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Abstract
Underground cut-off walls are widely used in various geotechnical applications to hinder groundwater flow, contaminant

transportation and possibly heat conduction. Cut-off walls were usually found defective due to construction errors during

the installation phase, leading to significant leakages in subsequent operation phase. Existing physics-based leakage

evaluation approaches, such as the finite element analysis and three-dimensional discretized algorithm, are computationally

expensive and may not satisfy the need for instant on-site leakage risk assessment. In this regard, a more efficient mapping

between construction errors and performance of cut-off walls is highly demanded. A natural option for such mapping is the

artificial intelligence approach. Several novel physics-inspired neural network models are proposed based on the well-

designed physical layers with varying complexity, to strike a balance between benefits of machine learning and physical

approaches. The result shows that introducing physical layers with clearer physical meaning helps mitigating overfitting

problems, improving prediction accuracy, result interpretability and model capacity, at the price of increasing the cal-

culation efficiency during training. An optimized degree of physical meaning clarity can be achieved to strike a balance

between fitting effect and training computation cost.

Keywords Cut-off walls � Construction error � Physics-inspired neural networks � Artificial intelligence � Weight

adjustment � Information plane

1 Introduction

Cut-off walls are widely used to hinder underground

seepage flow, reducing the risk of seepage-induced failure

[34, 36, 38]. The jet-grouted cut-off wall (JGCOW) is

widely used because it is efficient, flexible and requires

only light installation machines [13, 17, 31]. JGCOW is

usually installed by high-pressure injections of grout into

in situ soil strata through rotating small-diameter nozzles.

The solidified columns casted in rows subsequently form

an overlapped water-tight continuum [32, 41]. Though

JGCOW technique was proved successful in many appli-

cations, random construction errors, due to variable

workmanship and uncertain geological conditions, limited

construction accuracy of construction machines, are

inevitable in practice [3]. Construction errors stem from

random and inevitable deviation from the ideal case, such

as the inclinations of column axis and variation of column

diameter. These construction errors may result in contin-

uous untreated zones, which penetrate through the imper-

meable cement-treated slab, form the concentrated seepage

channels among the adjacent jet-grouted columns and

consequently trigger damage in adjacent buildings and

delay in constructions [11, 15]. Quantitatively evaluating

the impact of JGCOW defects on seepage discharge is of
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great importance for the project quality assessment and

control.

Existing leakage evaluation approaches, such as the

finite element simulation (FEM) and three-dimensional

discretized algorithm (TDA), have achieved satisfying

prediction accuracy for the seepage flow rate estimation of

geometrically imperfect cut-off walls. Wu et al. [42]

adopted a three-dimensional FE model to simulate the

groundwater flow field of a deep foundation pit considering

the leakage for cut-off walls with wished-in-place defects

of deterministic dimensions. Pan et al. [21–23] proposed an

advanced evaluation approach, TDA, to quantitatively

evaluate the probabilistic distribution of leakage discharge

through cut-off walls with given levels of constructions

errors (e.g., random inclination and diameter variation of

jet grouted columns). However, such approaches are still

not optimal for an instant on-site leakage risk assessment

because of the unacceptable computing time. Fresh-on-

fresh is a prevalent construction technique employed in jet

grouting applications, wherein adjacent columns are con-

structed sequentially without waiting for the primary col-

umn to harden. During the installation of jet-grouting

columns, it is customary for the jet-grouting machines to

operate continuously. Consequently, any delay in the pro-

cess due to time-consuming reliability computations is

considered impractical, and the expected computation time

for reliability computation shall be in the scale of a few

minutes. As prior studies have noted, the computing time

for a single realization of defected cut-off walls using TDA

depends on the model size and are normally several min-

utes. One realization of FEM simulation of the same scale

may easily take hundreds of time longer. Since thousands

of simulations are usually required to achieve a reasonably

well-converged statistical characteristics of defect occur-

rences, the computational cost is excessively high for

quantitative leakage risk evaluation. In this regard, a more

efficient mapping between construction errors and perfor-

mance of cut-off walls is highly demanded. One option for

such mapping is the artificial intelligence (AI) approach.

AI, as an emerging field of geotechnical engineering,

has the potential to learn autonomically from training

datasets and to make quick inferences according to the

obtained information [1]. Many pioneer works have been

conducted to exploit its remarkable advantage of calcula-

tion efficiency into practical engineering cases, such as the

characterization of soil constitutive relationship, parameter

optimization for soil behavior description and risk man-

agement during construction or operation [7, 12, 30, 44].

Nevertheless, there are still several challenges in applica-

tion of AI approaches in geotechnical domain. The AI

approach is bounded to the inherent overfitting curse [43]

and prone to become too attuned to the training data [14].

The overfitting AI model is only specific to training data

and would result in poor outcomes when applied to new

datasets [5]. Traditional geotechnical datasets are usually

collected from laboratory and/or in situ tests. The lack of

geotechnical data will lead to scarcity of data for AI model

training and render it less reliable [25]. The AI approach

offers few mechanistic explanations beyond its excellent

fitting capacity, making it a ‘‘black box’’. It has been an

increasingly acceptable cognition that developing an

interpretable model is much more practical than explaining

black-box models [6, 29].

Considering the respective advantages of both physical

model and AI approach, the fusion of two paradigms,

namely the physics-inspired AI model, could be a rational

solution [16, 26, 44, 45, 47]. There have been some

reported attempts for the design of physics-inspired AI

system in computer science, biological science, and geo-

science [28, 39]. Raissi et al. [27] introduced the physics-

informed neural networks (NNs) into solving general

nonlinear partial differential equations (PDEs) that are

endowed by any underlying physical laws. Jiang et al. [10]

wrapped the conceptual hydrologic model with recurrent

neural network (RNN) layer, developing a hydrology-

aware deep learning architecture for the runoff modeling

across the conterminous USA. Figure 1 illustrates some

common expectations from the geotechnical engineers for

the application of physics-inspired AI model: (i) Both high

prediction accuracy and efficiency; (ii) Great physical

interpretability for results; (iii) Easy for code implemen-

tation; (iv) Easy to double check results for engineers;

(v) Excellent generalization ability.

This study proposes a novel physics-inspired neural

network (NN) architectures to evaluate the seepage dis-

charge of JGCOW with geometrical imperfections. The

aim is to examine the performance, namely accuracy,

computation cost, transferability, and result interpretability

of physics-inspired AI in such scenario and provide an

optimal surrogate model for corresponding time-consum-

ing physics-based approaches.

