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1 INTRODUCTION 
In hydrocarbon prospection, the inversion of marine geophysical data for remote reservoir 
characterization has developed enormously over the past 20+ years1. While some techniques (e.g., 
waveform inversion2) are computationally expensive to permit widespread application across all 
targets, other less expensive variants (e.g., impedance3 and amplitude-versus-angle inversion4) 
have become a standard component of most interpretation workflows. In contrast, there has been 
very little progress toward the remote classification of near-surface sediments through the inversion 
of high-resolution geophysical data5,6,7, with both academia and industry relying on extensive coring 
and stratigraphic correlations. 
 
However, accurate stratigraphic correlation can be difficult due to inaccuracies in the time-to-depth 
conversion of the geophysical data, and the potential for loss and/or compression of high porosity 
and poorly-consolidated seafloor material during the intrusive sampling process. Additionally, when 
dealing with near-surface sediments (top 10s m below seafloor), the sampling procedure inherently 
alters the nature of the sampled material, introducing uncertainties on key mechanical parameters 
(e.g., porosity and undrained shear strength) that are difficult to quantify. 
 
Recently, a new inversion method was presented8, which is based on the application of post-stack 
acoustic impedance inversion to high-resolution marine seismic reflection data using a genetic 
algorithm and a convolutional forward model. Here, we further test this approach using a synthetic 
example and a marine, near-surface geophysical case study from a fjordic environment in Norway. 
We characterize the robustness of the algorithm under a variety of noise conditions and utilize the 
stochastic optimization approach to derive 95% confidence limits as well as a statistically ‘best’ 
model. Furthermore, we show how, through the use of global empirical relationships, soil 
mechanical properties can be derived (including effective stress, over pressure, clay/sand fraction 
and moisture content), while, through the application of soil mechanical models (e.g., White’s 
model), it is possible to estimate gas saturation. 
 
In both case studies (synthetic and field), the inversion results demonstrate excellent correlation 
with direct sampling, even in the presence of modest noise contamination. We can identify metre-
scale stratigraphic changes, as well as subtle decimetre-scale structures, such as a 40 cm thick 
composite landslide glide plane. The high-fidelity remote derivation of such soil properties has 
significant applications, both within academia and the offshore services/exploration industry. 
 
2 INVERSION METHODOLOGY 
To perform the inversion of high-resolution seismic reflection data, we use the post-stack acoustic 
impedance inversion algorithm of Vardy8. This algorithm combines a convolutional forward model9 
with a genetic optimizer10,11 to derive an estimated acoustic impedance log at each trace location. 
 
The algorithm works by generating an initially random family of impedance models within a user-
specified impedance range, from which an associated family of synthetic traces are calculated 
through convolution with a theoretical source waveform (Fig. 1). The fitness of each impedance 
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model in the family is estimated by calculating the residual between the associated synthetic trace 
and the field seismic trace. The subsequent generation of models is then populated using the 
Stochastic Remainder technique12, in which all models with a good fitness value are carried forward 
along with a random selection of those with a poorer fitness value. This new generation of models 
are then paired so they can be crossed-over and mutated in a randomized manner that mimics the 
biological process of natural selection10, before a new family of associated synthetic traces are 
calculated. This process of natural selection is controlled by the user-specified cross-over and 
mutation probabilities, which parameterize the likelihood of two paired samples swapping (crossing-
over) or a particular sample being replaced by another randomly determined value (mutating). This 
procedure continues until an appropriate termination clause is satisfied; either the maximum 
number of generations is reached, the residual between the optimum model and field trace data 
drops below a user-defined threshold, or the gradient of the generation-to-generation residual 
evolution reaches steady-state. 
 
While a Genetic Algorithm (GA) is significantly more computationally expensive than a traditional 
deterministic optimization method11, the advantages are three-fold. Firstly, the randomly generated 
starting generation of models means that no user-defined starting model is provided and therefore 
the final model is determined purely from the field seismic data. As such  the final impedance model 
is disconnected from interpreter bias and the inversion algorithm independently derives an optimum 
model that statistically provides the best global fitness solution. Secondly, because a large amount 
of impedance space is tested during the inversion (typically 200 runs with 500 generations of 900 
models for the examples presented), statistically meaningful Probability Density Functions (PDFs) 
can be calculated for every sample at each trace location. This allows 95% confidence limits to be 
calculated as well as the statistically optimum solution. Thirdly, stochastic optimization algorithms, 
such as a GA10 or Simulated Annealing13, offer a robust optimization solution even in the presence 
of significant noise contamination. For a GA, the mutation operator allows the algorithm to 
continually probe a broad region of the parameter space, affording it a mechanism to move beyond 
local minima in the optimization space towards the global minimum. 
 

