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Since the impoundment of Three Gorges Reservoir (TGR) in 2003, numerous slopes have experienced
noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall. One case
is the Outang landslide, a large-scale and active landslide, on the south bank of the Yangtze River. The
latest monitoring data and site investigations available are analyzed to establish spatial and temporal
landslide deformation characteristics. Data mining technology, including the two-step clustering and
Apriori algorithm, is then used to identify the dominant triggers of landslide movement. In the data
mining process, the two-step clustering method clusters the candidate triggers and displacement rate
into several groups, and the Apriori algorithm generates correlation criteria for the cause-and-effect. The
analysis considers multiple locations of the landslide and incorporates two types of time scales: long-
term deformation on a monthly basis and short-term deformation on a daily basis. This analysis
shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water
while its deformation varies spatiotemporally mainly due to the difference in local responses to hy-
drological factors. The data mining results reveal different dominant triggering factors depending on the
monitoring frequency: the monthly and bi-monthly cumulative rainfall control the monthly deformation,
and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the
daily deformation of the landslide. It is concluded that the spatiotemporal deformation pattern and data
mining rules associated with precipitation and reservoir water level have the potential to be broadly
implemented for improving landslide prevention and control in the dam reservoirs and other landslide-
prone areas.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Landslides constitute a geological hazard across numerous re-
gions worldwide, resulting in catastrophic social and economic
consequences (Guzzetti et al., 2012; Froude and Petley, 2018; Mirus
et al., 2020; Mandal et al., 2021). The Three Gorges Reservoir Area
(TGRA), characterized by large, narrow steep terrain, and unfavor-
able geology, represents one of the regions of China most prone to
landslides (Wang et al., 2021; Guo et al., 2022a; Zhang et al., 2022a).
A report of 2009 from the Ministry of Land and Resources of China
announced that around 5000 landslides were deforming actively
ock and Soil Mechanics, Chi-
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over a length of 2000 km (Yang et al., 2017). Furthermore, more
than 500 landslides occurred since the Three Gorges Reservoir
(TGR) was first impounded in 2003 (Zhou et al., 2022). Conse-
quently, concentrated endeavors have been undertaken to prevent
and control reservoir landslides in this region (Fourniadis et al.,
2007; Tang et al., 2019; Yang et al., 2022; Zhang et al., 2022b).
One essential initiative was to install monitoring equipment and
develop early warning systems for landslides. About 3200 such
monitoring systems with multiple equipment have been put into
operation (Yin et al., 2010; Park et al., 2019; Guzzetti et al., 2020).

Landslides result from the interactions between triggering
events and local natural conditions (Kumar and Anbalagan, 2015;
Pasierb et al., 2019). Local natural conditions, referring to inherent
factors, include topography, geology, tectonics, and geotechnical
materials. Triggering events, are mainly hydrological elements,
including precipitation and dam reservoir operation (Gariano and
cteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030
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Guzzetti, 2016; Strauhal et al., 2016; Gariano et al., 2020; Wang
et al., 2023). The TGR initiated a periodic fluctuation between ele-
vations of 145 m and 175 m in 2009. The 30-m filling and draw-
down of the reservoir significantly altered the hydrogeological
conditions of the TGRA, resulting in a reduction in slope stability
and inducing a significant quantity of landslides (Weidner et al.,
2019; Miao et al., 2022; Zhang et al., 2022c). Moreover, many
areas in the TGRA have abundant rainfall with an average annual
rainfall exceeding 1000 mm. Fengjie County, which hosts the
Outang landslide studied in this paper, is such an example where
rainfall impacts slope stability by altering pore water pressure
distribution and decreasing slope mass (Chinkulkijniwat et al.,
2019; Sun et al., 2021).

Monitored data, including surface displacement, precipitation,
and reservoir water level, have been shown to form the basis for
dam reservoir-related landslide incidences (Tomás et al., 2016;
Pecoraro et al., 2019; Dai et al., 2021). Advances in the technology
for monitoring and remote sensing, as well as the interplay of
multiple equipment, create large quantities of data. The capacity
and efficiency of traditional data analysis processes are challenged,
especially as the quantities and complexities of data have multi-
plied (Wu et al., 2014). Data mining can transform a vast quantity of
multi-sourced data into valuable messages in an intelligent way
(Lee and Siau, 2002; McClean, 2003). Because of this unique
capability, data mining has garnered significant prominence in the
exploration of the inherent correlation criteria within datasets and
has been introduced in identifying triggers inducing landslide
deformation.

For example, Wang et al. (2015) employed data mining tech-
niques to reveal the causal mechanisms, triggering factors, defor-
mation characteristics, and forecast criteria of landslides in the
TGRA. Ma et al. (2017), Miao et al. (2021), and Guo et al. (2022b)
used the two-step clustering and the Apriori algorithm technol-
ogy to determine triggers inducing riverbank landslides. Yao et al.
(2019) identified triggers resulting in the deformation of the Bai-
jiabao landslide by neighborhood rough set theory. Franceschini
et al. (2022) concluded that data mining helped determine the
regions and times most exposed to landslides. It should be noted
that the cause-and-effect relationship between deformation and
triggering factors can vary both temporally and spatially for land-
slides (Wu et al., 2016). Furthermore, the latest monitoring datasets
with shorter intervals have the potential to be used in landslide risk
management across various time scales.

The objective of this paper is threefold. Firstly, it aims to develop
a comprehensive understanding of the spatiotemporal deformation
characteristics of riverbank landslides based on in situ information
obtained from field investigation and monitoring systems. Sec-
ondly, it seeks to identify the triggers that induce deformation in
various parts of a landslide. Thirdly, it analyzes and compares the
spatiotemporal deformation characteristics and hydrological trig-
gers of riverbank landslides using monthly and daily time scales for
displacement measurements in situ. Through these three objec-
tives, the study will contribute to enhancing our understanding of
the deformation mechanism of riverbank landslides and providing
valuable insights into movement prediction, stability evaluation,
and risk control strategies.

The Outang landslide was a large riverbank landslide in the
TGRA, which has undergone deformation since 2003. A monitoring
system was established on the landslide with continuous replen-
ishment of new monitoring instruments. The advanced monitoring
system provides abundant monitoring data over several years,
which is not the case for all the other landslides at the sites. The
latest monitoring indicates that the displacement of the Outang
landslide is continuing and increasing (so far). A landslide would
present a threat to a total of 8950 residents (Chongqing Municipal
Please cite this article as: Yang B et al., Spatiotemporal deformation char
using data mining, Journal of Rock Mechanics and Geotechnical Enginee
Planning and Natural Resources Bureau, 2021). Further research on
the Outang landslide based on the latest and detailed monitored
data is both meaningful and essential (Dai et al., 2016; Guo et al.,
2020; Luo and Huang, 2020; Liao et al., 2022; Yan et al., 2022).
The novelty of this new study on the Outang landslide resides in:
(1) understanding better the on-going displacement patterns
(which urgency is important because of the threat to the popula-
tion); (2) the use of monitoring data with different record fre-
quencies and being able to associate the measurements with
different periods of hydrological influence factors; (3) interpreta-
tion of the latest data with a combination of machine learning
techniques; and (4) discussing the opportunity of the analyses
presented in the study to assist in developing strategies for land-
slide risk control.

The current study focuses on analyzing the spatiotemporal
deformation characteristics of the Outang landslide. Data mining
techniques, including two-step clustering and the Apriori algo-
rithm, are employed for exploring causal relationships between
hydrological factors and landslide deformation. According to the
association rules obtained by data mining, the dominant triggering
factors for different parts of the Outang landslide are obtained,
considering monitoring data over two time scales, monthly and
daily. The motivation for the data mining work is that it has a
unique potential to provide beneficial insights into landslide zoning
prediction and assist in controlling the risk.

2. Materials and methods

2.1. Geological setting of the outang landslide

The Outang landslide lies on the lower valley of the Yangtze
River, Fengjie County, China, approximately 177 km upstream from
the Three Gorges Dam (Fig. 1). The geographic coordinates are
30�1701200N and 109�1802600E. The elevation of the upper edge is
705 m above sea level, whereas its toe has been submerged in the
Yangtze River with elevations ranging from 90 m to 102 m. It is
bounded laterally by a ridge and a gully. The landslide extends
1800 m from south to north and 900 m from east to west. The
thickness of the landslide mass ranges from 2.8 m to 128m, with an
average thickness of 50.8 m. The landslide has an area of
1.8 � 106 m2 and an estimated volume of 9 � 107 m3.

After detailed investigations of the Outang landslide by several
professional organizations, the landslide is found to have been
experienced sliding three times (Fig. 2a). The first sub-unit has an
area of 9.2� 105m2 and an elevation of 90e370m. Two local strong
deformation zones appear on either side of the first sub-unit,
recorded as eastern and western strong-deformation zones,
which are more unstable than the rest of the landslide and still
deformwith some local movement. The second sub-unit covers the
trailing part of the first one. The total area of this sub-unit is
approximately 3.2 � 105 m2, and it covers 250e530 m. The third
sub-unit is at the top of the landslide, whereas it stretches over the
crown surface of the second one. This sub-unit has an estimated
area of 5.4 � 105 m2, with an elevation from 400 m to 705 m (Guo
et al., 2020).