2 Methodology

In this section, the benchmark method, namely three-di-

mensional discretized algorithm (TDA), is summarized in

Sect. 2.1 such that the physical meaning of each parameter

is illustrated. More details are elaborated in Pan et al. [24].

Then, a series of data-driven approaches with an ascending

level of physical meaning (P1–P5) will be implemented

and compared to find an optimal balance among the

accuracy, interpretability, and calculation expense.
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2.1 Benchmark method: three-dimensional
digitalized algorithm (TDA)

TDA [24] is a state-of-the-art seepage evaluation method to

efficiently estimate the leakage amount through defective

cut-off walls. Figure 2c illustrates the procedures of

implementing TDA. The cut-off wall zone is represented

by a fine-meshed grid of nodes. The refined mesh was

necessitated by the fact that even a very small loophole that

penetrates the wall can lead to a major leakage. These

nodes can be classified as treated or untreated, depending

on the coordinates. In contrast with treated nodes, the

untreated nodes represent zones without being treated by

cement binder and are characterized with much higher

permeability coefficients. Then, continuous seepage paths

Fig. 1 Advantages and disadvantages of physical models and AI approaches and some expected features for a physics-inspired AI approach
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are detected, and seepage rate is hence determined using a

semi-analytical solution.

Specifically, Fig. 2a shows the two typical types of

construction errors of a jet-grouted column, i.e., random

axis orientation, and random variation of column diameter

along depth. Latest field data show that there may also be

coordinating error on ground level. However, this is not

considered in this study, because the concern of this study

is on the development of a surrogate model. The random

orientation is characterized by two independent random

variables, namely, azimuth (a) and inclination angle (b).
The variation of column diameter is characterized as a

random process prescribed by random seeds, wherein the

spatial correlation is quantified by the scale of fluctuation

(SOF). Figure 2b shows a typical random realization of a

cut-off wall affected by both types of geometric

imperfections.

Figure 3a shows a typical cell of a discretized zone with

a structured grid. After the random geometrical parameters

(azimuth, inclination angle, diameter) are generated, the

treated and untreated nodes (marked by the red and black

points, respectively) can be used for penetration detection,

which aims at determining if a continuous leakage passage

exists between two arbitrarily adjacent columns. This

detection is critical because the flow rate through JGCOWs

with continuous leakage passages is significantly higher

Fig. 2 Illustration of geometric imperfections for jet-grouted cut-off walls (JGCOW): a from categories including diameter variability and

positioning error; b from a 3D view; c Flowchart of TDA (modified from Pan et al. [21])
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Typical cell for geometrically 
imperfect JGCOWs with a structured 
grid (the red and black points 
represent the treated and untreated 
nodes discretized by TDA)

(a) TDA (Three-
dimensional discretized 
algorithm):

x
y

z

bFig. 3 Illustration of three-dimensional discretized algorithm (TDA) and different physical variables defined in P2–P5: the JGCOW average

thickness for P2; the JGCOW gap distance for P3; the layered imperfection distance of JGCOW for P4; and the sliced imperfection area of

JGCOW for P5 (a is referenced from Pan et al. [20])
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than those without them. If continuous untreated nodes

exist, the flow rate Q is governed by the harmonic average

of cross-sectional area Asi along continuous untreated zone

as:

Q ¼ kuH
t
n

Pn
i¼1

1
ASi

ð1Þ

where ku is the permeability coefficient of untreated soil;

H is the water head difference between two sides of cut-off

walls; t is the nominal thickness of cut-off walls when the

random imperfections are not considered; n is the number

of slices; ASi is the sectional area of untreated zone, which

can be easily determined by counting the number of

untreated nodes in the specified cross section. Using

Eq. (1), the seepage flow rate Q can be readily evaluated

for different penetration situations and hydraulic condi-

tions. The accuracy and validity of the TDA method have

been verified by FEM results. In this work, the TDA

method was used as the benchmark method to generate the

datasets for the training and validation of NN models. The

detailed algorithm flowchart is illustrated in Pan et al. [20].

2.2 P1: traditional neural network

The success of a neural network (NN) application relies on

its network topology. A common artificial NN that consists

of three layers was utilized in this study, including the

input layer, hidden layer and output layer. As shown in

Fig. 4a, a single hidden layer with 40 neurons was

employed for the JGCOW problem. The Mean Squared

Error (MSE) between TDA calculations and NN predicted

values was chosen as loss function. The Levenberg–Mar-

quardt algorithm is a robust and widely used NN training

algorithm and, hence, adopted here [9]. The strategy of

learning rate decay was utilized to accelerate the training of

the NN, and the initial training rate was set as 0.01.

Besides, 84 random seeds for the description of imperfec-

tion angles (20) and column diameter variation (64) were

selected to be the input variables for the input layer.

Specifically, the imperfection angles include inclination

angle and azimuth of 10 columns, and the 64 random seeds

were used to generate the random process for the diameter

Fig. 4 Network structure for P1 (traditional NN) and P2–P5 (physics-inspired NNs, the physical meaning of variables in physical layer becomes

clearer from P2 to P5, as illustrated in Fig. 3)
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variation. The seepage flow rate was the expected result of

the output layer.

2.3 P2: physics-inspired neural network I (by
the JGCOW average thickness)

The dimensional analysis for input variables shows that the

unprocessed inputs (angles and radius) do not follow the

dimensional homogeneity law [37]. Dimensionally homo-

geneous NNs have been proven to possess significant

advantages over dimensionally inhomogeneous NNs on

their interpretability and generalizability. The simplest but

physically intuitive knowledge, namely the average diam-

eter of jet-grouted columns on each depth, was used in the

physical layer to improve the dimensional homogeneity

while keeping the essential information. This is based on

the physics-based assumption that the leakage risk reduces

with increasing average diameter, given a constant column

spacing. The reason for using average diameter at different

depth as the physical layer is that the contribution of

average diameters at different depths may increase with

depth, as the inclination angle may lead to occurrence of

larger gaps over depth. To reasonably capture the charac-

teristics of a spatially varying column diameter, evenly

spaced horizontal cross sections of the JGCOW are chosen

from top to bottom. The horizontal cross section is defined

as ‘‘horizontal layer’’ hereafter. Hence, the JGCOW aver-

age thickness at a given depth can be easily evaluated by

calculating the average diameter of all columns in the

corresponding horizontal layer. This average thickness was

used in P2 to quantify the average defects of cut-off wall at

given depth. As shown in Fig. 3b, the average thickness of

JGCOW at a given depth h is expressed as

dh ¼
Xn

i¼1

di

 !