 
Figure 1. Flow diagram illustrating the application of a Genetic Algorithm and convolutional model 
for the acoustic impedance inversion of high-resolution marine seismic reflection data. Figure 
adjusted from Vardy8. 
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Figure 2. Comparison of noise free synthetic seismic trace and inversion results. Panels (a) and (c) 
show the synthetic trace and accompanying impedance profile, respectively, while panels (b) and 
(d) show the associated inversion results. Panel (e) presents the Probability Density Function for 
the inverted impedance model derived from 200 independent runs. 
 
3 SYNTHETIC EXAMPLE 
To illustrate the application of a GA for the inversion of high-resolution marine seismic reflection 
data, we first invert a noise-free synthetic example (Fig. 2). The synthetic trace was generated using 
a Chirp source wavelet that sweeps linearly from 1.5 kHz to 13.0 kHz over 32 ms with sine-squared 
to the 8th power tapers14. The synthetic earth model consisted of; a strong seafloor interface with an 
impedance contrast of +500 m/s g/cm3, above a sequence of stacked, low impedance thin beds 1.0 
ms TWT apart and 0.1 ms TWT thick. The impedance contrast between the thin beds and the 
background impedance systematically reduced with depth, consisting of: -250 m/s g/cm3 at 1.0 ms 
TWT below the seafloor; -200 m/s g/cm3; -150 m/s g/cm3; -100 m/s g/cm3; -50 m/s g/cm3; and -25 
m/s g/cm3 at 6.0 ms TWT below the seafloor. This resulted in subsurface reflection amplitudes 
varying between half and 1/20th of the seafloor reflection amplitude. 
 
The thickness of the thin beds was deliberately chosen such that it should theoretically be 
resolvable given a source waveform of the frequency bandwidth used, but still challenged the ability 
of the inversion algorithm to constrain high-fidelity sub-surface structure where reflected wavelets 
interact. The reducing impedance contrast between the thin beds and background simultaneously 
provided an insight into the limiting impedance contrast resolution of the algorithm. 
 
3.1 Confidence Limits 

Figure 2 shows the results of running a post-stack acoustic impedance inversion of the noise-free 
synthetic data example. Figure 2a and 2b compare the original and inverted trace data, whereas 
Figures 2c and 2d compare the original and inverted impedance structure. The inversion results 
presented in Figures 2b and 2d were generated from 200 independent inversions, each with 500 
generations consisting of 900 models and with cross-over and mutation probabilities of 0.5 and 
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0.001, respectively. Figure 2d corresponds to the median impedance value calculated at each 
subsurface sample from the final model outputs for all 200 independent runs, and therefore 
represents the statistically ‘best’ impedance estimate for each subsurface sample. Figure 2b is the 
synthetic trace generated from this ‘best’ impedance model. 
 
The inverted ‘best’ impedance model and trace very closely match the synthetic data. Both the 
amplitude and phase of the seismic trace are excellently replicated, while the thickness and 
amplitude of the thin beds are well replicated in the inverted impedance data. There is some 
leakage of structure around the thin beds resulting in small increases in impedance (up to 30 m/s 
g/cm3) immediately above and below each bed, which is indicative of the inversion slightly over 
complicating the impedance profile in an attempt to replicate the complex composite wavelets 
formed by these thin beds (a common issue with similar inverse problems). 
 
In addition to deriving a ‘best’ impedance model, the GA also permits the calculation of statistically 
robust PDFs for each subsurface sample, shown in Figure 2e where warmer colours correspond to 
impedances with a higher probability density. These results indicate that for most samples the 
absolute 95 % confidence limits associated with the value of the ‘best’ impedance model are ≤ ± 50 
m/s g/cm3. However, these results also indicate that the sensitivity to relative changes in acoustic 
impedance between adjacent samples is better than 50 m/s g/cm3, with all thin beds down to the -
50 m/s g/cm3 bed at 8.0 ms TWT demonstrating both a well defined structure in the ‘best’ 
impedance model (Fig. 2d) and a clear deviation in the PDF (Fig. 2e). These results also indicate 
that, although the deepest thin bed (-25 m/s g/cm3 at 9.0 ms TWT) is replicated in terms of trace 
structure and a small deviation in the ‘best’ impedance model, this structure falls within the 95 % 
confidence limits and therefore would be considered statistically questionable. An interpreter could 
therefore only be confident in the legitimacy of this low impedance structure were it to be replicated 
across multiple adjacent traces. 
 