The Outang landslide consists mainly of Quaternary deposits
and fractured sandstone from upper to lower, with the latter
component dominating the content. The sliding body ranges in
thickness from 10 m to 95 m. The bedrock consists of sandstone in
the Jurassic System, exhibiting an orientation of 335�e350�/18�e
24�. Two incompetent layers (R1 and R3), each contributing as
sliding planes, are the interface between the upper sliding body and
underlying bedrock (Fig. 2b). The first and second sub-units move
along the incompetent layer of R3, while the third one moves along
R1. The thicknesses of R1 and R3 are 0.5 m and 0.1 m, respectively.
acteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Fig. 1. (a) Map of Three Gorges Dam, the Yangtze River and the Outang landslide; and (b) The Outang landslide.

Fig. 2. (a) Topography of the Outang Landslide, and (b) Schematic cross-section A-A (from (a)).
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These two incompetent layers become deeper from the top to the
bottom of the landslide.

2.2. Field observations and monitoring system

2.2.1. Field observations
Three sub-units of the Outang landslide, indicated in Fig. 2 as the

first, second, and third sub-units, display different deformation
patterns. The collapse occurred at the leading edge of the first sub-
unit as the water level at TGR increased to 156 m in 2003. The
Please cite this article as: Yang B et al., Spatiotemporal deformation chara
using data mining, Journal of Rock Mechanics and Geotechnical Enginee
collapse moved backward more than 5 m compared to the defor-
mation before the impoundment of TGR. Thewater level went up to
172 m in September 2008, and the deformations of the first sub-
unit were mainly surface subsidence and cracks. Several small,
shallow earth slides appeared, resulting in damage to houses being
built and some rural roads. The second sub-unit was deformed by
surface subsidence and soil sliding dispersedly on a small scale. The
deformation in the third sub-unit was local soil heaves, road sub-
sidence, and tensile cracks. The trailing edge of the third sub-unit
crept forward about 6 m over the past 50 years.
cteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030
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The spatiotemporal deformation characteristics of the Outang
landslide have been analyzed on the basis of field observations.
Time-wise, deformation appeared on the Outang landslide when
the TGR initiated impoundment in 2003. Field observations be-
tween 2003 and 2012 demonstrated that over 160 cracks were
caused by reservoir level change, whereof a sharp increase in crack
formation (45 cracks) was observed in 2009 when the dam reser-
voir was first raised to 175 m (Fig. 3). The number of new cracks
reduced significantly after 2012 with approximately only 20 cracks
except in some zones of the landslide.

Space-wise, themajority of the cracks occurredmainly at the toe
of the first sub-unit. Because of the severe deformation in 2013, a
remediation project was undertaken, with backfill toe weight and
lattice revetment in the eastern strong-deformation zone and
masonry revetment in the western strong-deformation zone (Luo
and Huang, 2020). Over the subsequent years, the landslide
exhibited macroscopic deformations as displayed in Fig. 4. Besides
the appearance of tension cracks on the ground (Fig. 4a and b), a
local collapse occurred, which destroyed residential houses and
roads (Fig. 4c). Furthermore, deformation was also observed on
other sub-units of the Outang landslide (Fig. 4d). This study
investigated the spatiotemporal deformation characteristics and
identified the dominant factors inducing deformation. The influ-
ence of the structures placed for mitigation on the landslide
movement was not taken into consideration.

2.2.2. Monitoring system
A monitoring system has been implemented on the Outang

landslide and a global positions system (GPS) was included to track
its displacement behavior (Fig. 2a). More than 30 automatic
continuous GPS monitoring stations were installed, some
measuring displacement already fromDecember 2010. Others were
installed thereafter. Several monitoring points were relocated or
stopped because of construction activities. The automatic contin-
uous GPS monitoring stations, known for their high measurement
accuracies, record surface displacement with the precision of
3 mm þ 1 ppm in planimetry and 5 mm þ 1 ppm in altimetry. The
GPS network adopts a set of single-frequency stations to transmit
raw data to the GPS receiver every 20 s. The raw data recording
relative positions of all measurement stations to datum stations are
processed together.

Monthly and daily data at various monitoring locations of the
landslide are available from the monitoring system. Herein, the
monthly dataset recorded one datum per month from December
Fig. 3. Relationship between the number of cracks,

Please cite this article as: Yang B et al., Spatiotemporal deformation char
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2010 to December 2016, while the daily dataset was gathered every
5e10 d from 2013/1/7 to 2016/8/7 and has since then been collected
daily up to today. The two datasets could extend the monitoring
time periods and cover different time scales, which benefit the
analysis of landslide evolution patterns and could be a dominant
basis for further risk evaluations. Details of the two datasets are
presented in Tables 1 and 2.
2.3. Data mining technology

2.3.1. Two-step clustering
Clustering is a technique commonly applied in artificial intelli-

gence andmachine learning (Jain et al., 2000). It refers to the task of
identifying patterns and trends of large volumes of data by
grouping data points that are similar while separating those that
are dissimilar (Lee and Antonsson, 2000). Multiple clustering al-
gorithms have been proposed over the years. Some popular clus-
tering algorithms include K-means, fuzzy clustering, and two-step
clustering.

The K-means is commonly easy to implement and suitable for
very large data sets, while users need to set the number of clusters
in advance (Davies, 2005). Furthermore, its dependence on the
initial conditions may cause the algorithm to converge to subop-
timal solutions. Fuzzy clustering has an advantage over K-means
that allows for overlapping clusters (Izakian and Abraham, 2011).
This algorithm assigns each pattern to each cluster with some de-
gree of membership according to the closeness of the data object to
the cluster centers (Nayak et al., 2015). Unfortunately, fuzzy clus-
tering is prone to becoming trapped in local optima due to its
sensitivity to initialization.

The two-step clustering algorithm was proposed by Chiu et al.
(2001). The approach is superior to more traditional techniques
mainly due to: (1) it is capable to cluster mixed valued data (nu-
merical and categorical variables); (2) it can handle large datasets
efficiently; (3) it determines the optimum number of clusters
automatically, following statistical standards, including Akaike In-
formation Criterion (AIC) or Bayesian Information Criterion (BIC),
rather than based on an arbitrary choice; and (4) it allows to di-
agnose outliers and noise data in samples. Considering these ad-
vantages and previous successful applications of the two-step
clustering in landslide deformation analysis (Ma et al., 2017; Miao
et al., 2021; Guo et al., 2022b), a two-step clustering algorithm is
adopted in this paper.
reservoir water level, and rainfall versus time.

acteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Fig. 4. Deformation on the Outang landslide: (a) Tension crack observed on the first sub-unit in 2017, (b) Crack observed on the east strong deformation zone in 2019, (c) Resident
house and road destroyed by a local collapse in 2018, and (d) Destroyed drain on the second sub-unit in 2014 (Guo et al., 2020).
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The two-step clustering first uses a distancemeasure to separate
groups and then adds a probabilistic analysis to select the optimal
subgroup model. In the case where a dataset consists of uniquely
numerical variables, Euclidean distance is typically set as a distance
measure criterion for clustering. In the case of a dataset containing
numerical and categorical variables, log-likelihood is to be selected
in the clustering procedure.

The technique is realized in two steps, pre-clustering and clus-
tering (Fig. 5). In the first step, the cases are pre-clustered by a
sequential method according to the definition of dense regions in
the analyzed attribute space. The number of clusters increases in
the pre-clustering process. In the second clustering step, pre-
clustering performs statistical merging in a step-by-step manner
until all clusters are in one cluster (Benassi et al., 2020).
2.3.2. Apriori algorithm
The Apriori algorithm provides the capacity for searching for

frequent itemsets and generating association rules (Agrawal et al.,
1993). The minimum support (minsupp) and minimum confi-
dence (minconf) are fixed to select useful association rules from the
set of all possible rules. Fig. 6 describes the implementation process
of the Apriori algorithm.
2.3.2.1. Searching for frequent itemsets. A frequent itemset (T) rep-
resents a dataset containing an item (a) that has greater than or
equal support compared to the minimum support stated by users.
In the case where an itemset covers k frequent items, it can be
named a frequent k itemset and recorded as Lk.

jTðaÞj
T

� minsupp (1)

The Apriori algorithm is based on the a priori data property that
all subsets of a frequent itemset are always frequent (Abdullah et al.,
2008). The principle means that when a k-itemset is not frequent, it
is not employed to generate candidates of kþ1 itemset. This is a
Please cite this article as: Yang B et al., Spatiotemporal deformation chara
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critical principle in the process of relation rules generation using the
Apriori algorithm. Such an algorithm identifies frequent itemsets
according to a layer-by-layer search based on an iteration method.

If we suppose a database marked as D, we can set the support
thresholds to n in this example, meaning that one itemset cannot be
frequent if its support thresholds are less than n. In addition, Ck and
Lk represent the candidate k itemset and frequent k itemset,
respectively. The Apriori algorithm is conducted by the following
steps: (1) It scans the dataset D and generates candidate itemset Ck,
where k starts from unity. (2) The support of each itemset in Ck is
calculated and frequent itemset is generated by deleting all the
itemsets that the supports are below the threshold. (3) The ele-
ments in the frequent itemset Lk are recombined to generate the
candidate kþ1 itemset Ckþ1. (4) Iteration (Steps 2 and 3) continues
until it is unable to generate further frequent itemsets.