=n ð2Þ

where di is the diameter of a jet-grouted column at the

specified depth and n is the number of columns at the given

depth. Cross sections at 0.24 m depth interval were used to

calculate the average diameter, making the physical layer a

vector with 84 elements. The number of 84 was chosen to

ensure that these different NNs have the same

node number of physical layers (except P5). This facili-

tates a relatively fair comparison in efficiency. The effect

of total element number is evaluated in Sect. 4.1.1.

The physical layer considering the column average

thickness was introduced between the input layer and

hidden layer. The average thickness of JGCOW dh is only a

rough representation, and some more elaborate physical

layers are designed in the following sections.

2.4 P3: physics-inspired neural network II (by
the JGCOW gap distance)

A more in-depth expert knowledge than average diameter

in P2 is that the gaps between two adjacent columns have a

predominant role in the leakage flow rate. In P3, repre-

sentative gap distances at different depths were chosen as

the physical variable in the physical layer. Figure 3c

illustrates a typical layer with penetrated JGCOW at a

certain depth. The representative gap distance at the pre-

scribed layer is defined as the sum of gap distances

between any two adjacent columns with continuous seep-

age passages. According to the geometric relationship

shown in Fig. 3c, the gap distance gh at given depth h can

be expressed as the function with respect to the inclination

angles, azimuth angles and diameters of columns as below:

where �f g is the Macaulay brackets that will output the

input directly if it is positive, otherwise, it will output zero;

Sx is the spacing between two adjacent columns’ centers;

h is the depth of corresponding layer; ai and aiþ1 refer to

the azimuth angles of these two adjacent columns; bi and
biþ1 refer to their inclination angles; Di and Di?1 refer to

the diameters of columns at corresponding layer; n refers to

the number of columns. Similarly, the physical layer con-

sists of a vector with 84 elements. This approach requires a

‘‘sharper’’ understanding of the problem than P2, at the

price of a higher calculations expense.

2.5 P4: physics-inspired neural network III (by
the layered imperfection distance of JGCOW)

In P4, the harmonic average length of gap along the lon-

gitudinal direction of the wall was used instead of the gap

gh ¼
Xn�1

i¼1

gi

gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sx þ h tan bi cos ai � tan biþ1 cos aiþ1

� �� �2þ h tan bi sin ai � tan biþ1 sin aiþ1

� �� �2
q

� Di þ Diþ1

2

� � ð3Þ
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distance as the representative value for each depth, as

indicated in Fig. 3d. It is more physically meaningful than

P3 in that it considers the effect of the geometrical shape of

the penetrating seepage passage, though in two-dimension.

This gives P4 a more global and accurate characterization

of the untreated zone for each layer than P3. Each layer at

selected depths was firstly discretized into n - 1 regions

according to the spacing Sx between two adjacent columns’

centers, in which n is the number of columns. For each

region i, the harmonic average gap li along the longitudinal

direction of the wall can be calculated by the harmonic

average values for all discretized slices as

li ¼ m=
Pm

j¼1
1

li;jf gþd

� �

, in which �f g is the Macaulay

brackets that represent a piecewise linear function

max 0; li;j
	 


, d is a very small value to avoid 0 in the

denominator and adopted as 10–6 here; m is the number of

discretized slices. When li;j is negative or equals to 0, li
would be 0. The total layered imperfection distance lh at

depth h can be estimated by concatenating all discretized

segmentations li as
Pn�1

i¼1 li, as shown in Fig. 3d. Finally,

the physical layer, composed of a vector of lh with 84

elements, was constructed. A similar underlying NN

structure was followed with the evaluation of layered

imperfection distance.

2.6 P5: physics-inspired neural network IV (by
the sliced imperfection area of JGCOW)

Discretization based on horizontal layers of JGCOW may

omit some of the three-dimensional seepage channels that

appear to be not penetrated from two-dimensional per-

spective. Thus, P5 adopted the sliced discretization for

JGCOW and defined the area of untreated soil in each slice

as the output of physical layer. The whole JGCOW was

discretized into slices as the prescribed interval of 0.24 m,

and the node identification was performed in each slice. It

is much more difficult to classify the discretized nodes into

treated and untreated types for the slice of P5 than what

was carried out for the layer of P4. There is no off-the-peg

reference frame (such as the local polar coordinate system

of P4 in Fig. 3d) for each slice. Hence, a global coordinate

system was set up for each slice. A geometrical check was

done to examine whether a node is within any column

range. If a node is not included in any adjacent column,

then the node is marked as untreated. According to the

distance between nodes and column axes, the nodes in any

slice can be judged to fall into treated or untreated zone.

Finally, the sectional area of an untreated zone in each slice

As can be evaluated in a discretized form, as illustrated in

Fig. 3e. A vector with 10 elements As was obtained by the

physical layer. Once translating the random imperfection

seeds into the sliced imperfection area of JGCOW via

physical layer, the seepage flow rate can be estimated using

the underlying NN.

3 Illustrative example

In this work, the TDA method was utilized to generate the

benchmark database for training and validation of tradi-

tional NN and defined physics-inspired NNs. The adopted

cases simulated one row of 10 columns with a depth of

20 m. The azimuths (a) were assumed to be uniformly

distributed within [0, p], which indicates that the axis of a

column can rotate toward any direction. The inclination

angles (b) were assumed to follow a normal distribution

with zero mean, as indicated in field measurement in Groce

and Modoni [4] and Eramo et al. [8]. It was also shown in

Pan et al. [23] that this standard deviation of 0.3 degree

corresponds to an inclination limit of 1:100. A negative

value of b signifies the opposite direction against the pre-

scribed inclination. The above two variables regarding

angle imperfections were assumed to be independent. A

total of 84 input variables were used, that is, 64 of them are

random seeds used for generating the random process of

diameter with a normal marginal distribution, 10 for azi-

muths a and 10 for inclination angles b. Table 1 summa-

rizes the configurations of random imperfections adopted

in this case study. 5000 random realizations were calcu-

lated using TDA to provide input variables and output flow

rate. To apply the proposed NNs in broader scenarios, the

flow rate is provided in a normalized format

Q̂ ¼ Qt=ðkHAwÞ, where t is nominal thickness of JGCOW;

k is the coefficient of permeability of untreated soil; H is

Table 1 Configuration of benchmark case for JGCOW (after Pan et al. [22])

Number of

rows

Number of

columns

Diameter, D:
m

Column spacing, sx:
m

Exposed length of cut-off wall,

L: m
COV

(D)
SOF

(D)
S.D. (b):
deg

1 10 1.2 1.0 20 0.1 0.5 0.3

COV(D) is the coefficient of variation of column diameters; SOF is the scale of fluctuation of column diameters; S.D. (b) is the standard

deviation of inclination angles
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water head difference between two sides of the JGCOW;

Aw is the area of the JGCOW [22].