3.2 Noise Contamination 

The contamination of high-resolution marine seismic reflection data with significant noise levels is a 
common problem. The shallow tow depths (typically < 1.0 m) and short layback distances behind 
the vessel (typically 20 – 50 m) combine with the small source sizes (typically c. 215 dB re 1 uPa at 
1 m for Chirp and Boomer sources) to simultaneously increase the background noise level and 
decrease the signal. In contrast, traditional reservoir-scale marine seismic reflection surveys use 
tow depths of 3 – 10 m, laybacks ranging from 100s m to several km, and source arrays with a 
combined power level commonly in excess of 250 dB re 1 uPa at 1 m (an increase in power ratio of 
over four orders of magnitude). Additionally, reservoir-scale marine seismic acquisition often 
involves a large towed array of several hundred receivers, affording effective noise cancellation 
through stacking that is not possible for most shallow-water applications, where commonly only a 
single hydrophone or short streamer are deployed. This makes the application of inversion to high-
resolution marine seismic reflection data a highly non-unique problem, resulting in an inversion 
space that can be characterized by multiple local minima. A suitable inversion algorithm must 
therefore be effective at finding a sensible approximation of the global solution. 
 
To investigate the robustness of the GA inversion algorithm in the presence of noise, the synthetic 
trace data presented in Figure 2 were contaminated with random noise at a range of S/N levels. 
Figure 3 presents the results of running the inversion using the same parameterization as for the 
noise-free case, but using traces contaminated with S/N ratios of 20, 10, and 5 with respect to the 
seafloor reflection amplitude (i.e., much worse S/N ratios with respect to the reflections from the thin 
beds). In terms of impedance contrasts, these S/N values conform to noise on the impedance 
profile of up to ± 25 m/s g/cm3, ± 50 m/s g/cm3, and ± 100 m/s g/cm3, respectively. Figure 3a shows 
the noise-free impedance profile used to generate the synthetic traces, while Figures 3b through 3d 
show the inverted impedance profiles in the S/N = 20, 10, and 5 cases, respectively. Black lines 
indicate ‘best’ impedance model, while shaded grey region 95 % confidence limit. Figure 3e shows 
the noise-free trace together with the noise-contaminated traces used as input to the inversions. 
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Figure 3. Inversion results using synthetic trace data contaminated with random noise. Noise-free 
impedance structure is shown in panel (a), while inverted impedance structure for S/N = 20, 10, and 
5 cases are shown in panels (b) through (d). Panel (e) shows traces used for inversion. 
 
For the S/N = 20 case (Fig. 3b), the noise level of ± 25 m/s g/cm3 is approaching the amplitude of 
the -50 m/s g/cm3 thin bed at 8 ms TWT. However, this impedance thin bed is still reconstructed in 
both the ‘best’ impedance model and the 95 % confidence limits. For the S/N = 10 case (Fig. 3c), 
the top 3 thin beds are accurately reconstructed, while the 4th thin bed (-100 m/s g/cm3), although 
replicated in amplitude, is less well constrained in thickness due to a discrete, high amplitude noise 
spike c. 0.2 ms TWT above the bed reflection (Fig. 3e). For the S/N = 5 case (Fig. 3d), only the 
shallowest thin bed is accurately reproduced, while the thickness of the second is over estimated 
and the wavelet for the third is significantly altered by noise, resulting in the inversion reconstructing 
a positive impedance contrast thin bed. 
 
These results demonstrate that the GA is effective at deriving a sensible approximation of the global 
minimum, even in the presence of relatively high levels of noise. In all cases where the reflected 
wavelet from each thin bed is reasonably representative of the noise-free case, the inversion 
accurate reproduces both the amplitude and thickness of the original bed. Only when that wavelet 
becomes significantly altered from it’s original amplitude and/or phase does the inversion fail to 
reproduce the noise-free thin bed structure, which is to be expected given that the inversion result is 
derived solely from the trace data. It should also be noted that the S/N = 5 is an extreme case and 
would present a difficult prospect for traditional qualitative stratigraphic interpretation. 
 
4 REAL DATA EXAMPLES 
Inverting the synthetic data example presented in Figures 2 and 3 demonstrates, in principle, that a 
GA can be used to reliably derive subsurface acoustic impedance information and confident limits 
from high-resolution marine seismic reflection data under a variety of noise conditions. To illustrate 
that this method can be applied in practice to real, field data (which may include both random and 
systematic noise as well as other acquisition irregularities), a case study data set acquired in the 
Sørfjorden side-fjord of Northern Norway15,16,17 is presented. These data include a decimeter-
resolution 3D Chirp seismic volume, short-streamer 2D Boomer and Sparker multi-channel seismic 
reflection profiles, two 15-m long piston cores and multiple pushed and free-fall cone penetrometer 
profiles16. Of particular interest at this site is a 40 cm thick, clay-rich thin bed c. 3.5 m below the 
seafloor that contains the glide plane for multiple shallow landslides15,17. 
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Figure 4. Inversion applied to Chirp sub-bottom profiler data. Panel (a) shows Chirp profile, panel 
(b) the inverted impedance profile, and panels (c) through (e) compare derived properties with direct 
samples for coincident core location. 