In the example shown in Fig. 6, the candidate itemset C1 is
generated by scanning dataset D. However, the support of the
element {d} in C1 is below the threshold n and is thus deleted. A
frequent itemset L1 is generated, and it is recombined to give a new
candidate itemset C2. Likewise, the supports of {a, b} and {a, e} are
also below the threshold, so they are removed. A frequent itemset
L2 is obtained after deleting these two itemsets. We can then form a
candidate itemset C3, which contains only one element {b, c, e}.
Since there are no more frequent itemsets that can be generated,
the procedure stops at this point.

2.3.2.2. Generating association rules. Association rules are finally
obtained from these frequent itemsets by finding all the subsets.
Confidence is commonly used to measure the strength of associa-
tion rules, which is defined as the conditional probability of the
consequence of the rule given its antecedent (Borgelt and Kruse,
2002). Among all these rules, valid rules need to be selected ac-
cording to a criterion expressed as whether the confidence level is
above the confidence threshold (minconf). In the example in Fig. 6,
the frequent itemset L3 generates 6 rules. Rules 1 and 5 are not
useful as their confidence is below the threshold m. If that is the
cteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Table 1
Cumulative displacements of monthly monitoring sites.

Location Monitoring
point

Monitoring
period

Cumulative
displacement
(mm)

Average annual
displacement rate
(mm/year)

Western
strong-
deformation
zone

MJ01 2010/12
e2016/12

686 113

Eastern strong-
deformation
zone

MJ14 2011/8
e2016/12

426 79

First sub-unit MJ05 2010/12
e2016/12

234 39

MJ06 2010/12
e2016/12

214 35

Second sub-
unit

MJ07 2010/12
e2016/12

409 67

MJ08 2010/12
e2016/12

398 65

Third sub-unit MJ20 2012/5
e2016/12

630 135

MJ21 2012/5
e2016/12

555 119

Table 2
Cumulative displacements of daily monitoring sites.

Location Monitoring
point

Monitoring
period

Cumulative
displacement
(mm)

Average annual
displacement rate (mm/
year)

First
sub-
unit

FJ02 2013/1/7
e2022/3/8

311 34

FJ03 2013/1/7
e2022/3/8

305 33

FJ04 2015/7/14
e2022/3/8

311 47

FJ05 2016/4/24
e2022/3/8

428 73

FJ06 2013/4/11
e2022/3/8

480 54

Second
sub-
unit

FJ07 2013/4/11
e2022/3/8

506 57

FJ08 2015/7/14
e2022/3/8

646 97

Third
sub-
unit

FJ10 2013/5/22
e2022/3/8

1464 166

FJ11 2013/5/22
e2022/3/8

1143 130

FJ12 2013/5/22
e2022/3/8

800 91
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case for a certain frequent itemset L, the association criterion can be
generated: L0/(L-L0).

CL0/ðL�L0Þ ¼
jTðLÞj
jTðL0Þj � minconf (2)
Fig. 5. Implementation process of two

Please cite this article as: Yang B et al., Spatiotemporal deformation char
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2.3.3. Data mining process
The data mining process for the Outang landslide consists of the

three steps illustrated in Fig. 7.

2.3.3.1. Preparation of data for mining. To begin the data mining
process, the first step in the data mining process involves collecting
data on a variety of parameters, such as rainfall, reservoir water
level, surface displacement, and so on. The original monitoring data
undergoes pre-processing by techniques of reviewing, filtering, and
sorting to ensure accuracy and completeness. Additionally, some
related factors including changes in reservoir levels and cumulative
rainfall over a certain period are required to be provided, which can
help to identify potential triggers for landslides.

2.3.3.2. Grouping monitoring data into clusters based on numerical
values. The Apriori algorithm handles only categorical variables
and not numerical ones. Therefore, it is required to cluster the
numerical monitoring data into groups before applying the Apriori
algorithm to mine the relationship between triggers and move-
ment in the Outang landslide case. To achieve this, the two-step
clustering algorithm is adopted to group reservoir level, rainfall,
and landslide movement rate into several categories.

2.3.3.3. Exploration of association rules. By using the Apriori algo-
rithm with fixed values for the support threshold (minsupp) and
confidence threshold (minconf), useful association rules are ob-
tained. The association rules between deformation clusters and
triggers clusters are crucial for identifying dominant factors trig-
gering landslide deformation. Further explanations for association
rules can be found in Section 4.2.

3. Deformation characteristics of outang landslide

3.1. Deformation characteristics of outang landslide based on
monthly monitoring data

3.1.1. Spatial deformation characteristics
More than 30 monitoring points with monthly data are

distributed on the three sub-units of the landslide including two
strong deformation zones. In this study, we select several moni-
toring stations across the landslide for detailed analysis. The
monitoring point recorded asMJ01 is located in thewestern strong-
deformation zone, while MJ14 is located in the eastern strong-
deformation zone. MJ05 and MJ06, MJ07 and MJ08, and MJ20 and
MJ21 are representatives of the displacements of the first, second,
and third sub-units, respectively. Cumulative displacements of
these monitoring sites with reservoir water level and rainfall are
shown in Fig. 8.

Outang landslide has experienced noticeable deformation. In
the first sub-unit, the western strong-deformation zone (MJ01)
-step clustering (He et al., 2022).

acteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Fig. 6. The algorithm implementation process of Apriori.
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exhibits a maximum displacement value of 686.3 mm. The cumu-
lative displacement of the first sub-unit (MJ05 and MJ06) is slightly
above 200 mm, representing the lowest displacement among the
three sub-units. The second sub-unit (MJ07 and MJ08) has a
displacement of about 400 mm, while the third sub-unit (MJ20 and
MJ21) has a deformation exceeding 550 mm. From the spatial
characteristics, the soil mass of the Outang landslide deforms more
intensely from the toe to the trailing edge, except for two strong-
deformation zones.

3.1.2. Temporal deformation characteristics
During the monitoring period, displacement is available each

month for MJ01, MJ05, MJ08, and MJ21. These displacements are
used to analyze the characteristics of landslide deformation with
time. Monitoring point MJ01, located in the western strong-
deformation zone, had an annual displacement of 121 mm in
2011 and reached a peak in 2012 with a value of 177 mm per year
(Fig. 9). A significant reduction in annual displacement occurred in
2013 (76 mm) and 2014 (70 mm), However, larger increment of
displacements occurred in the following years. Annual displace-
ments were up to 102 mm and 140 mm in 2015 and 2016,
respectively.

MJ05 is located at the toe of the first sub-unit. The maximum
(57mm) andminimum (18mm) deformation appeared in 2011 and
2013, respectively. The annual displacement in other years was
about 40 mm with only small fluctuations. MJ08, representing the
second sub-unit, displayed a larger fluctuation of annual displace-
ment than MJ05. The displacement increased by about 70 mm per
year in 2011 and 2012. The lowest annual displacement occurred in
2013. Unexpectedly, a larger increment of displacements occurred
in 2014 with a value of 88.7 mm. The annual displacements of MJ08
decreased in 2015 and then increased in 2016. The annual
Please cite this article as: Yang B et al., Spatiotemporal deformation chara
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displacements were 58 mm and 99 mm in 2015 and 2016,
respectively. MJ21 is chosen to represent the third sub-unit. Its
deformation trend between 2013 and 2016 was highly consistent
with that of MJ08. The differencewas that the displacement ofMJ21
was significantly higher than that of MJ08. The maximum annual
displacement was up to 173 mm in 2016.

3.1.3. Relationships between displacement, rainfall, and reservoir
level

Cumulative displacements in Fig. 8 display a step-wise incre-
ment, meaning that the landslide deforms sharply between May
and September while keeping stable in other months of the year.
Fig. 10 summarizes monthly rainfall, reservoir level change rate,
and monthly displacements of MJ01, MJ05, MJ08, and MJ21.

When the reservoir level decreased by 6.6 m and the slope
experienced a maximum monthly rainfall of 232 mm in June 2011,
the displacement of MJ01 and MJ08 had a maximum increment of
30 mm and 25 mm, respectively. The occurrence of a sharp
displacement increment was synchronized with rainfall and
reservoir level decline, indicating that these two factors induced
landslide movement.

The May rainfall reached its highest value of the year, while the
landslide deformed only slightly during that month. The moni-
toring points of MJ01 and MJ08 reached maximum displacement
increment in June, indicating one month lag after the largest
rainfall. No time lag was observed for the effect of reservoir level
drawdown in this duration. The pattern of deformation response to
rainfall and reservoir drawdown was interchanged in 2014: there
was no time lag in the response to the rainfall, but time lag in the
response to the reservoir drawdown. Another noteworthy obser-
vation was that the lag in time of the deformation response could
differ across the landslide. For example, the displacement of MJ01
cteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Fig. 7. Flow chart of the data mining process (þ, þþ, þþþ represent the clustering resulting from monitoring data).

Fig. 8. Cumulative displacements of Outang landslide between 2010 and 2016.
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in 2015 lagged the tune of the rainfall for twomonths, while the lag
in time at other monitoring points was only one month.