3.1 Performance of the trained NNs

The generated datasets are fed into the configured NNs

defined in Sects. 2.1–2.5. These trained NNs are employed

to construct surrogate models between the seepage flow

rate and the random seeds of positioning errors. To ensure

the consistency of the above models from P1 to P5, the

structure of the hidden layer is set as the simplest single

layer and the number of neurons in the hidden layer is set

as 40. The major difference among the above NNs is the

depth of physical knowledge in the physical layer, which

increases from P1 to P5. Figure 5 shows the NN-predicted

seepage flow rate values versus the TDA-predicted ones

based on 5000 Monte Carlo calculations. Each NN pre-

diction is illustrated by the scatter subplot of two clusters

with different colors, namely training dataset (in green) and

test dataset (in orange). The training dataset contains 80%

of the samples of random imperfections and their bench-

mark seepage flow rate values, while the test dataset adopts

the remaining 20% samples. The R2 (coefficient of

determination) values are separately calculated for all the

datasets. As shown in Fig. 5, a huge bias is observed for

traditional NN predictions by P1, especially for the results

of the test dataset. The R2 value of mentioned datasets is

only 0.01, indicating that the traditional NN cannot learn

the useful information from the given data without the

introduction of a physical layer. The P2 predictions have a

consistently poor performance in both training and test

datasets, largely due to the fact that the solution space has

been restrained by the chosen physical layer. The predic-

tions made by the physics-inspired NNs P3–P5 agree well

with the benchmarking method. This shows that a carefully

chosen physical layer with rational depth of physical

expertise (i.e., with sufficiently clear physical knowledge)

would help to greatly improve the prediction performance

with the same depth of NN. It is observed that as the level

of clarity in the physical meaning increases across different

physical layers, denoted as P3 to P5, the accuracy of pre-

dicting the seepage flow rate exhibits improvement, as

evidenced by the increment in the R2 value from 0.88 to

0.98 for the test dataset. The augmented clarity in the

physical meaning empowers the NN structure to develop a

more profound understanding of the interrelationships
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Fig. 5 Three-dimensional digitalized algorithm (TDA) versus NN predictions of normalized seepage flow rate for P1–P5
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Fig. 6 Influence of adopted sample size on the performance of traditional NN (P1) and representative physics-inspired NN (P3)
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among various input variables. Consequently, the physics-

inspired NNs demonstrate improved performance in their

predictive capabilities. Moreover, NNs that possess a clear

physical interpretation exhibit excellent interpretability,

making the connections and interdependencies between

input features and output predictions more evident. This

transparency enables users to gain valuable insights into

the decision-making process of the model, validate the

accuracy of the learned representations, and offer expla-

nations for the model’s behavior. For instance, in the case

of P3, a significant seepage flow scenario typically corre-

sponds to a substantial gap distance.

To study the influence of sample size on the accuracy of

NNs, five different training sample sizes, 400, 1300, 2200,

3100, and 4000, are selected for the traditional NN (P1)

and a representative physics-inspired NN (P3). Figure 6

shows the scatter chart of normalized seepage flow rate, Q,

given by the NN and benchmark (TDA) predictions using

the different preset training sample sizes. As illustrated in

Fig. 6a, the traditional NN method shows great sensitivity

to specific dataset. When the number of adopted samples is

small (i.e., 400), P1 performs relatively well for training

dataset but does not achieve the desired results in the test

dataset. The R2 value for training dataset reaches 1.00,

while its value for test dataset is -1.25. The negative value

indicates that the trained NN model does not follow the

trend of data. This accounts for too many input variables

for traditional NN, which induces an overfitting of data,

such that the noise and some non-representative features in

the training data are captured by the model. When the

adopted training sample size is increased from 400 to 4000,

the overfitting phenomenon gets improved as the R2 values

of test dataset increase from -1.25 to 0.01. For the training

dataset, there are substantial decreases for R2 values from

1.00 to 0.74.

However, after the introduction of a physical layer, the

disorganized input data are converted to be physically

significant and dimensionally consistent. Because of this,

the performance of physics-inspired NNs is much better

and more robust in the training and test dataset. The

validity of P3 is substantiated by the calculated R2 values

shown in Fig. 6b. For the cases that the training samples

progressively increase from 400 to 4000, the minimal

values of R2 for different datasets are all above 0.80. This

indicates the existence of a physical layer helps to reduce

the number of trainings to achieve a satisfactory perfor-

mance, indicating a ‘‘faster’’ learner. Though a bias is

observed in the test datasets for the situation that the nor-

malized seepage flow rate values are greater than 0.04

(especially when using 400 adopted training samples in

Fig. 6b), this bias can be reduced with the increased ran-

dom samples. This indicates that the supplementary data

allow the physics-inspired NN to learn additional features

against extreme defect cases.

3.2 Trade-off decisions between prediction
accuracy and computational cost

Table 2 summarizes the calculation time for 5000 predi-

cations of random imperfection cases using the defined

NNs P1–P5, as well as the benchmark method (TDA

method). As shown in Table 2, P1 requires the minimum

computational cost, only taking 3.20 s on a desktop com-

puter with 8 GB RAM and four Intel Core i5 CPU with a

clock speed of 3.2 GHz. However, the accuracy of P1 is

too poor to be useful for any practical application. The

other extreme (pure TDA) takes around 61,000 times as

much computational time as the P1, because the TDA has

to spend much CPU time to realize large matrix operations

for penetration examination and flow rate calculation. The

computational time of physics-inspired NNs (P2, P3, P4

and P5) fall in the interval between the traditional NN (i.e.,

P1) and TDA method. The computational cost increases as

the physical expertise of defined physical variables

Table 2 Performance of P1–P5 in the accuracy and computational efficiency

Method Phases Total cost

time (s)

Coefficient determination R2

of test samples
Duration of physical/physical layer

calculation (s)

Duration of NN

training (s)

Duration of 5000 NN

predictions (s)

TDA 194,892 (100%) 0 (0%) 0 (0%) 194,892 1.00

P1 0 (0%) 3.2 (99.7%) 0.01 (0.3%) 3.2 0.01

P2 9.4 (71.3%) 3.8 (28.5%) 0.02 (0.2%) 13.2 0.36

P3 84.4 (95.3%) 4.1 (4.6%) 0.02 (0.1%) 88.5 0.88

P4 172.5 (97.61%) 4.2 (2.38%) 0.02 (0.01%) 176.7 0.91

P5 173,672 (99.99%) 3.7 (0.01%) 0.01 (Near 0%) 173,676 0.98

The values enclosed in brackets () represent the proportions of different calculation phases in the total cost time
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increases (from P1 to P5). This increased computational

cost is mainly contributed to the calculations per-

formed within the physical layers. The proportions of

physical-layer calculations keep ascending from P1 to P5,

and meanwhile the proportions of underlying NN training

and prediction constantly decrease. The trade-off chart of

accuracy and computational cost for P1–P5 are presented

in Fig. 7. The accuracy plateaus at P3 and the computa-

tional cost are still acceptable. This observation suggests

that if a physical variable with suitable complexity is

chosen, physics-inspired NNs (such as P3 and P4) will

grant engineers rationally precise and instant access to

estimate the seepage flow rate and corresponding risk level.

