 0.33 0.67 28.3 

LD and CR 0.11 0.92 0.08 0.86 0.14 - 

 610 

Table 11. Matthews Correlation Coefficient (MCC), true negative rate (RTN), false positive rate (RFP) 611 
false negative rate (RFN) and true positive rate (RTP) and threshold index based on the optimum operating 612 
point (OOP) for the Global database for existing models validated against the Canterbury database. 613 

Model Name MCC RTN RFP RFN RTP OOP 

LPI 0.48 0.91 0.09 0.49 0.51 11.2 

LPIISH 0.50 0.90 0.10 0.43 0.57 6.7 

LSN 0.28 0.66 0.34 0.37 0.63 28.3 

LD and CR 0.34 0.92 0.08 0.64 0.36 - 

 614 

ADVANTAGES AND PRACTICAL IMPLICATIONS OF CBR 615 

(a) (b)

Predicted Values Predicted Values
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Potential advantages of the CBR method over traditional LDPs is that CBR does not require 616 

the definition of a threshold value to differentiate between surface manifestation. This makes 617 

CBR easier to use and more consistent in practice. In addition, by using the observed outcomes 618 

of multiple of the most similar case histories to predict the outcome of the design case a 619 

probability of liquefaction manifestation occurrence can be predicted. CBR models also 620 

inherently merge liquefaction susceptibly, triggering and manifestation. As a result, the level 621 

of accuracy is clearly defined for the entire liquefaction analysis, as opposed to the present 622 

state-of-practice where susceptibility, triggering, and manifestation models developed by 623 

various authors and separate datasets are often used together, and the collective accuracy of 624 

these different combinations is unknown. Finally, compared with other Artificial Intelligence 625 

methods like ANN that can feel like a black box for many, CBR is a fully transparent method 626 

that allows users to follow the reasoning on every level. This makes it easier to use in practice 627 

and easier to understand when aberrant results are predicted.  628 

The main practical implication of these CBR models is to determine if surface 629 

manifestation such as settlement, lateral spreading, cracking or sand boils will occur or not. 630 

This is important for preliminary site investigations and land use planning. CBR models for 631 

manifestation could also be used in conjunction with triggering models to assess liquefaction 632 

hazard. Potential applications of the CBR models include site specific liquefaction analyses 633 

where CPT data is available, regional analyses where CPT data is unavailable or when CPT 634 

data is depth restricted. For example, along pipeline and cable routes CPT data is often only 635 

collected over the top five meters to evaluate pipe-soil interaction, as well as reduce costs. This 636 

study showed that CBR models (e.g. Model 2) can be developed that only require CPT data 637 

over the top five meters and still have a comparable prediction success rate (i.e. ~70%) as 638 

existing models that require the top 20 m of CPT data. 639 

 640 

LIMITATIONS OF CBR 641 

One of the main limitations of the CBR method is that it is dependent on the case history 642 

database used to develop it, even more so than traditionally derived empirical models. This is 643 

because unlike traditional models that identify trends in the data that can then be extrapolated, 644 

CBR selects the result of the most similar case history. This is a strength when the trends are 645 
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highly nonlinear and not easy to fit with traditional functional forms. However, when used with 646 

design cases outside the parameter space of the case histories in the database, CBR could 647 

provide poor results. This will be seen by a low similarity score. As a result, when using CBR, 648 

the similarity score should always be checked, and results from predictions with low similarity 649 

scores should be used with caution.   650 

Another limitation seen in the Validation section is that models based on limited data 651 

such as Models 7-9 are sensitive to the database used to perform the CBR calculation. For 652 

example, Model 7, which is based only on PGA, Mw and GWT, has a higher MCC when derived 653 

for the Global Database than existing models (MCC = 0.42 compared to 0.40) even though it 654 

uses no CPT data as input. However, this surprising result is most likely because the case 655 

histories in the database are from areas that were expected to liquefy. Therefore, there are few 656 

clay sites that experienced large shaking but did not liquefy that would be incorrectly predicted 657 

by the model. When validated against the Canterbury Database, Model 7 performs poorly, 658 

which supports this conclusion, and highlights the importance of model validation. 659 

In addition, there are uncertainties and biases related with the databases utilized in this 660 

work, such as the accuracy of the CPT data, timing of the data collection, uncertainties in GWT, 661 

the distance between the CPT trace and observed manifestation, and inconsistencies in data 662 

collection methodologies throughout the years, among others. However, a substantial portion 663 

of the Global Database was compiled from the same databases used to develop commonly used 664 

triggering curves (e.g. Robertson and Wride, 1998; Moss et al, 2006; Idriss and Boulanger, 665 

2008; Boulanger and Idriss, 2014). Therefore, these uncertainties are also present in previous 666 

triggering and manifestation models.  667 

 Finally, the models explored in this study only provide a yes or no answer to whether 668 

surface manifestation occurred. If surface manifestation occurred then it is probable that there 669 

is a soil susceptible to liquefaction and liquefaction triggering occurred, but the severity of the 670 

surface manifestation and the factors of safety against liquefaction with depth are unknown. 671 

Theoretically, CBR could be used to predict these values if the data was available. We chose 672 

to predict only yes or no manifestation cases because this is the only information available in 673 

the Global Database. However, the Canterbury database contains liquefaction severity, 674 

therefore, CBR could be used to predict liquefaction severity but only for the Canterbury 675 



32 

 