The reservoir level has been subjected to periodic changes be-
tween 145 m and 175 m since 2009. Rapid deformation of the
Outang landslide primarily occurs with reservoir drawdown. The
timing of the reservoir drawdown is also often close to the time of
intense rainfall. The overlapping of these two factors and their
hysteresis further compounds the relationships between displace-
ment and triggers.
Please cite this article as: Yang B et al., Spatiotemporal deformation char
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3.2. Deformation characteristics of outang landslide based on daily
monitoring data

3.2.1. Spatial deformation characteristics
To further explore the landslide deformation characteristics, its

monitoring system was gradually improved, and 12 stations were
installed to track the daily deformation of the Outang landslide.
These stations are numbered FJ01 to FJ12 (Fig. 11). The data at
points FJ01 and FJ09 were interrupted and are not analyzed in this
acteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Fig. 9. Annual displacement of MJ01, MJ05, MJ08, and MJ21.
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paper. The GPS monitoring stations provide deformation data
across the slope. FJ02 to FJ06 are in the first sub-unit of the land-
slide; FJ07 and FJ08 are in the second sub-unit; and FJ10, FJ11, and
FJ12 are in the third sub-unit (Fig. 2a). As of 2022/3/8, the cumu-
lative displacements at the 10 monitoring stations decreased as
follows: FJ10>FJ11>FJ12>FJ08>FJ07>FJ06>FJ05>FJ02>FJ04>FJ03.
This confirms that the third sub-unit is the least stable of the three
and that the first one is the most stable.

(1) In the first sub-unit, there are five monitoring points across
this area. The values of cumulative displacements of FJ02,
FJ03, and FJ04 are each about 310 mm. FJ05 is next to FJ06,
and their cumulative displacements are greater than
420 mm.

(2) In the second sub-unit, FJ08 is located to the east of FJ07, and
their cumulative displacements are 646 mm and 506 mm,
respectively. The landslide deforms more intensely from
west to east in this area.

(3) In the third sub-unit, FJ10 is located on the left boundary;
FJ11 is to the east of FJ10; and FJ12 is in the center of the area.
The three monitoring points are each at an elevation of about
560 m. However, their cumulative displacements vary from
1464mm,1143 mm, to 800mm, respectively. This area of the
landslide deforms more from east to west.

The monitoring results indicate that the deformation behavior
differs even in the same sub-unit of the landslide, in addition to the
deformation characteristics varying from one sub-unit to the other.

3.2.2. Temporal deformation characteristics
The annual displacements between 2013 and 2021 are sum-

marized in Fig. 12, indicating that the displacements in the three
sub-units of the Outang landslide follow similar trends of ups and
downs. Yet, the annual displacement shows remarkable variation
during the monitoring period. The annual displacements peaked in
2017 and 2021 (and the displacements may increase further in
2022/2023). The lowest annual displacement was observed in 2019.
For example, the annual displacement of FJ10 in 2014 and 2015
were 155 mm and 144 mm with a difference of 11 mm. A larger
deformation of 202 mm occurred in 2016. Subsequently, peaks
appeared in 2017 and 2021 with the amount of 415 mm and
305mm, which weremore than 10 times the displacement in 2019.

3.2.3. Relationships between displacement, rainfall, and reservoir
level

The monitoring sites marked FJ06 (in the first sub-unit), FJ08 (in
the second sub-unit), and FJ10 (in the third sub-unit), with the
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largest deformation in each mass of the Outang landslide, were
chosen to investigate relationships among landslide displacement,
rainfall, and reservoir level. Rainfall and reservoir level were
continuously measured on a daily basis, and partial cumulative
displacement was obtained at an irregular frequency of 5e10 d. To
make the data frequency consistent, daily data between 2017/1/1
and 2021/12/31 were selected. Reservoir level change rate, daily
rainfall, and displacement increasing rate of FJ06, FJ08, and FJ10 are
shown in Fig. 13. The landslide moved more in 2017 and 2021, and
the monitoring data of these two years are analyzed herein.

The annual displacements of FJ06, FJ08, and FJ10 in 2017 were
147 mm, 252 mm, and 415 mm. Two periods of daily displacement
increase were observed in 2017. Between 2017/7/10 and 2017/8/5,
the maximum displacement rates of FJ06, FJ08, and FJ10 were
2.5 mm, 5.5 mm, and 8.3 mm. During this period, the maximum
daily rainfall was 116 mm, and the longest consecutive rain lasted
4 d with a rainfall of 164 mm, accompanied by a drop in reservoir
level. Between 2017/9/30 and 2017/10/30, the maximum daily
deformation of FJ06, FJ08, and FJ10 was 5.5 mm, 14.3 mm, and
17.4 mm, respectively. During this period, the reservoir level rose to
175 m and was maintained at this level, while total rainfall was
209.5 mm. Notably, between 2017/1/1 and 2017/7/2, daily dis-
placements of these three monitoring points were less than 3 mm/
d, in spite of a maximum daily rainfall of 237.5 mm accompanied by
reservoir water level dropping at a rate of 0.4 m/d. This phenom-
enon indicated that neither short-term abundant rainfall nor slow
water level drawdown could induce intense deformation for the
three sub-unites.

Compared with 2017, the deformation characteristics of 2021
were more uniform. The annual displacements of FJ06, FJ08, and
FJ10 were 40 mm, 157 mm, and 305 mm, respectively. A sharp
displacement increment of 113 mm occurred between 2021/7/5
and 2021/7/12, and the maximum deformation rate was 34 mm/d.
The reservoir level was maintained at about 148 m, with a cumu-
lative rainfall of 734 mm. Continued abundant rainfall may be
responsible for the intense deformation of the Outang landslide in
2021.

The analysis indicates that both rainfall and reservoir level
contribute to the Outang landslide movement. Because of the
hysteresis and combined effects of the two hydrologic factors, it is
not easy to identify the triggers controlling landslide deformation.
Additionally, the spatiotemporal deformation characteristics of the
Outang landslide make the problem even more complex. More
efforts are required to separate the influence of rainfall and reser-
voir level fluctuation on landslide displacements.

4. Hydrological triggers based on data mining technology

4.1. Clustering results

4.1.1. Clustering results of monthly data
Based on the analysis in Section 3.1 and previous research (Ma

et al., 2017; Miao et al., 2021; Guo et al., 2022b), six hydrologic
causes are chosen to perform data mining. The deformation trig-
gers include monthly average water level (h), monthly variation of
water level (Dh1), bi-monthly variation of water level (Dh2),
monthly maximum daily drop of water level (Dhd), monthly cu-
mulative rainfall (q1), and bi-monthly cumulative rainfall (q2). The
monthly displacement rate at each monitoring location is used to
represent landslide movement from the toe to the trailing edge,
where MJ01, MJ05, MJ08, and MJ21 are located in the western
strong-deformation zone, the first sub-unit, the second sub-unit,
and the third sub-unit of the Outang landslide, respectively.

The two-step clustering method is used to group both monthly
velocity at each monitoring location and the six hydrological
cteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Fig. 10. Monthly rainfall, reservoir level fluctuation, and monthly displacement of MJ01, MJ05, MJ08, and MJ21.
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indicators into clusters. During clustering, the number of categories
is set between 2 and 10, the Euclidean distance is employed for
distance measurement, and the BIC (Bayesian information crite-
rion) is adopted as the clustering criterion. The quality of clustering
algorithms can be evaluated by the average silhouette coefficient of
all instances. Specifically, the silhouette coefficient quantifies the
degree towhich each data point within a cluster is well-matched to
its own cluster, relative to other clusters. It ranges between �1 and
1, while a higher value indicates better clustering (Aranganayagi
and Thangavel, 2007).

These six hydrological indicators are clustered into two to three
groups, and each group is equipped with an interval of values
(Table 3). The monthly velocity is clustered into two groups (V1 and
V2), reflecting steady movement and the distinct movement of the
Please cite this article as: Yang B et al., Spatiotemporal deformation char
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Outang landslide, respectively (Table 4 and Fig. 14). Thus, the
clustering group of V2 with a larger monthly velocity (15e
89.6 mm/month) is mainly considered to study the inherent cor-
relation between landslide displacement and triggers.

4.1.2. Clustering results of daily data
According to the analysis in Section 3.2 and some references

(Yao et al., 2019; Guo et al., 2022b), twelve candidate triggering
factors are selected, covering two catalogs. The reservoir level
catalog includes eight parameters: daily reservoir level (h

day
), daily

variation of water level (Dhday1 ), 5 d variation of water level (Dhday5 ),
10 d variation of water level (Dhday10 ), 30 d variation of water level
(Dhday30 ), 5 d cumulative drop of water level (Dhdayd�5), 10 d cumulative
drop of water level (Dhdayd�10), and 30 d cumulative drop of water
acteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Fig. 11. Cumulative displacements of monitoring sites.
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level (Dhdayd�30). The rainfall catalog includes four parameters: daily
rainfall (qday1 ), 5 d cumulative rainfall (qday5 ), 10 d cumulative rainfall
(qday10 ), and 30 d cumulative rainfall (qday30 ). The monitoring points
FJ06, FJ08, and FJ10 are in the first, second, and third sub-unites and
are implemented by data mining. The clustering results of the
twelve hydrological indicators are displayed in Table 5. Daily
displacement is clustered into two groups, represented as P1 with a
low rate of displacement (�6.4e0.4 mm/d) and P2 with a high rate
(0.39e44.98 mm/d), as shown in Table 6 and Fig. 15.

