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ABSTRACT
Assessing the probability of extreme precipitation events is consequential in civil planning. This
requires an understanding of how return values change with return periods, which is essentially
described by the generalized extreme value (GEV) shape parameter. Some works in the field
suggest a constant shape parameter, while our analysis indicates a non-universal value. We re-
analysed an older precipitation dataset (169 stations) extended by Norwegian data (71 stations).
We showed that while each set seems to have a constant shape parameter, it differs between the
two datasets, indicating regional differences. For a more comprehensive analysis of spatial effects,
we examined a global dataset (1495 stations). We provided shape parameter maps for two
models and found clear evidence that the shape parameter depends on elevation, while the
effect of latitude remains uncertain. Our results confirm an explanation in terms of dominating
precipitation systems based on a proxy derived from the Köppen-Geiger climate classification.
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1 Introduction

Extreme precipitation estimates are decisive for planning
and design of important infrastructure, such as reservoir
dams, avalanche mitigation measures, and power and
transport lines. The accuracy of extreme precipitation
estimates is therefore crucial for both economic and
safety aspects (e.g. Coles and Tawn 1996, Blanchet
et al. 2009, Eli et al. 2012, Dyrrdal et al. 2014).

As mentioned by Serinaldi and Kilsby (2014), the
history of extreme value theory (EVT) in its present
formalization and its application to hydrological analyses
is rooted in an extensive literature dating back to the
1940s. For a detailed historical survey on that subject,
the reader is referred to Papalexiou and Koutsoyiannis
(2013). The present paper focuses on the shape para-
meter, ξ, of the generalized extreme value (GEV) distri-
bution. The GEV distribution encompasses three limiting
distributions of extreme value depending on the value of
the shape parameter (Coles 2001):

● ξ > 0 giving the heavy-tailed Fréchet case (EV2);
● ξ = 0 giving the light-tailed Gumbel case (EV1);
● ξ < 0 giving the short-tailed negative-Weibull case

(EV3).

Koutsoyiannis (2004a, 2004b) has analysed the statis-
tics of daily rainfall extremes and argued for the use of
the EV2 distribution (with positive shape parameter)
instead of the Gumbel distribution (EV1) when analys-
ing rainfall data to avoid an underestimation of risk
associated with extreme rainfall. L-moment estimation
of the distribution’s shape parameter, ξ, led
Koutsoyiannis (2004a, 2004b) to conclude that � ffi
0:15 and that it is “constant for all examined geographi-
cal zones (Europe and North America)”. Recent work on
the generalized Pareto (GP) distribution’s shape para-
meter, �GEV ffi �GP (Serinaldi and Kilsby 2014), supports
� > 0 (Cavanaugh and Gershunov 2015, Cavanaugh
et al. 2015). The conclusion made by Koutsoyiannis
(2004a, 2004b) was drawn from a comparison of the
spread of ξ estimates in the data with that of simulations
where ξ is constant. However, a strict statistical test with
the assumption of a constant ξ was not carried out.
More recently, Papalexiou and Koutsoyiannis (2013)
presented an extension of the work of Koutsoyiannis
(2004b) to analyse daily rainfall from 15 137 precipita-
tion stations worldwide with observation lengths of
40–63 years. They concluded, among other things, that:
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(a) “The record length strongly affects the estimate
[L-moment method only was used] of the GEV
shape parameter and long records are needed for
reliable estimates;”

(b)“The GEV shape parameter is expected to belong
in a narrow range, approximately from 0 to 0.23
with confidence 99%;” and

(c) “The geographical location of the globe may affect
the value of the shape parameter.”

In addition to the work mentioned above, which
primarily focuses on the proper choice of the GEV
distribution, there is a significant body of work in
which the shape parameter was evaluated as a by-pro-
duct (e.g. Fowler and Kilsby 2003, Meddi and Toumi
2015). However, there are almost no studies dedicated to
the nature of the GEV shape parameter itself. The value
of this shape parameter directly influences estimated
values of extreme precipitation, which in turn are crucial
for dimensioning expensive engineering constructions.