 

region. To predict factors of safety against liquefaction would require knowledge of the 676 

response of each individual layer of each case history, or defining a critical layer for each case 677 

history and assuming that if surface manifestation was observed, then the critical layer 678 

triggered, as has been done for previous triggering models. However, the selection of a critical 679 

layer is highly uncertain and can be subjective. 680 

 681 

FUTURE RESEARCH 682 

This work shows that CBR as a liquefaction prediction methodology has potential, especially 683 

as the database of case histories continues to increase. However, more work is needed to refine 684 

the models and test their robustness. To this end, we suggest several potential avenues of future 685 

research: 686 

(1) compiling and evaluating additional ground motion predictor parameters such as CAV, 687 

which has been shown to be a better predictor of liquefaction triggering that PGA 688 

(Kramer and Mitchell 2006); 689 

(2) compiling additional free, readily available geospatial parameters (e.g. distance to 690 

water, surface topography, precipitation) and developing and comparing regional CBR 691 

models to regional liquefaction models such as Zhu et al (2017); 692 

(3) incorporating new case histories as they become available (e.g. the NGL database, 693 

Brandenberg et al., 2020); 694 

(4) augmenting the empirical database of case histories with simulated case histories, for 695 

example, a simulated clay site with high PGA and no observed liquefaction, or if a case 696 

history with PGA = X has observed liquefaction manifestation, then a simulated case 697 

history that also has observed manifestation could be created with PGA > X and all 698 

other parameters the same; 699 

(5) using the Canterbury database as the training database and estimating manifestation 700 

severity, not just occurrence or no occurrence; 701 

(6) developing CBR models for liquefaction manifestation using other in-situ tests than 702 

CPT, such as the standard penetration test (SPT), shear wave velocity measurements 703 

(Vs), or a combination of test types; 704 
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(7) developing a probabilistic hierarchical model based on multiple CBR models that 705 

accounts for the finite sample uncertainty using robust statistical analyses such as 706 

bootstrapping; 707 

(8) design a web application to estimate liquefaction manifestation based on CBR models 708 

to facilitate use of CBR models in practice and updates as more case history data 709 

becomes available. 710 

 711 

CONCLUSION 712 

This study explored the potential of the Artificial Intelligence process called CBR as a method 713 

to predict liquefaction manifestation. The main outcomes of the study are: 1) a framework to 714 

apply CBR to liquefaction manifestation analyses; 2) evaluation of input parameters for use in 715 

CBR; 3) evaluation of CBR meta-model parameters and their effect on model predictiveness; 716 

4) development of manifestation models with better predictive power than currently existing 717 

models; and 5), suggestions for future avenues of research.  718 

The proposed CBR framework to predict liquefaction manifestation consists of three 719 

main steps. First, a given parameter from the design case is compared with the same parameter 720 

from each case history in a database. The difference, or “distance” between the design case and 721 

case histories results in a similarity index (I) for that parameter for each case history. This step 722 

is repeated for as many parameters as desired (e.g. DR at a given depth, PGA, Mw). Second, the 723 

weighted average of the similarity indexes for each case history in the database is calculated to 724 

provide a similarity score (S). The weights are related to the relative predictive strength of each 725 

parameter. Third, the observed outcome (manifestation or no manifestation) of the single case 726 

history with the highest similarity score (i.e. the most similar case history to the design case) 727 

or the majority outcome of the multiple most similar case histories is then used to predict the 728 

outcome of the design case. This framework provides a basis for future work. 729 

Using the above framework, we found that the CBR models that were the best at 730 

predicting liquefaction manifestation were composed mainly of the input parameters PGA, ru, 731 

FSliq and hexc. None of the best models were found to include existing LDPs such as LPI, LPIish, 732 

or LSN, or parameters based on the depth interval of the crust (0 to zA) or the critical zone (zA-733 
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zB). Instead, the input parameters for the best models were mainly based on generic depth 734 

intervals of 0-5 m, 0-10 m and 0-15 m. The optimum number of input parameters appears to 735 

be three to five, based on the input parameters tried in this study. This is most likely because 736 

adding more parameters decreases the weight of the other more influential parameters. 737 

We found that changing meta-model parameters such as input parameter weights, 738 

similarity function shapes and similarity function widths has a negative or small positive 739 

increase on the prediction accuracy. However, taking the majority result of all case histories 740 

with similarity scores greater than 0.75 provides a consistently better MCC for most of the 741 

models when validating them against the Canterbury database. This may be because the 742 

Canterbury database represents a distinct set of case histories that do not match any one event 743 

or case history in the Global database. As a result, selecting all the most similar case histories 744 

above a threshold and taking the majority outcome ensures a more robust result than simply 745 

taking the single case history with the highest similarity score. 746 

Some of the CBR models developed in this study were shown to have better predictive 747 

power than currently existing models such as LPI, LPIISH or LSN, using the same input data 748 

(i.e. PGA, Mw, GWT, and CPT data). However, more research is needed to refine these models 749 

before they can be used in practice. To this end, we provide several suggestions for future 750 

research (see the Future Research section). This work shows that CBR as a liquefaction 751 

prediction methodology has great potential, especially as the database of case histories 752 

continues to increase. 753 

 754 

DATA AND RESOURCES 755 

The Global database (https://doi.org/10.17603/ds2-wftt-mv37) and Canterbury database 756 

(https://doi.org/10.17603/ds2-tygh-ht91) are available at DesignSafe-CI. The base case CBR 757 

models are provided as an Excel spreadsheet and in the python programming language as an 758 

electronic supplement.  759 
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