4.2. Association criteria mining

4.2.1. Association criteria mining results based on monthly data
The Apriori algorithm is applied to explore the inherent corre-

lation criteria within the monitoring data by setting the confidence
threshold to 85% and the support threshold to 1.5% (Ma et al., 2017;
Guo et al., 2022b). Six hydrologic factors (h, Dh1, Dh2, Dhd, q1, and
q2) and landslide movement rate (v) are programmed as the former
item and the consequent item of association rules. Hundreds of
association rules are generated. The hydrological causes of land-
slide movement at stage V2 with large deformation (15e89.6 mm/
month) are explored. A few of the typical association rules at these
four monitoring stations with varied locations are screened and
listed in Fig. 16.

4.2.1.1. The association rules of MJ01. Rules A1 to A4 can be
explained by the fact that when the reservoir level fluctuates
sharply at the rate of 1.8e5.6 m/month, the landslide tends to pass
to the V2 state. Moreover, severe deformation is more likely to
appear during periods of low water level (145.55e157.15 m) or
drawdown (0.8e1.64 m). These rules include a condition of
“slowly-variation” of bi-monthly variation of water level (Dh2),
meaning that this factor does not contribute to severe deformation.
It is reasonable to conclude that there is no time lag between
reservoir level fluctuation and landslide monthly movement in this
sub-unit. Except for Rule A2 containing the “light-cumulative-
rainfall” condition, Rule A1, Rule A3, and Rule A4 do not involve
rainfall, which indicates that a sharp change in the reservoir water
level alone, without rainfall, can trigger significant deformation in
this sun-unit.

Rules A5-A10 mean that heavy rainfall (monthly/bi-monthly
cumulative rainfall) plays a leading role in inducing landslide
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movement. The appearance of heavy bi-monthly cumulative rain-
fall in association rules suggests that there may be a one-month
time lag between rainfall and landslide movement. Notably, Rules
A5 to A10 each includes a condition of reservoir water level (h or hd)
in addition to heavy cumulative rainfall. One can conclude that
under intense rainfall, a “medium-drop” of reservoir level by 0.8e
1.64 m/month is required for deformation to occur.

4.2.1.2. The association rules of MJ05. Themonitoring siteMJ05 is in
the first sub-unit with an elevation of 185 m, and its association
rules reveal a situation similar toMJ01. Rules B1 to B6 display that if
the maximum daily drop of water level (Dhd) is between 2.78 m
and 4.12 m, the landslide tends to deform significantly (V2). This
phenomenon reveals that the dominant factor inducing landslide
large deformation is a sharp reservoir level drawdown.

Rules B7 to B10 are interpreted such that when cumulative
rainfall in the previous twomonths (q2) achieves an intense (heavy)
state, the synergy of other reservoir water can exacerbate landslide
deformation. Alternatively, a sharp drop in reservoir water level
alone, or intense rainfall accompanied by reservoir water level
change, has the potential to cause dramatic deformation in the first
sub-unit.

4.2.1.3. The association rules of MJ08. The monitoring point MJ08 is
at an elevation of 400 m and is selected as representative of the
second sub-unit. The first factor of the antecedents in Rules C1eC10
covers heavy cumulative rainfall (q1 or q2), emphasizing the pri-
mary role of rainfall in provoking significant deformation in the
second mass. Notably, the reservoir water level factors appear in
these association rules even though this sub-unit is far away from
the river. This may result from the effect of deformation of the
leading edge, which is induced by reservoir level change.

4.2.1.4. The association rules of MJ21. Monitoring point MJ21 is
situated in the third sub-unit and its elevation is 700 m. The cor-
relation criteria of MJ21 reflect a comparable situation with that of
MJ08 and demonstrate the crucial role of rainfall in the deformation
of the third sub-unit. Additionally, some reservoir water level fac-
tors, such as monthly/bi-monthly water level and monthly average
water level, are involved in the deformation of the third sub-unit.

Generally, the longitudinal observation of the correlation
criteria of MJ01, MJ05, MJ08, and MJ21 indicates that the
cteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Fig. 12. Annual displacements at monitoring sites.

Fig. 13. Displacement rate, daily rainfall, and reservoir water level change of FJ06, FJ08, and FJ10 between 2017 and 2021.
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dominant triggering factors of the first, second, and third sub-
units of the Outang landslide vary. For the first sub-unit, both
rainfall and reservoir level control landslide deformation.
However, a sharp drop in reservoir water level alone is capable
of aggravating deformation, whereas heavy rainfall requires a
concomitant variation in the water level to cause significant
deformation. The second and third sub-units have deformation
Please cite this article as: Yang B et al., Spatiotemporal deformation char
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driven primarily by the cumulative monthly rainfall in the past
one or two months. Additionally, the reservoir water level also
contributes to the deformation of the middle and rear parts of
the Outang landslide, through its influence is mainly on the
movement of the leading part. This condition may originate
from the interaction of deformation among these three sub-
units.
acteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Table 3
Clustering results of triggering factors for monthly data.

Category Factor Clustering result Qualitative value Count

Reservoir level h (m) 167.97e174.92 High-water-level 29
157.61e167.39 Medium-water-level 19
146.63e157.18 Low-water-level 23

Dh1 (m) 0e6.78 Slowly-variation 53
7.48e17.24 Sharply-variation 18

Dh2 (m) 0.02e9.23 Slowly-variation 47
10.54e23.37 Sharply-variation 24

Dhd (m) 0e0.72 Slowly-drop 47
0.8e1.64 Medium-drop 22
2.78e4.12 Sharply-drop 2

Rainfall q1 (mm) 0e155.1 Light-cumulative-rainfall 64
171.6e293 Heavy-cumulative-rainfall 7

q2 (mm) 6e347.5 Light-cumulative-rainfall 65
360.4e549.1 Heavy-cumulative-rainfall 6
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4.2.2. Association criteria mining results based on daily data
Twelve hydrologic factors (h

day
, Dhday1 , Dhday5 , Dhday10 , Dhday30 ,

Dhdayd�5, Dh
day
d�10, Dh

day
d�30, q

day
1 , qday5 , qday10 , qday30 ) are treated as ante-

cedents, while the daily displacement rate is set as the consequent
in the rule generator. The association rules for three daily moni-
toring stations located in distinct areas of the landslide are dis-
played in Fig. 17.

4.2.2.1. The association rules of FJ06. The monitoring point FJ06 lies
in the first sub-unit. Due to the small number of the daily
displacement rate of FJ06 belonging to the P2 category, merely four
association rules are mined. Rules E1 to E4 suggest that P2 with a
high daily displacement rate is prone to appear when the 5-
d cumulative drop of reservoir water level (Dhdayd�5) ranges from
4.69 m to 9.94 m (sharply-variation), and the 30 d cumulative
rainfall (qday30 ) is in the interval of 135.5e344.4 mm (medium-cu-
mulative-rainfall). It can be concluded that a continuous reservoir
level sharp drawdown and prolonged heavy rainfall contribute to
aggravating landslide deformation in this sub-unit.

4.2.2.2. The association rules of FJ08. As many as 338 association
rules are acquired for FJ08 and ten of them are presented in Fig. 17.
Rules F1 to F7 indicate that when cumulative rainfall over 10 d
(qday10 ) reaches a medium state (88e314 mm), the landslide tends to
deform more severely. Some factors of reservoir water level (Dhday5
and Dhdayd�30) appear in these rules but the water level variations are
in a slow state. Rules F8 to F10 disclose that the cumulative drop of
reservoir level over 5 d (Dhdayd�5) under a sharp reservoir level vari-
ation condition can be responsible for the landslide entering the P2
stage. Moreover, the medium cumulative rainfall over 30 d (134e
314 mm) plays a role in the movement of the Outang landslide.
Alternately, medium rainfall alone (Dhday10 ) or a sharp drop in the
reservoir level (Dhdayd�5) accompanied by medium cumulative rain-
fall (qday30 ) has the potential to initiate severe deformation in the
second sub-unit.

4.2.2.3. The association rules of FJ10. The monitoring point FJ10 is
situated on the third sub-unit. Ten association rules were selected
from over 300 association rules. Among these ten rules, the first 9
rules are related to reservoir water level fluctuation, while the 10th
rule is related to rainfall. Rules G1 to G4 indicate that when the 5- or
10-d variation of reservoir water level (Dhday5 and Dhday10 ) is in a
sharp variation state or the 30-d variation (Dhday30 ) is in a medium
variation state, the landslide could move rapidly. Rules G5 to G9
indicate that a sharp variation of 5- or 10-d cumulative drop in the
water reservoir level can induce rapid landslide deformation. In
addition, a 30-d cumulative rainfall with the state of “medium-
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cumulative-rainfall” (qday30 ) appears in Rules G1 to G9, exhibiting its
effect on landslide deformation. Rule G10 has the single factor of
rainfall, meaning that continued heavy rainfall over 30 d with 714e
1020mmof precipitation can lead to the landslide into the P2 stage.

The data mining results from the monitoring data on a daily
time scale suggest that the leading edge of the landslide deforms
significantly under the combined influences of reservoir water level
fluctuation and rainfall. The medium cumulative rainfall in 10 d or
heavy rainfall in 30 d alone can induce severe deformation of the
middle and rear parts of the landslide. Additionally, a medium
cumulative rainfall over 30 d is required if the reservoir water level
tends to cause deformations in these two parts. Notably, landslide
displacement cannot increase immediately with changes in the
reservoir water level change and rainfall. It may take 5 d for the
drop in water level to trigger landslide deformation and the time
interval becomes longer as the distance to the dam reservoir in-
creases from the toe to the trailing edge. A similar situation is
observed for rainfall, with the required duration of the rainfall
inducing a severe increase in the landslide displacement is 10 d.