The main aim of the present paper was to investigate
the properties of the GEV shape parameter by using a
statistical modelling approach to facilitate comparison of
different hypotheses in a consistent fashion. We use
Bayesian methods because some of our models are hier-
archical and some prior knowledge exists. Bayesian ana-
lysis has been used previously for, amongst others,
extreme precipitation modelling (e.g. Coles and Tawn
1996, Coles 2001, Coles et al. 2003, Smith 2005, Alston
2011, Eli et al. 2012, Sun et al. 2015).

Our analysis is conducted in three phases. In the
first phase, to extend the analysis from Koutsoyiannis
(2004b) consistently, we used the same time series. For
a more comprehensive perspective, we extended these
time series by additional data from 71 stations in
Norway, each consisting of 99–131 years of observa-
tions. The objective of this phase of the study was to
understand whether a statistical modelling and model
comparison approach could broaden our knowledge of
the shape parameter beyond the conclusions drawn by
Koutsoyiannis (2004b). Three hypotheses about the
shape parameter were tested in this part of the study,
namely: a shape parameter that is (a) constant, (b)
station specific, or (c) stochastic, but drawn from a
common distribution. For this purpose, the same ana-
lysis was performed on a further extended (worldwide)
dataset consisting of daily precipitation data from the
Global Historical Climatology Network-Daily database
(version 2.60, www.ncdc.noaa.gov/oa/climate/ghcn-
daily) referred to as the Extended international dataset.

In the second phase of the study, we examined
regional differences in the extended Koutsoyiannis
dataset (with Norwegian data).

The third phase was a spatial analysis of the shape
parameter using the Extended international dataset.
Only those stations with a minimum of 99 complete
years of measurements were chosen in order to meet
the requirement (a) by Papalexiou and Koutsoyiannis
(2013). Spatial patterns of the shape parameter’s dis-
tribution are discussed here.

The paper is organized as follows. Section 2 presents
the data used in this study; Section 3 describes the
statistical models for precipitation annual maxima; and
Section 4 explains the tested hypotheses and the corre-
sponding model structures. In Section 5 we discuss the
choice of prior distributions to be used in Bayesian
inference, and how Bayesian hypothesis testing is per-
formed. Section 6 presents the results of the analyses,
and in Section 7 we summarize our conclusions.

2 Data

In the first and the second phases of the study, we used the
collection of 169 of the longest available rainfall records
worldwide from Koutsoyiannis (2004b), each having
100–154 years of data, with annual maximum values
(excluding the years with missing data). According to
Koutsoyiannis (2004b), these time series were chosen
after examination of some thousands of raingauge time
series from Europe and the USA, namely data from the
United States Historical Climatology Network (USHCN),
Land Surface Observation Data of the UKMet Office, and
data from the oldest stations of France, Italy and Greece
(Fig. 1). Years with more than five missing daily values in
two or more months were excluded.

Seventy-one additional time series, each having
99–131 years of data (excluding the years with missing
data), were chosen among 3531 time series from pre-
cipitation stations in Norway (data from the web-ser-
vice of the Norwegian Meteorological Institute (MET
Norway), eKlima.no) (Fig. 1). Years with 36 or more
missing daily values per year (≥10% of full year with
data) were excluded.

These datasets were subdivided into groups and
analysed in the following combinations:

(1) All 169 time series from Koutsoyiannis (2004b)
together (international data);

(2) Norwegian data (71 time series);
(3) USA vs Europe (141 vs 28);
(4) Norwegian data vs International data (71 vs 169);
(5) UK vs Norwegian data (24 vs 71);
(6) South USA vs North USA (70 vs 71; 40°-parallel

was chosen to be a separation line);
(7) West USA vs East USA (17 vs 124; highly ridged

vs relatively flat area); and
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(8) Norwegian data vs West USA (71 vs 17).

The extended international dataset, used in both the
first and third phases of the study, comprises 1495 daily
precipitation time series (see Fig. 2 for geographical loca-
tions). These time series were selected from more than
15 000 precipitation records available in the Global
Historical Climatology Network-Daily database (version
2.60, www.ncdc.noaa.gov/oa/climate/ghcn-daily) accord-
ing to our requirements of 99-year minimum record
length with less than 5% missing values. Raingauge geo-
graphical coordinates (longitude, latitude and elevation)
were included in the datasets to perform spatial analysis.