It should be noted that the time for 5000 predictions

using the trained physics-inspired NNs is only several

seconds and can be neglected. This is crucial for the instant

on-site leakage risk assessment and construction manage-

ment especially when met with emergencies. In the context

of on-site risk analysis, a well-trained NN model can be

pre-generated based on the available training and valida-

tion datasets. This allows for the reduction in time required

for physical/physical layer calculations for the training and

validation datasets, as well as NN training. Therefore, the

primary focus of calculation time shifts toward physi-

cal/physical layer calculations for practical scenarios and

the corresponding NN predictions. Due to the repetitive

nature of calculations involved in risk analysis and the

significant contribution of physical/physical layer calcula-

tions to the overall computational cost, the overarching

conclusion remains consistent: the calculation time

increases with the improvement in clarity of physical

meaning across different physics-inspired NNs.

4 Discussions

4.1 Consistency and sensitivity analysis
for the trained NNs

Due to the stochastic nature of the NN training process,

multi-source uncertainties may influence the prediction

performance. It is necessary to examine the consistency of

predictions made by NNs using different and independent

datasets, which contain the same number but individually

generated samples of random imperfection JGCOWs. In

the current study, 20 different sets of samples are generated

and utilized to train the designed NNs separately. Variation

in the statistic characteristics and distribution of predicted

results are tested across these 20 datasets. Such variation is

necessary to avoid the overfitting of underrepresented

1 2 3 4 5

2 te
st

2
test

Fig. 7 Trade-off between accuracy and computational efficiency among P1–P5 and TDA methods (the training sample size for P1–P5 remains

consistent and is set to 4000)

123

5970 Acta Geotechnica (2023) 18:5959–5982



samples, which turns out to be inapplicable to other data-

sets. In addition, the influence of the model configuration

and training setting on the performance of physics-inspired

NNs are also studied. The configuration of NNs and their

training sample sizes are summarized in Table 3.

4.1.1 Effects of NN model configurations

Figure 8 illustrates the variation of traditional NN perfor-

mance against different NN topologies. For each NN

configuration, 20 independently generated datasets are fed

into the configured NNs to train 20 separate NNs of the

same category, each of them is then used to evaluate the

seepage flow rate value for the same realization. The 20 R2

values are calculated based on the differences between the

evaluated seepage flow rate and benchmark. The attempts

in adjusting hidden layer structure fail to address the

overfitting problem encountered by traditional NN (P1).

The R2 values even show significant drop with the increase

in hidden layer number and neuron number. Considering

that the R2 values for traditional NNs with different con-

figurations do not get satisfying results, the introduction of

physical layer into existing data-driven NN is necessary.

Fig. 8 Influence of hidden layer structure on the performance of traditional NN (P1): in the notation A@B, A represents the number of hidden

layer and B represents neuron number in each hidden layer

Table 3 Convergence study for NN settings

Purpose Number of

Fig

Adopted

method

Adopted activation

functions

Resolution* of

physical layer

Hidden layer structure Number of training

samples

Model

configuration

Figure 8 P1 fa(x) – 1@5/3@5/5@5/1@40/
3@40/5@40

3500

Figure 9 P2–P5 fa(x) 84 1@5/1@10/1@20/1@40/
1@80

3500

Figure 10 P2–P5 fa(x) 5/10/20/40/84 1@40 3500

Figure 11 P1–P5 fa(x)/fb(x)/fc(x)/fd(x)/
fe(x)

84 1@40 3500

Samples size Figure 12a P1 fa(x) – 1@40 300/1100/1900/
2700/3500

Figure 12b–

e

P2–P5 fa(x) 84 1@40 300/1100/1900/
2700/3500

The bold text represents the variables of interest and corresponding settings in this parametric study. The notations A@B represent the adopted

hidden layer structure, in which A is the hidden layer number and B is the neuron numbers in each hidden layer. The activation functions adopted

in this study fa(x), fb(x), fc(x), fd(x), fe(x) are Sigmoid, Tanh, ReLU, SELU, and TanhLU functions, respectively, and their equations can be

referenced to Table 4. *Resolution of physical layer is defined as the number of discretized layers or slices for JGCOW, as shown in Fig. 3
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In Fig. 9, the fluctuations of R2 values are recorded to

assess the model robustness against the number of hidden

layer neurons. The structure of a hidden layer is prescribed

as the simplest single layer. As the number of neurons in

the hidden layer increases from 5 to 80, the mean R2 values

for P2 slightly increase, but a sharp increase in the ranges

(defined as the difference between the maximum and

minimum R2) of R2 is observed. Too many neurons will

introduce increasing uncertainties into the training process,

contributing to the increasing variation of R2 values. In

contrast, the mean value and range of R2 values for P3–P5

remain almost the same when the number of neurons

increases. This indicates that the performance of P3–P5 is

robust and marginally influenced by randomness of training

process and training datasets. It is worthwhile to be noted

that when the number of neurons in the hidden layer is

small (such as 1), the training of NN may stuck in the local

minima and tend to get an extreme high error for the test

dataset (the red points in P2–P5 with the R2 values around

0.01).

Figure 10 shows the variation of R2 values with the

increase in the resolution (defined as the number of dis-

cretized layers or slices for JGCOW, as shown in Fig. 3)

for physical layers. It is essentially the node number of

the defined physical layers. The higher the resolution, the

less likely that the critical leakage holes are undetected, but

it would also increase the computation cost. The mean R2

values for P2–P4 show a rising trend with the increased

number of partitions (from 1 to 84). When the resolution of

physical layers exceeds 40, such rise becomes marginal.

This reflects that too fine physical partitions would be

unnecessary but drastically cost more computational time

in physical layer. As can be observed from Fig. 10d, the

fluctuation of R2 values for P5 is small when the resolution

of physical layers is greater than 5. This is mainly because

the interconnected imperfection area that is perpendicular

to the flow direction controls the magnitude of seepage.