5. Discussion

5.1. Spatiotemporal deformation characteristics

Based on the landslide field observations and surficial move-
ment monitoring, the deformation of the Outang landslide varies
both temporally and spatially. Temporally, a deformation peak can
occur every few years and this phenomenon may relate to the
change in external conditions and landslide structure (Zhang et al.,
2020). Spatially, the deformation characteristics vary in three
subzones of the Outang landslide, as well as within each subzone.
Deformation was observed initially in the leading edge while the
monitored displacement increased from the toe to the trailing edge
thereafter. Furthermore, landslide deformation varies in the same
subzone. For example, the west side deforms more severely than
the east side in the second mass and the opposite is observed for
the third sub-unit.

Spatial variability of deformation can cause localized sliding and
result in damage to residents and facilities (Wang et al., 2015; Yao
et al., 2019). It is therefore important to distinguish the relation-
ships between the movement of each sub-unit and the triggering
factors. The conclusions from this can be beneficial for zoning
warnings and risk management of landslides.

5.2. Impact of monitoring data frequency on trigger identification

The monitoring system at the Outang landslide provides both
monthly and daily data. These data have been utilized to investigate
factors inducing landslide deformation through data mining tech-
niques. The study indicates that different conclusions are drawn if
data with different monitored time scales are used. For illustration,
MJ08 and FJ08 are two representative monitoring points at the
Outang landslide, which are adjacent to each other in the second
sub-unit (Fig. 2a). Mining results with association rules for MJ08
indicate that monthly (q1) and bi-monthly (q2) cumulative rainfall
are significant factors among the six candidate hydrological factors
(Fig. 16). On the other hand, for FJ08 with daily data, the prominent
factors identified are the 10-d cumulative rainfall (qday10 ) and 5-
d cumulative drop of reservoir water level (Dhdayd�5) (Fig. 17). A
monitoring system with higher monitoring frequency should
therefore be used for a more effective early warning system.

In addition, the relationships between landslide deformation
and influencing factors may change because of other factors. It is
difficult, maybe unrealistic at this time, to use all the data to
research cause-and-effect relationships (Yang et al., 2019).
cteristics of Outang landslide and identification of triggering factors
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Table 4
Clustering results of the monthly velocity.

Monthly velocity, v (mm/month) Clustering result

�17.7e14.6 V1
15e89.6 V2

Fig. 14. Clustering results of the monitoring sites with monthly data.

Table 5
Clustering results of triggering factors for daily data.

Category Factor Clustering
result

Qualitative value Count

Reservoir water
level

h
day

(m/
d)

168.27
e175.43

High-water-level 588

157.21
e168.24

Medium-water-level 482

145.55
e157.15

Low-water-level 761

Dhday1 (m) 0e0.58 Slowly-variation 1516
0.59e1.75 Medium-variation 272
1.8e5.63 Sharply-variation 43

Dhday5 (m) 0e4.6 Slowly-variation 1746
4.69e9.94 Sharply-variation 85

Dhday10 (m) 0e5.71 Slowly-variation 1685
5.72e16.05 Sharply-variation 176

Dhday30 (m) 0e6.96 Slowly-variation 1296
6.97e14.41 Medium-variation 413
14.44e22.17 Sharply-variation 122

Dhdayd�5
(m)

0e2.78 Slowly-variation 1727
2.79e5.96 Sharply-variation 104

Dhdayd�10
(m)

0e4.7 Slowly-variation 1706
4.77e9.41 Sharply-variation 125

Dhdayd�30
(m)

0e5.89 Slowly-variation 1187
5.91e11.81 Medium-variation 544
11.85e18.05 Sharply-variation 100

Rainfall qday1 (mm) 0e116 Light-daily-rainfall 263
226e516.9 Heavy-daily-rainfall 1568

qday5 (mm) 0e47 Light-cumulative-rainfall 1700
48e240 Medium-cumulative-

rainfall
126

577.4e658 Heavy-cumulative-
rainfall

5

qday10 (mm) 0e85.3 Light-cumulative-rainfall 1718
88.1e314.1 Medium-cumulative-

rainfall
102

616.8e771.8 Heavy-cumulative-
rainfall

10

qday30 (mm) 0e134 Light-cumulative-rainfall 1507
135.5e344.4 Medium-cumulative-

rainfall
294

714.1e1019.7 Heavy-cumulative-
rainfall

30

Table 6
Clustering results of the daily velocity.

Daily velocity, v (mm/d) Clustering result

�6.4e0.4 P1
0.4e45 P2

Fig. 15. Clustering results of the monitoring sites with daily data.
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5.3. Future work

Previous research finds that there is a difference in landslide
deformation resulting from the mechanism and evolution process
of a landslide. The sliding material on the west side of the second
sub-unit is more fractured than on the east side (Luo and Huang,
2020). Besides the difference in local inherent conditions in the
different parts of the landslide and the interaction of deformation
between the sub-units, another factor that can contribute to the
deformation variability is the response of each sub-unit to external
factors. To better understand this variability in landslide deforma-
tion, further investigation is needed to determine why different
parts of landslides exhibit different responses to external factors.
6. Conclusions

The Outang landslide has been monitored through monthly and
daily measurements for several years. The deformation character-
istics of the Outang landslide are studied based on the latest
monitoring data and site investigations. It is found that landslide
deformation varies spatiotemporally due to mainly the different
local responses to hydrological parameters (reservoir level change
and rainfall). The spatiotemporal characteristics of landslide
deformation led to the challenge of finding the causal relationship
between hydrological indicators and landslide movement.

A data mining approach, combining the two-step cluster
method and the Apriori algorithm, is adopted to identify the causal
factor of the Outang landslide movement in the TGRA. The analysis
looks into different locations within the Outang landslide, using
monitoring data taken at different intervals: “long-term” defor-
mation (monthly) and “short-term” deformation (daily). The lon-
gitudinal observation of the correlation criteria suggests that the
deformation is driven by both rainfall and water level in the dam
reservoir. However, the key triggering factor shifts from reservoir
water level to rainfall from the toe to the trailing edge of the Outang
landslide. Based on the data mining results of monthly data, the
monthly and bi-monthly cumulative rainfall are identified to be the
acteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030



Fig. 16. Association criteria of MJ01, MJ05, MJ08, MJ21 monitoring point. The numbers within the boxes indicate their sequence in a correlation rule. A1 represents an association
rule that the antecedent items are “Dh1 ¼ sharply-variation, h ¼ low-water-level and Dh2 ¼ slowly-variation” and the consequence is monthly displacement rate.

Fig. 17. Association criteria of FJ06, FJ08, FJ10 monitoring points. The numbers within the boxes indicate their sequence in a correlation rule. E1 represents an association rule that
the antecedent items are “Dhdayd�5 ¼ sharply-variation, qday30 ¼ medium-cumulative-rainfall, Dhdayd�30 ¼ medium-variation and Dhday5 ¼ slowly-variation” and the consequence is daily
displacement rate.
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dominant triggering factors. The data mining of the daily rainfall
reveals that the 10-d cumulative rainfall and 5-d cumulative drop in
reservoir water level dominate as influential hydrological factors. It
was found effective to integrate the two datasets covering varying
monitoring periods and frequency, thus providing insight into the
influence of the different hydrological factors. The information can
then be exploited further to form a basis for effective early warning
routines.

Understanding spatiotemporal deformation characteristics and
identifying triggers on different parts of landslides can contribute
to more efficient landslide prevention and control. Research on
spatiotemporal deformation and establishing data mining rules
relating to rainfall and dam reservoir level, as done in this paper,
can be applied to other landslides in the TGRA and in other
locations.
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
Acknowledgments

This research was supported by the Natural Science Foundation
of Shandong Province, China (Grant No. ZR2021QD032). The first
author wishes to thank the China Scholarship Council (CSC) and the
Norwegian Geotechnical Institute (NGI) for funding her research
period at NGI. The authors wish to thank Dr. Zizheng Guo, Dr. Ting
Xiao, and Dr. Fasheng Miao for their assistance in collecting the
data.
References

Abdullah, U., Ahmad, J., Ahmed, A., 2008. Analysis of effectiveness of apriori algo-
rithm in medical billing data mining. In: Proceedings of the 4th International
Conference on Emerging Technologies. Rawalpindi, Pakistan, pp. 327e331.

Agrawal, R., Imieli�nski, T., Swami, A., 1993. Mining association rules between sets of
items in large databases. ACM SIGMOD Record. ACM 22 (2), 207e216.

Aranganayagi, S., Thangavel, K., 2007. Clustering categorical data using silhouette
coefficient as a relocating measure. In: Proceeding of the International Con-
ference on Computational Intelligence and Multimedia Applications (ICCIMA
2007), Sivakasi, India, pp. 13e17.

Benassi, M., Garofalo, S., Ambrosini, et al., 2020. Using two-step cluster analysis and
latent class cluster analysis to classify the cognitive heterogeneity of cross-
diagnostic psychiatric inpatients. Front. Psychol. 11, 1085.