3 Statistical models

For the analysis of precipitation time series, it is
assumed that the distribution of yearly maximum pre-
cipitation for a given station follows the GEV
distribution:

f zjμ; σ; �ð Þ ¼ 1
σ

1þ �
z � μð Þ
σ

� ��1=��1

exp � 1þ �
z � μð Þ
σ

� ��1=�
( ) (1)

where z is a yearly maximum precipitation, μ is a loca-
tion parameter, σ is a scale parameter and � is the shape
parameter. Here, the shape parameter is assumed not to
be zero. If it is zero, the Gumbel distribution is used.
The location and scale parameters can be assumed to
differ from station to station according to how dry or
wet the place is and how much variability there is in the
yearly extremes. The analysis of Koutsoyiannis (2004a,
2004b) suggested that � was the same for all stations for
precipitation data. The objective of the first phase of our
study is to perform direct statistical tests of this hypoth-
esis (� is universal for precipitation data) as well as to
study whether the hypothesis holds upon inclusion of
additional Norwegian data and possible reasons for
regional differences of � values.

Let i 2 1; . . . ; nf g denote the station number and let
zi;1; . . . ; zi;ni

� �
denote the ni annual precipitation max-

ima for each station. Under the assumption of inde-
pendent data, the combined likelihood is:

L μi; σi; �i
� �

i2 1;...;mf g
� �

¼
Ym
i¼1

Yni
j¼1

1
σ i

1þ �i
zi;j � μi
� 	

σi

� ��1=�i�1

exp � 1þ �i
zi;j � μi
� 	

σi

� ��1=�i
( )

(2)

Figure 1. Map of positions of the stations used in the first phase of the analysis.
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While this equation expresses the likelihood for all
GEV parameters separately for each station, it can
also accommodate models in which the shape para-
meter is the same for all stations, by setting

�i ¼ � (3)

for all i.

4 Hypotheses

Three hypotheses were tested during the analysis of the
Koutsoyiannis and Norwegian data (Phase I of the
study):

a. The shape parameter differs from station to sta-
tion (individual). If so, the expression for the
likelihood in Equation (2) is used as it is.

b. The shape parameter has a parametric distribu-
tion determined by the data,

�i,f �jλð Þ (4)

where λ is the parameter set (as a vector) of the
distribution of the shape parameter, �. That
means that the shape parameter is regarded as a
random effect. Since this requires a probabilistic
treatment of the station-wise shape parameter, �,
it becomes simpler to treat the entire parameter
set in a Bayesian fashion than to split the analysis

into a Bayesian part for λ and a classic part for the
other parameters (including those that determine
the distribution of λ).

c. The shape parameter is universal (common con-
stant value). In this case �i ¼ � for all stations, i
(Equation (3)).

After the inference about the nature of � was made,
a new block of hypotheses was created.

In the case that the results are in favour of hypothesis b
or c for a given dataset, it is also possible to go further, since
both these cases contain parameters that are “global” to
that dataset. For hypothesis b, the parameters describing
the distribution of the station-wise � are global. For
hypothesis c, it is the shape parameter, �, itself that is
global.

When data from two different regions are involved,
it is of interest to test if the global parameters are the
same or different in the two sets. This testing consti-
tutes Phase II of the analysis. Thus, instead of a con-
stant value of � for all stations (hypothesis c), there
could be one shape parameter, �1, if a station belongs
to dataset D1, and another, �2, if that station belongs
to dataset D2. Hence, it is possible to test if the shape
parameter is truly global or rather regional (belonging
to a particular selection of stations). The regional
model (hypothesis) thus takes the form:

Figure 2. Map of positions of the stations from the Extended international dataset.
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d. �i ¼ �region1 if station i belongs to the first region
and �i ¼ �region2 if it belongs to the second region.