This implies that using only several cross profiles can also

rationally characterize the water tightness of JGCOW.

Figure 11 illustrates the variations in R2 values for the

proposed physics-inspired neural networks (NNs) with

Fig. 9 Influence of the number of neurons in hidden layer on the coefficient of determination (R2) of the physical NN-predicted seepage flow rate
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different activation functions. In this analysis, the activa-

tion functions are exclusively modified for the hidden

layer, while the output layer neurons adopt a fixed linear

activation function. The activation functions used in this

study are summarized in Table 4. The results presented in

Fig. 11 demonstrate that regardless of the chosen activation

function, the performance of the physics-inspired NNs

improves as the physical meaning is enhanced. Moreover,

enhancing the physical meaning also enhances the robust-

ness of the NNs in terms of activation function selection, as

indicated by the decreasing fluctuations in R2 values

from P2 to P5 across all the chosen activation functions.

Notably, the utilization of complex activation functions,

such as the TanhLU activation function, does not con-

tribute significantly to the improvement of the NNs in this

context. This observation can be attributed to the fact that

complex activation functions are more suited for deep

neural networks and large training datasets, which are not

the characteristics of the NN applications considered in

this study.

4.1.2 Effects of training sample size

Five training sample sizes, 400, 1300, 2200, 3100, and

4000, are adopted to examine its influence on the perfor-

mance of NNs. Figure 12 shows the consistency of the

trained NNs by plotting the box chart for R2 values of NN-

predicted seepage flow rate, in which the spacing of

quartiles reflect the robustness of NN performance. The

subplots (a)–(e) represent the response of different NN

structures to the randomness of training samples. An

increasing trend for the mean R2 values is observed for all

NN structures (P1–P5) as the training samples increase.

Such a trend could be interpreted as that the features of

flow field will be better characterized with more input

samples, especially for some scenarios of extremely large

seepage rate. The large seepage rate accounts for the

occurrence of drastic defects in JGCOW, which is rela-

tively rare and needs more supplied training data to cover.

The range between maximum and minimum values of R2 is

also observed to reduce with the growing training samples.

This convergence of NN performance indicates that, as

Fig. 10 Influence of the resolution of physical layers on the coefficient of determination (R2) of the physical NN-predicted seepage flow rate

(Resolution of physical layer is defined as the number of discretized layers or slices for JGCOW, as shown in Fig. 3)
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Fig. 12 Influence of adopted training sample size on the coefficient of determination (R2) of the NN-predicted seepage flow rate. For each

training sample size, the representative quantile statistics are obtained from the results of 20 predictions

Fig. 11 Influence of activation functions on the coefficient of determination (R2) of the NN-predicted seepage flow rate. For each training sample

size, the representative quantile statistics are obtained from the results of 20 predictions
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Table 4 Adopted activation functions in this study

Activation functions Equations

Sigmoid (Logistic) function fa xð Þ ¼ 1= 1þ e�xð Þ
Tanh (Hyperbolic tangent) function fb xð Þ ¼ ex � e�xð Þ= ex þ e�xð Þ
ReLU (Rectified Linear Unit) function fc xð Þ ¼ max 0; xf g
SELU (Scaled Exponential Linear Unit) function fd ¼ xð Þ ¼ k max 0; xð Þ þmin 0; a ex � 1ð Þð Þð Þ
TanhLU function [33]

fe xð Þ ¼ a ekx � e�kx
� �

= ekx þ e�kx
� �� �

þ bx ¼ a Tanh kxð Þ þ bx

The parameters a, k in the SELU function, as well as the parameters a, k, b in the TanhLU function, represent adjustable parameters that can be

optimized during the training of NNs
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(a) Scenario A: smaller derivation
of inclination angle β

(b) Scenario B: shorter columns

(c) Scenario C: larger column spacing 

Fig. 13 Validation of applicable capacity of trained physics-inspired NNs P2–P5 (Scenario A–C represent the different configurations of random

verification cases and can be referenced from Table 5)
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more samples are fed into the NN training, the consistency

of NN predictions improves and the uncertainty involved in

the NN training decreases. This good convergence also

reassures the correctness of NN training. The physics-in-

spired NNs outperformed the traditional NN by learning

‘‘better’’ (higher R2 at the same training sample size) and

‘‘faster’’ (reach highest R2 at lower training sample size). It

is partly because the introduction of physical knowledge

extracted more essential information from the input data,

making the training of NN less dependent on the

dataset size.

4.2 Model capacity of physics-inspired NNs

The model capacity measures the capability of the trained

model to capture and represent the pattern or relation-

ship in data. It relates to how well the model can match

both the training data and generalize to novel, unobserved

data. To evaluate the applicable capacity of physics-in-

spired NNs, the same NN model trained from previous data

(defined in Table 1) was used to map the relationship

between input and output from additional datasets with

different statistical characteristics of construction errors

(defined in Table 5). Specifically, scenario A adopts a

(a) Scenario A: smaller derivation
of inclination angle β

(b) Scenario B: shorter columns

(c) Scenario C: larger column spacing 

Fig. 14 Cumulative distribution function (CDF) of seepage flow rate for different verification scenarios (Scenario A–C represent the different

configurations of random verification cases and can be referenced from Table 5)
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smaller standard deviation of inclination compared to

original datasets, which simulates a case with less incli-

nation. Scenario B chooses a shorter pile length as 10 m,

which simulates a case with less embedment depth of the

cut-off wall. Scenario C sets up a construction context that

has more deep mixed columns. Each scenario includes 750

random samples to reach a representative scale for each

dataset. Figure 13 compares the prediction results using the

physics-inspired NNs against the TDA benchmarks. It can

be observed that the NN-predicted values using P3–P5

agree relatively well with the TDA predictions, despite that

these NN models are trained with totally different datasets.

This indicates that the use of physics-inspired NNs sig-

nificantly improves its ability to adapt the new data with

distinct boundary conditions. Figure 14 shows the cumu-

lative distribution function (CDF) of seepage flow rate for

original training data, verification data and corresponding

predications using different physics-inspired NNs. It was

found that even though the distribution of flow rate for the

original training data is totally different from the verifica-

tion scenarios, the NNs for P3–P5 still achieved satisfying

performance. This further validates the model capacity of

physics-inspired NNs.