Borgelt, C., Kruse, R., 2002. Induction of association rules: apriori implementation.
In: Proceeding of the 15th Conference on Computational Statistics, Heidelberg,
Germany, pp. 395e400.

Chinkulkijniwat, A., Tirametatiparat, T., Supotayan, C., Yubonchit, S., 2019. Stability
characteristics of shallow landslide triggered by rainfall. J. Mt. Sci. 16, 2171e
2183.

Chiu, T., Fang, D.P., Chen, J., Yao, W., Jeris, C., 2001. A robust and scalable clustering
algorithm for mixed type attributes in large database environment. In: Pro-
ceedings of the 7th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. CA, USA, pp. 263e268.

Chongqing Municipal Planning and Natural Resources Bureau, 2021. Annual
Geological Disaster Prevention and Control Program of Chongqing in 2021.
Chongqing Municipal Planning and Natural Resources Bureau, Chongqing.

Dai, Z.W., Yin, Y.P., Wei, Y.J., Lü, T., Luo, J.H., Yao, W., 2016. Deformation and failure
mechanism of Outang landslide in three Gorges reservoir area. J. Eng. Geol. 24
(1), 44e55 (in Chinese).

Dai, Z.W., Zhang, C.Y., Wang, L., Fu, Y.P., Zhang, Y., 2021. Interpreting the influence of
rainfall and reservoir water level on a large-scale expansive soil landslide in the
Danjiangkou Reservoir region. China. Eng. Geol. 288, 106110.

Davies, E., 2005. Machine Vision: Theory, Algorithms, Practicalities, third ed. Mor-
gan Kaufmann Publishers, San Francisco, CA, USA.

Fourniadis, I.G., Liu, J.G., Mason, P.J., 2007. Regional assessment of landslide impact
in the Three Gorges area, China, using ASTER data: Wushan-Zigui. Landslides 4,
267e278.

Franceschini, R., Rosi, A., Catani, F., Casagli, N., 2022. Exploring a landslide inventory
created by automated web data mining: the case of Italy. Landslides 19 (4),
841e853.
Please cite this article as: Yang B et al., Spatiotemporal deformation char
using data mining, Journal of Rock Mechanics and Geotechnical Enginee
Froude, M.J., Petley, D.N., 2018. Global fatal landslide occurrence from 2004 to 2016.
Nat. Hazards Earth Syst. Sci. 18, 2161e2181.

Gariano, S.L., Guzzetti, F., 2016. Landslides in a changing climate. Earth Sci. Rev. 162,
22e252.

Gariano, S.L., Melillo, M., Peruccacci Brunetti, M.T., 2020. How much does the
rainfall temporal resolution affect rainfall thresholds for landslide triggering?
Nat. Hazards 100, 655e670.

Guo, Z.Z., Chen, L.X., Yin, K.L., Shrestha, D.P., Zhang, L., 2020. Quantitative risk
assessment of slow-moving landslides from the viewpoint of decision-
making: a case study of the Three Gorges Reservoir in China. Eng. Geol. 273,
105667.

Guo, X.F., Dias, D., Carvajal, C., Peyras, L., Breul, P., 2022a. Three-dimensional
probabilistic stability analysis of an earth dam using an active learning meta-
modeling approach. Bull. Eng. Geol. Environ. 81, 1e20.

Guo, L.J., Miao, F.S., Zhao, F.C., Wu, Y.P., 2022b. Data mining technology for the
identification and threshold of governing factors of landslide in the Three
Gorges Reservoir Area. Stoch. Environ. Res. Risk Assess. 36, 3997e4012.

Guzzetti, F., Mondinia, A.C., Cardinali, M., Fiorucci, F., Santangeloab, M., Chang, K.T.,
2012. Landslide inventory maps: new tools for an old problem. Earth Sci. Rev.
112 (1e2), 42e66.

Guzzetti, F., Gariano, S.L., Peruccacci, S., et al., 2020. Geographical landslide early
warning systems. Earth Sci. Rev. 200, 102973.

He, T., Zhu, S.N., Wang, H., Wang, J.W., Qing, T., 2022. The diagnosis of satellite
flywheel bearing cage fault based on two-step clustering of multiple acoustic
parameters. Measurement 201, 111683.

Izakian, H., Abraham, A., 2011. Fuzzy C-means and fuzzy swarm for fuzzy clustering
problem. Expert Syst. Appl. 38 (3), 1835e1838.

Jain, A.K., Duin, R.R.P.W., Mao, J.C., 2000. Statistical pattern recognition: a Review.
IEEE Trans. Pattern Anal. Mach. Intell. 22 (1), 4e37.

Kumar, R., Anbalagan, R., 2015. Landslide susceptibility zonation in part of Tehri
reservoir region using frequency ratio, fuzzy logic and GIS. J. Earth Syst. Sci. 124,
431e448.

Lee, C.Y., Antonsson, E.K., 2000. Dynamic partitional clustering using evolution
strategies. In: Proceeding of the 26th Annual Conference of the IEEE Industrial
Electronics Society. Nagoya, Japan, pp. 2716e2721.

Lee, S.J., Siau, K., 2002. A review of data mining techniques. Ind. Manag. Data Syst.
101 (1), 41e46.

Liao, K., Zhang, W., Zhu, H.H., et al., 2022. Forecasting reservoir-induced landslide
deformation using genetic algorithm enhanced multivariate Taylor series Kal-
man filter. Bull. Eng. Geol. Environ. 81, 104.

Luo, S.L., Huang, D., 2020. Deformation characteristics and reactivation mechanisms
of the Outang ancient landslide in the Three Gorges Reservoir, China. Bull. Eng.
Geol. Environ. 79, 3943e3958.

Ma, J.W., Tang, H.M., Hu, X.L., et al., 2017. Identification of causal factors for the
Majiagou landslide using modern data mining methods. Landslides 14, 311e
322.

Mandal, K., Saha, S., Mandal, S., 2021. Applying deep learning and benchmark
machine learning algorithms for landslide susceptibility modelling in Rorachu
river basin of Sikkim Himalaya, India. Geosci. Front. 12 (5), 101203.

McClean, S.I., 2003. Data mining and knowledge discovery. In: Meyers, R.A. (Ed.),
Encyclopedia of Physical Science and Technology, 3rd ed. Academic Press, New
York, NY, USA, pp. 229e246.

Miao, F.S., Wu, P.Y., Li, L.W., Liao, K., Xue, Y., 2021. Triggering factors and threshold
analysis of baishuihe landslide based on the data mining methods. Nat. Hazards
105, 2677e2696.

Miao, F.S., Wu, Y.P., Török, Á., Li, L.W., Xue, Y., 2022. Centrifugal model test on a
riverine landslide in the Three Gorges Reservoir induced by rainfall and water
level fluctuation. Geosci. Front. 13 (3), 101378.

Mirus, B.B., Jones, E.S., Baum, R.L., et al., 2020. Landslides across the USA: occur-
rence, susceptibility, and data limitations. Landslides 17 (10), 2271e2285.

Nayak, J., Naik, B., Behera, H.S., 2015. Fuzzy C-Means (FCM) clustering algo-
rithm: a decade review from 2000 to 2014. Comput. Intell. Data Mining 2,
133e149.

Park, J.Y., Lee, S.R., Lee, D.H., Kim, Y.T., Lee, J.S., 2019. A regional-scale landslide early
warning methodology applying statistical and physically based approaches in
sequence. Eng. Geol. 260, 105193.

Pasierb, B., Grodecki, M., Gwó�zd�z, R., 2019. Geophysical and geotechnical approach
to a landslide stability assessment: a case study. Acta Geophys. 67, 1823e1834.

Pecoraro, G., Calvello, M., Piciullo, L., 2019. Monitoring strategies for local landslide
early warning systems. Landslides 16 (2), 213e231.

Strauhal, T., Loew, S., Holzmann, M., Zangerl, C., 2016. Detailed hydrogeological
analysis of a deep-seated rockslide at the Gepatsch reservoir (Klasgarten,
Austria). Hydrogeol. J. 24 (2), 349e371.

Sun, P., Wang, H.J., Wang, G., Li, R.J., Zhang, Z., Huo, X.T., 2021. Field model exper-
iments and numerical analysis of rainfall-induced shallow loess landslides. Eng.
Geol. 295, 106411.

Tang, H.M., Wasowski, J., Juang, C.H., 2019. Geohazards in the three Gorges reservoir
area, China - lessons learned from decades of research. Eng. Geol. 261, 105267.

Tomás, R., Li, Z., Lopez-Sanchez, J.M., Liu, P., Singleton, A., 2016. Using wavelet tools
to analyse seasonal variations from InSAR time-series data: a case study of the
Huangtupo landslide. Landslides 13, 437e450.

Wang, X.M., Pedrycz, W., Niu, R.Q., 2015. Spatio-temporal analysis of quaternary
deposit landslides in the three Gorges. Nat. Hazards 75, 2793e2813.