The results from the regional analysis in Phase II
encouraged us to try spatial analysis for the Extended
international dataset. Considering the � as realiza-
tions of a random field, their values can be described
by a multivariate distribution accounting for mutual
(spatial) dependence. This can be seen as an exten-
sion of hypothesis b, as each �i is again assigned a
distribution, but this distribution also describes the
correlation between the � at different places. We
assigned a multivariate normal distribution, so that:

�,Nðμ
�
;Σ�Þ (5)

where � ¼ �1; �2; . . . ; �mð Þ is a vector of all �, μ
�
is a

vector of expected values for the � (assumed the same
for all stations in the simplest model) and Σ� is a
covariance matrix. Assuming the same variance for
each station, each element can be described by

Σ�;i;j ¼ σ2�ρ�;i;j (6)

where ρ�;i;j is the correlation between �i and �j and σ2� is
the variance of the �. Many sophisticated models for
the correlation can be made, but without any indica-
tion of which would be the right one, we opted for
what is arguably the simplest one:

ρ�;i;j ¼ e�ri;j=R (7)

where ri;j is the distance between stations i and j, and R
is a parameter that encodes the characteristic correla-
tion length, i.e. R is the distance for which the correla-
tion drops by a factor of e and, by analogy to the mean-
reverting process, can be called the “characteristic dis-
tance” of the spatial field. Distances between stations
were calculated using a spherical approximation, so
that:

ri;j ¼ E arccos sin φi

� 	
sin φj

� �
þ cos φi

� 	
cos φj

� ��
cos #i � #j

� 		
(8)

where φi;φj is the latitude in radians, #i, #j is the
longitude in radians of stations i and j, respectively,
and E is the radius of the Earth.

Calculating the probability density of a huge array of
values can be time consuming, making likelihood cal-
culations computationally intense due to the need of
finding the determinant and inverse of the covariance
matrix or the corresponding correlation matrix. It was
thus determined to discretize the parameter R (in 40

values ranging exponentially from 1 km to the circum-
ference of the Earth) and calculate the determinant and
inverse of the correlation matrix for each discretized
value before doing the inference. This significantly
speeded up the analysis.

Additional structure to a spatial model could be
assigned by correcting for the height and latitude of
each station in the expected value using linear models.
We created four spatial model variants this way, which
were the models examined in Phase III of our analysis:

e. Global expected value:

�,Nðμ�01;Σ�Þ (9)

where μ�0 is the global expected value and 1 is a
vector of ones.

f. Expected value depends linearly on height:

�,Nðμ�01þ βhh;Σ�Þ (10)

where h is a vector consisting of the heights of each
station and βh is a regression parameter that
describes how the expected shape parameter changes
with height. Hence, if βh ¼ 0:0001; for instance, the
expected shape parameter changes from μ0 at sea
level to μ0 þ 0:1 at a height of 1000 m.

g. Expected value depends linearly on height and
latitude:

�,Nfμ�01þ βhhþ βϕ1ϕ;Σ�Þ (11)

where ϕ is a vector of latitudes and βϕ1 is a
regression parameters describing how much the
expected value changes with changing latitude.

h. Expected value depends linearly on height and
linearly and quadratic on latitude:

�,N μ�01þ βhhþ βϕ1ϕþ βϕ2ϕ
2;Σ�

� �
(12)

where ϕ2 is a vector of squared latitudes and βϕ2
is a regression parameter describing how much
the expected value changes with squared latitude.

5 Priors and model selection

5.1 Priors

As this study contains Bayesian hierarchical models,
Bayesian inference is necessary when it comes to both
parameter estimation and model choice. The middle
part of the hierarchy could conceivably be handled as
random effects in a frequentist setting, but, since there
is no ready-made methodology for our models, a
Bayesian treatment offered fewer inferential and
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numerical challenges. In addition, we are interested in
the uncertainty of the shape parameter, which can be
read directly from the posterior distribution of a
Bayesian analysis, but which would require extra steps
in a classic analysis.