 
Figure 5. More detailed soil mechanical properties derived from the inversion results after 
conversion into the depth domain, including: stress ratio; pore pressure; over pressure ratio; 
clay/silt/sand size fraction; and moisture content. 
 

 
Figure 6. Intersecting Sparker seismic lines through shallow gas front. East-West profile is overlain 
by inverted acoustic impedance profile, highlighting gas front as low impedance anomaly. North-
South profile is overlain by gas saturations calculated using Wood’s equation.  
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Figure 4 presents the results from performing the inversion on an arbitrary profile extracted from the 
3D Chirp volume that intersects the two core locations. Figure 4a shows the Chirp profile used for 
the inversion, Figure 4b the acoustic impedance profile produced by the inversion. From these 
impedance data a number of basic soil properties (including P-wave velocity, density, and porosity) 
can be calculated using empirical relationships derived from published data8. 
 
Deriving such soil properties using inversion techniques permits these properties to be mapped 
spatially, no longer being constrained to 1D core or borehole localities. Furthermore, deriving a 
high-resolution P-wave velocity model permits the inverted data to be converted from TWT into 
depth below the seafloor. This permits the derived soil properties to be plotted in the domain that is 
most useful to engineers, as well as allowing for more robust comparison with direct sampled data. 
Figures 4c through 4e compares the inverted impedance, porosity and density (solid black lines) 
with coincident data derived from the piston core Calypso 2 (red). The impedance and density data 
were measured on the split core using a Multi-Sensor Core Logger (MSCL), while the porosity was 
calculated from water content measurements. The inversion results demonstrate an excellent 
agreement with the direct sampled data, accurately reproducing the observed structure and 
replicating the thickness and magnitude of the impedance, porosity, or density contrast associated 
with the clay-rich thin bed. 
 
Additionally, the translation of these properties into the depth domain permits the calculation of 
more detailed soil mechanical properties. Integration of the bulk density profile with depth times 
gravity allows the vertical component of the effective stress (σ’v) to be calculated, while a similar 
integration of the grain density (derived from the bulk density using porosity) allows the vertical 
component of the total stress (σv) to be calculated18. Assuming the vertical stress gradient 
dominates over the lateral stress gradient, the difference between the effective and total stresses is 
the pore pressure and therefore permits an estimate of the in situ pore pressure (uv) and over 
pressure ratio (λ*) to be calculated and spatial variability mapped using the seismic reflection data 
(Figures 5a through 5c). Furthermore, where there is clear evidence for a gas front in the Sørfjorden 
study area7,17, it is possible to estimate gas saturation using an appropriate rock physics model. 
Assuming small gas bubbles and low gas saturation (reasonable given the environment), then the 
gas saturation can be estimated using a simplified version of Wood’s equation19: 
 

 𝛽 =
2𝜅𝑃!

𝑣!"#! 𝜌!"#
1 −

𝑣!""
𝑣!"#

 (4) 

 
where β is the gas saturation, κ the polytropic index, P0 the hydrostatic pressure, vsed and ρsed the 
velocity and density of the background sediment, and veff the velocity of the sediments containing 
gas bubbles. 
 
Using a polytropic index appropriate for biogenic gas (1.320) the gas saturation was estimated as 
between 0.05% and 0.20%, in agreement with previously published results7. Figure 6 shows 
intersecting impedance and gas saturation profiles from Sørfjorden. 
 
5 CONCLUSIONS 
The work presented demonstrates the potential for deriving a range of in situ soil properties for the 
shallow sub-surface using post-stack acoustic impedance inversion applied to high-resolution 
marine seismic reflection data. The synthetic results suggest that the combination of a GA for 
optimization and a convolutional forward model is a robust inversion solution in the presence of 
moderate noise levels (providing a sensible approximation of the global minimum even when noise 
amplitudes were approaching signal amplitudes), and provides additional assurance on the 
statistically ‘best’ impedance model through the generation of associated 95% confidence limits. 
Additionally, we have shown that, through the use of empirical relationships to relate acoustic 
impedance with basic sediment properties (P-wave velocity, density, and porosity), it is possible to 
derive estimates of more complex soil mechanical properties and therefore provides a first step 
towards remote geotechnical characterization of the marine shallow section. 
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