Wang, J.G., Daniel, S., Liu, Q.B., Su, A.J., Hu, X.L., Blum, P., 2021. Three-dimensional
landslide evolution model at the Yangtze River. Eng. Geol. 292, 106275.
acteristics of Outang landslide and identification of triggering factors
ring, https://doi.org/10.1016/j.jrmge.2023.09.030

http://refhub.elsevier.com/S1674-7755(24)00015-5/sref1
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref1
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref1
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref1
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref2
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref2
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref2
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref2
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref3
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref3
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref3
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref3
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref3
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref4
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref4
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref4
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref6
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref6
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref6
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref6
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref7
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref7
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref7
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref8
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref8
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref8
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref8
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref8
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref9
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref9
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref9
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref10
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref10
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref10
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref10
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref11
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref11
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref11
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref12
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref12
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref13
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref13
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref13
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref13
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref14
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref14
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref14
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref14
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref15
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref15
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref15
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref16
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref16
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref16
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref17
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref17
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref17
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref17
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref18
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref18
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref18
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref18
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref19
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref19
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref19
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref19
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref20
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref20
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref20
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref20
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref21
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref21
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref21
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref21
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref21
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref22
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref22
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref23
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref23
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref23
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref24
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref24
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref24
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref25
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref25
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref25
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref26
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref26
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref26
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref26
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref27
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref27
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref27
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref27
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref28
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref28
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref28
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref29
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref29
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref29
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref30
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref30
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref30
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref30
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref31
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref31
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref31
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref32
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref32
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref32
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref33
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref33
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref33
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref33
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref34
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref34
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref34
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref34
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref35
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref35
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref35
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref36
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref36
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref36
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref37
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref37
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref37
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref37
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref38
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref38
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref38
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref39
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref39
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref39
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref39
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref39
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref40
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref40
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref40
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref41
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref41
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref41
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref41
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref42
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref42
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref42
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref43
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref43
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref44
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref44
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref44
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref44
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref45
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref45
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref45
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref46
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref46


B. Yang et al. / Journal of Rock Mechanics and Geotechnical Engineering xxx (xxxx) xxx 17
Wang, L., Wu, C.Z., Yang, Z.Y., Wang, L.Q., 2023. Deep learning methods for time-
dependent reliability analysis of reservoir slopes in spatially variable soils.
Comput. Geotech. 159, 105413.

Weidner, L., DePrekel, K., Oommen, T., Vitton, S., 2019. Investigating large landslides
along a river valley using combined physical, statistical, and hydrologic
modeling. Eng. Geol. 259 (4), 105169.

Wu, X.D., Zhu, X.Q., Wu, G.Q., Ding, W., 2014. Data mining with big data. IEEE Trans.
Knowl. Data Eng. 26 (1), 97e107.

Wu, X.L., Zhan, F.B., Zhang, K.X., Deng, Q.L., 2016. Application of a two-step cluster
analysis and the Apriori algorithm to classify the deformation states of two
typical colluvial landslides in the Three Gorges, China. Environ. Earth Sci. 75,
146.

Yan, J.B., Zou, Z.X., Mu, R., et al., 2022. Evaluating the stability of Outang landslide in
the Three Gorges Reservoir area considering the mechanical behavior with
large deformation of the slip zone. Nat. Hazards 112, 2523e2547.

Yao, W., Li, C.D., Zuo, Q.J., Zhan, H.B., Criss, R.E., 2019. Spatiotemporal deformation
characteristics and triggering factors of Baijiabao landslide in Three Gorges
Reservoir region, China. Geomorphology 343, 34e47.

Yang, B.B., Yin, K.L., Xiao, T., Chen, L.X., Du, J., 2017. Annual variation of landslide
stability under the effect of water level fluctuation and rainfall in the Three
Gorges Reservoir, China. Environ. Earth Sci. 76, 564.

Yang, B.B., Yin, K.L., Lacasse, S., Liu, Z.Q., 2019. Time series analysis and long short-
term memory neural network to predict landslide displacement. Landslides 16
(4), 677e694.

Yang, B.B., Xiao, T., Wang, L.Q., Huang, W., 2022. Using complementary ensemble
empirical mode decomposition and gated recurrent mass to predict landslide
displacements in dam reservoir. Sensors 22, 1320.

Yin, Y.P., Wang, H.D., Gao, Y.L., Li, X.C., 2010. Real-time monitoring and early
warning of landslides at relocated wushan town, the three Gorges reservoir,
China. Landslides 7 (3), 339e349.
Please cite this article as: Yang B et al., Spatiotemporal deformation chara
using data mining, Journal of Rock Mechanics and Geotechnical Enginee
Zhang, Y.G., Zhu, S.Y., Tan, J.K., Li, L.D., Yin, X.J., 2020. The influence of water level
fluctuation on the stability of landslide in the Three Gorges Reservoir. Arabian J.
Geosci. 13, 845.

Zhang, W.G., Li, H.R., Han, L., Chen, L.L., Wang, L., 2022a. Slope stability prediction
using ensemble learning techniques: a case study in Yunyang County,
Chongqing, China. J. Rock Mech. Geotech. Eng. 2022 14 (4), 1089e1099.

Zhang, W.G., Li, H.R., Tang, L.B., Gu, X., Wang, L.Q., Wang, L., 2022b. Displacement
prediction of Jiuxianping landslide using gated recurrent unit (GRU) networks.
Acta. Geotech. 17, 1367e1382.

Zhang, W.G., Wu, C.Z., Tang, L.B., Gu, X., Wang, L., 2022c. Efficient time-variant
reliability analysis of bazimen landslide in the three Gorges reservoir area us-
ing XGBoost and LightGBM algorithms. Gondwana Res. 123, 41e53.

Zhou, C., Cao, Y., Yin, K.L., Intrieri, E., Catani, F., Wu, L.X., 2022. Characteristic
comparison of seepage-driven and buoyancy-driven landslides in Three Gorges
Reservoir area, China. Eng. Geol. 301, 106590.

Beibei Yang obtained her BSc and PhD degrees in
Geological Engineering from China University of Geo-
sciences (Wuhan) in 2013 and 2019, respectively. She is
now an associate professor of School of Civil Engineering
in Yantai University. She is also a postdoctoral researcher
at Norwegian Geotechnical Institute (NGI), a world-
renowned research institute in geotechnical engineering.
Her research interests include: (i) landslide monitoring
and stability evaluation, and (ii) landslide prediction and
risk assessment.
cteristics of Outang la
ring, https://doi.org/10
ndslide and identification of triggering factors
.1016/j.jrmge.2023.09.030

http://refhub.elsevier.com/S1674-7755(24)00015-5/sref47
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref47
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref47
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref48
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref48
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref48
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref49
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref49
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref49
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref50
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref50
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref50
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref50
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref51
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref51
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref51
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref51
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref52
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref52
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref52
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref52
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref53
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref53
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref53
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref54
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref54
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref54
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref54
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref55
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref55
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref55
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref56
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref56
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref56
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref56
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref57
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref57
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref57
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref58
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref58
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref58
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref58
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref59
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref59
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref59
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref59
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref60
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref60
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref60
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref60
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref61
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref61
http://refhub.elsevier.com/S1674-7755(24)00015-5/sref61

	Spatiotemporal deformation characteristics of Outang landslide and identification of triggering factors using data mining
	1. Introduction
	2. Materials and methods
	2.1. Geological setting of the outang landslide
	2.2. Field observations and monitoring system
	2.2.1. Field observations
	2.2.2. Monitoring system

	2.3. Data mining technology
	2.3.1. Two-step clustering
	2.3.2. Apriori algorithm
	2.3.2.1. Searching for frequent itemsets
	2.3.2.2. Generating association rules

	2.3.3. Data mining process
	2.3.3.1. Preparation of data for mining
	2.3.3.2. Grouping monitoring data into clusters based on numerical values
	2.3.3.3. Exploration of association rules



	3. Deformation characteristics of outang landslide
	3.1. Deformation characteristics of outang landslide based on monthly monitoring data
	3.1.1. Spatial deformation characteristics
	3.1.2. Temporal deformation characteristics
	3.1.3. Relationships between displacement, rainfall, and reservoir level

	3.2. Deformation characteristics of outang landslide based on daily monitoring data
	3.2.1. Spatial deformation characteristics
	3.2.2. Temporal deformation characteristics
	3.2.3. Relationships between displacement, rainfall, and reservoir level


	4. Hydrological triggers based on data mining technology
	4.1. Clustering results
	4.1.1. Clustering results of monthly data
	4.1.2. Clustering results of daily data

	4.2. Association criteria mining
	4.2.1. Association criteria mining results based on monthly data
	4.2.1.1. The association rules of MJ01
	4.2.1.2. The association rules of MJ05
	4.2.1.3. The association rules of MJ08
	4.2.1.4. The association rules of MJ21

	4.2.2. Association criteria mining results based on daily data
	4.2.2.1. The association rules of FJ06
	4.2.2.2. The association rules of FJ08
	4.2.2.3. The association rules of FJ10



	5. Discussion
	5.1. Spatiotemporal deformation characteristics
	5.2. Impact of monitoring data frequency on trigger identification
	5.3. Future work

	6. Conclusions
	Declaration of competing interest
	Acknowledgments
	References