Furthermore, one practical case study of subway shaft

was conducted to assess the model capacity of physics-

inspired NNs. The study focused on the No. 3 shaft at

Shifoying station in the Beijing Metro, which was situated

in sandy soil containing an unconfined aquifer with a

thickness of 6.5 m [40]. To prevent water leakage, jet

grouting was implemented as a sealing measure. The col-

umns in the No. 3 shaft had varying diameters of 0.8 m and

1.0 m, along with corresponding column spacings of 0.5 m

and 0.7 m, respectively. The layout plan of jet-grouted

columns in the No. 3 shaft can be observed in Fig. 15a.

Experimental tests determined the permeability coefficient

k1 of the unconfined aquifer to be 3.4 9 10–5 m/s, while

the permeability coefficient k2 of the treated soil was found

to be 1.3 9 10–8 m/s [40]. The water level difference

between the inside and outside of the shaft was 6.5 m.

Details of the construction errors associated with the jet-

grouted cut-off walls can be referred in Fig. 15a. Fig-

ure 15b depicts the predictions of seepage flow rate gen-

erated by various physics-inspired NNs. It should be noted

Table 5 Configurations of random verification cases for the applicable capacity of physics-inspired NNs

Scenarios Number of

rows

Number of

columns

Diameter,

D: m
Column spacing,

sx: m
Exposed length of cut-off

wall, L: m
COV

(D)
SOF

(D)
S.D. (b):
deg

A 1 10 1.2 1.0 20 0.1 0.5 0.15

B 1 10 1.2 1.0 10 0.1 0.5 0.30

C 1 10 1.2 1.1 20 0.1 0.5 0.30

The bold text represents the altered variables within the verification cases, as compared to the training data, while adhering to the reference case

outlined in Table 1

Fig. 15 a The layout plan of jet-grouted columns for the No. 3 shaft of Shifoying station in the Beijing Metro (revised after Wang et al. [40]),

b the predictions of seepage flow rate for the No. 3 shaft given by physics-inspired NNs

123

Acta Geotechnica (2023) 18:5959–5982 5977



1

0
0.2
0.4

0.8
0.6

-0.2
-0.4
-0.6
-0.8
-1

1

0
0.2
0.4

0.8
0.6

-0.2
-0.4
-0.6
-0.8
-1

1

0
0.2
0.4

0.8
0.6

-0.2
-0.4
-0.6
-0.8
-1

1

0
0.2
0.4

0.8
0.6

-0.2
-0.4
-0.6
-0.8
-1

1

0
0.2
0.4

0.8
0.6

-0.2
-0.4
-0.6
-0.8
-1

Hidden layer nodes

In
pu

t l
ay

er
 n

od
es

(a) P1: Complete datasets

Hidden layer nodes
Ph

ys
ic

al
 la

ye
r 

no
de

s

(b) P2: Complete datasets

Hidden layer nodes

Ph
ys

ic
al

 la
ye

r 
no

de
s

(c) P3: Complete datasets

Hidden layer nodes

(d) P4: Complete datasets

Hidden layer nodes

(e) P5: Complete datasets

Ph
ys

ic
al

 la
ye

r 
no

de
s

Ph
ys

ic
al

 la
ye

r n
od

es

Max:0.37
Min:-0.37

Max:0.33
Min:-0.39

Max:0.37
Min:-0.44

Max:0.45
Min:-0.43

Max:2.07
Min:-1.12

(f) Statistics of neuron weights

0.0

0.1

0.2

0.3

St
at

ist
ic

s o
f n

eu
ro

n 
w

ei
gh

ts
Adopted methods

Mean
Standard deviation

P1 P2 P3 P4 P5

Fig. 16 Neuron weight response between incoming neurons and hidden neurons. Subplot a–e plot the heat map of neuron weights for P1–P5, in
which red rectangles mark the most active 15% connections for each incoming node; Subplot f compares the statistics (mean value and standard

deviation) of neuron weights for P1–P5

Fig. 17 Reponses of information plane for different physics-inspired NNs: a Stochastic Gradient Descent (SGD) training; b Levenberg–

Marquardt (LM) training
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that the employed physics-inspired NNs were trained using

the training dataset configured as shown in Table 1. Due to

significant distribution discrepancies between the seepage

flow rates in the training dataset and the applied case study,

predictions produced by P2 exhibited notable systematic

errors, resulting in much higher seepage flow rates com-

pared to the benchmark predictions provided by TDA.

However, this error diminished as the physical meaning

was improved from P3 to P5, as evidenced by the strong

agreement between the predictions given by P3 to P5 and

TDA. The satisfactory performance demonstrated by P3 to

P5 supports the notion that NN training can be prepared

and directly applied in practical cases. This advantage

underscores the potential of physics-inspired NNs as an

alternative to TDA. Additionally, the predictions generated

by the physics-inspired NNs were compared with the

deterministic prediction derived from the equivalent wall

thickness method. The daily seepage flow rate reported by

Wang et al. [40] using the equivalent wall thickness

method was 1.76 m3, which closely aligned with the 50%

fractile (i.e., median) of the seepage flow rate predicted by

TDA at 1.64 m3/day. The 95% fractile of seepage flow rate

given by TDA was 4.78 m3/day, which indicates that sig-

nificant construction errors in the cut-off walls may lead to

substantial seepage flow rates. Neglecting potential sce-

narios for construction errors would underestimate the

seepage risk.

4.3 Insight into the internal adjustment
of neuron connections

Synaptic weights of NNs refer to the amplitude of the

connection between two nodes, corresponding to the

amount of impact the activation of one neuron has on

another in the field of neuroscience. Based on suitable sy-

naptic weights, the information transmission is performed

in the interconnected networks of neurons. Figure 16a–e

plots the heat maps of synaptic weights between incoming

neurons and hidden neurons for P1–P5, in which their

configurations of physical layers are different. The number

of incoming neurons and hidden neurons for all used NNs

are strictly consistent, i.e., 84 incoming neurons and 40

hidden neurons. Noted that the synaptic weights are nor-

malized into the standard range from - 1 to 1 by linear

scaling, and the maximum and minimum value of weights

are also tagged. As shown in Fig. 16a–e, the pattern of

neuron activation for traditional NN is different from

physics-inspired NNs when using the complete datasets.

The synaptic weights of the traditional NN (P1) only

concentrate on very few connections, while those of the

physics-inspired counterparts are more evenly distributed.

Within the red rectangle in each subplot, which represents

the most active 15% of connections for each incoming

node, such differentiation is more evident. The pattern of

high concentration on only a few connections implies that

the traditional NN is an unstable network, because any

slight change in the input may result in large differences in

the output. The occurrence of large weights occurred in the

NN is the sign of the tendency to the overfitting of training

data. A large enough weight will tendentiously induce the

output of the neuron to either the maximum or minimum

side of activation function. The higher the synaptic weights

of NN, the less room is left in deciding how features to pass

on the activation based on inputs [18]. As shown in

Fig. 16f, the traditional NN model has larger synaptic

weights with higher standard derivation compared to phy-

sics-inspired NN models. A NN model with small weights

tends to behave more robust against the statistical noises

and specified examples in the training datasets [1]. This can

be attributed to the robust regularization operation natu-

rally carried out in the physical layer. By physical layer,

the prior knowledge from the physical perspective is added

into the underlying learning of the NN. The used physical

information will restrict the range of the feasible solution

space and, hence, inhibit the appearance of overfitting

under small sample conditions. When faced with sufficient

data, the physical layer will also assist the underlying NN

to approach the optimal weights in a greater efficiency. The

self-regulation phenomenon for physical layer/hidden layer

neuron connections may account for the improved perfor-

mances of physics-inspired NNs.

4.4 Information plane visualization of physics-
inspired NNs

The information plane, which refers to the representation of

Mutual Information (MI) values preserved by each layer of

NNs between input and output variables, was employed as

a visualization technique to examine the influence of the

physical layer on NN training [35]. Mutual information

functions as a statistical metric that quantifies the degree of

dependence or shared information between two variables

[35]. It evaluates the quantity of information that can be

obtained from one variable when the value of another

variable is known. In the context of two random variables,

U and V, characterized by a joint distribution p(u, v), their

mutual information is defined as follows [19]:

IðU;VÞ ¼
X

u2U;v2V
pðu; vÞ log pðu; vÞ

pðuÞpðvÞ

� �

¼
X

u2U;v2V
pðu; vÞ log pðu vj Þ

pðuÞpðvÞ

� � ð4Þ

The layers of physics-inspired neural network can be

conceptualized as a series of internal representations

derived from the input layer X, forming a sequential
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relationship akin to a Markov chain X ? P ? T ? Ŷ [2].

Here, X, P, T, Ŷ represent the values of the input layer,

physical layer, hidden layer, and output layer. By consid-

ering this sequential progression, the transmission of

information can be characterized through the mutual

information between consecutive variables, denoted as IX-
= I(X;T) and IY = I(T;Y) [35]. It is important to note that

Y represents the desired output rather than the predicted

output Ŷ . Consequently, the horizontal and vertical axes of

the information plane correspond to the respective values

of IX = I(X;T) and IY = I(T;Y). Visualizing the information

plane provides a valuable means to gain profound insights

into the information flow and the NN’s capacity to effec-

tively convey information across different layers.

Figure 17 compares the responses of information planes

under different configurations of physics-inspired NNs

from P1 to P5. The results indicate that augmenting the

physical clarity of NNs leads to an increase in both the

values of IX = I(X;T) and IY = I(T;Y), regardless of the

training algorithms employed, namely Stochastic Gradient

Descent (SGD) and Levenberg–Marquardt (LM). This

observation can be attributed to the fact that integrating

physical meaning enhances the efficiency of information

transmission across the NN layers, thereby contributing to

the improved performance of the NNs.

5 Summary and conclusions

In summary, this research presents the use of physics-in-

spired NNs as a surrogate model to efficiently evaluate the

seepage flow rate for JGCOWs with random construction

errors. Several novel physics-inspired neural network (NN)

models were proposed based on well-designed physical

layers with varying complexity. The capacity of physical

layers to extract high-level features about geometrical

imperfections of cut-off walls was examined. Compared to

the TDA method, physics-inspired NNs were more com-

putationally efficient while keeping rationally good accu-

racy and robustness. The problem of data overfitting of

traditional NNs was also mitigated by the introduction of

physical layers, by which the disorganized inputs are

converted to be physically significant and dimensionally

consistent. Some detailed conclusions are summarized as

below:

(i) The problem of data overfitting confronted by

traditional NNs was solved by the introduction of

physical layers. The physics-inspired NNs outper-

formed the traditional NNs in terms of both

prediction accuracy (higher R2) and learning

efficiency (lower number of required sample size

to reach a good prediction result).

(ii) The prediction accuracy of discharge rate can be

enhanced via input of higher levels of physical

expertise, though at the price of higher computa-

tion cost. One can reach optimal and practical

trade-offs between prediction accuracy and calcu-

lation expense by preparing physical layers with

rationally clear physical meaning, depending on

the on-site requirement in accuracy and efficiency.

(iii) Insight into the internal adjustment of neuron

connections was provided for the physical layers

of varying complexity. It was found that, when the

physical layers were introduced, the neurons

maintained a reasonable level of activation. The

self-regulation phenomenon for neuron connec-

tions is captured in the physics-inspired NNs and

accounts for their brilliant performances. Addi-

tionally, the visualization of the information plane

revealed that the augmentation of physical clarity

enhances the efficiency of information transmis-

sion across the layers of the NNs, thereby

contributing to the improved performance of

physics-inspired NNs.

However, due to the nature of the research objects and

methodologies employed, this paper has certain limitations

that should be acknowledged:

(i) In practical scenarios, the monitoring of jet grout-

ing entails the collection of real-time parameters,

such as jetting pressure and lifting speed. However,

these detailed factors are not considered in this

study.

(ii) The assumption made in this paper is that the water

head difference between the outside and inside of

cut-off walls remains constant along the depth. In

reality, the practical water head distribution is much

more complex, considering factors such as under-

ground water migration. Therefore, the simplified

assumption restricts the full representation of the

actual water flow conditions.
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Design of jet grouted excavation bottom plugs. J Geotech

Geoenvironmental Eng 142:4016018

18. Nakamura K, Hong BW (2019) Adaptive weight decay for deep

neural networks. IEEE Access 7:118857–118865. https://doi.org/

10.1109/ACCESS.2019.2937139

19. Noshad M, Zeng Y, Hero AO (2019) Scalable mutual information

estimation using dependence graphs. In: ICASSP 2019-2019

IEEE international conference on acoustics, speech and signal

processing (ICASSP). IEEE, pp 2962–2966

20. Pan Y, Fu Y (2020) Effect of random geometric imperfections on

the water-tightness of diaphragm wall. J Hydrol 580:124252

21. Pan Y, Hicks MA, Broere W (2021) An efficient transient-state

algorithm for evaluation of leakage through defective cutoff

walls. Int J Numer Anal Methods Geomech 45:108–131

22. Pan Y, Liu Y, Chen EJ (2019) Probabilistic investigation on

defective jet-grouted cut-off wall with random geometric
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