In both cases, a prior distribution for the parameters
is required. Prior distributions are used to represent a
set of beliefs about the parameter of interest (Eli et al.
2012). In Bayesian statistics, this prior knowledge about
the parameters is updated by the data using Bayes’
theorem:

f θjDð Þ ¼ f Djθð Þf θð Þ=f Dð Þ (13)

where D is the data, θ is the parameter set, f θð Þ is the
prior distribution, f ðDjθÞ is the likelihood and

f ðDÞ ¼
ð
f ðDjθÞf ðθÞdθ (14)

is a normalizing constant known as the marginal like-
lihood. One does not need to know the marginal like-
lihood in order to sample from the posterior distribution,
but it is crucial for calculating model probabilities in
Bayesian model selection (see Appendix for details).

The return period for a given outcome, x, in extreme
value analysis is defined as:

T ¼ 1=PðX > xÞ (15)

i.e. the expected number of years before that value will
be exceeded. The outcome x is then called the T-year
return value. According to Coles and Tawn (1996),
using the prior knowledge of an expert hydrologist, a
Bayesian 95% interval estimate of the 100-year return
level for daily rainfall was found to be approximately
half of the width of the corresponding likelihood-based
confidence interval.

For this study, we used a relatively wide (in terms of
having a larger variance and credibility bands of pre-
dictions than would be expected from the data) and
unstructured (in terms of assuming parametric inde-
pendence rather than examining which parameter
combinations yield reasonable predictions) prior, as
well as a narrower and structured prior. The wide
prior (assuming that there is little information available
about the process apart from the data) was taken from
Smith (2005), where wide marginal distributions for
the GEV parameters were set directly and indepen-
dently. Smith (2005) used the following prior distribu-
tion for each parameter:

μ , N 0; 1000ð Þ (16)

σ , logN 0; 100ð Þ (17)

� , N 0; 10ð Þ (18)

The joint prior distribution is an independent combi-
nation of these normal single parameter distributions
with large variances. The variances are chosen large
enough to make the distributions almost flat, corre-
sponding to prior ignorance. This represents a problem
in two respects. Firstly, the prior can correspond to a
distribution on the quantiles that is entirely unrealistic,
in which case it can be described as being too wide. It
is not easy to have intuition as to whether a particular
combination of GEV parameter values is realistic or
not. However, priors yielding a physically unrealistic
10-year return level (i.e. the 0.9 quantile of the GEV
distribution) should be discarded. If this is the case, the
prior cannot be said to represent our knowledge on the
topic and is thus unrealistic. As it turns out, Smith’s
prior gives a 27% chance of a negative 10-year return
value and similarly a 26% chance of it being larger
than 1030.

Secondly, while a too wide prior is seldom seen as a
problem for parameter estimation when enough data are
available, it can, nonetheless, pose serious problems for
model selection. An observation named Bartlett’s para-
dox (Bartlett 1957) states that the Bayes factor for a
model compared to a simpler model (a zero hypothesis)
can go to zero when the width of the prior distribution
goes to infinity. In other words, a too wide prior can
give an unfair advantage to a simpler model, and it
might be difficult for the data to overcome this bias in
the model selection. However, care must be taken when
specifying a narrow prior, so that it does not penalize
any parameter estimates deemed reasonable.

In addition, a more specific prior considerably reduces
the uncertainty connected to value estimates. An example
of the effect of a narrow band for the shape parameter,
�(posterior band with Coles and Tawn (1996) prior
described below), compared to one with the wide �
prior (Smith’s prior, Equation (18)) is given in Figure 3.
Data from the Norwegian precipitation station no. 1650,
Strømsfoss sluse (130 years with data), were used.

There is another prior for GEV models on precipi-
tation data, elicited by Coles and Tawn (1996). This
prior assigns a gamma distribution to the 10-year
return value, T10, the 100-year return value minus
the 10-year return value (T100 − T10), and the 1000-
year return value minus the 100-year return value
(T1000 − T100). Thus, one gets a reasonable range of
return values, given that reasonable (well-founded)
hyper-parameters for the gamma distributions are spe-
cified. As the gamma distribution only has two para-
meters, this can be done by specifying (for instance)
the 95% prior credibility band. For this study, we set a
95% credibility band for T10, T100 − T10 and
T1000 − T100 to the interval 3–600 mm. Such a prior
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then implies a distribution for the parameter set also,
which can be calculated using the transformation rule
for probability distributions. Even though the distribu-
tions for T10, T100 − T10 and T1000 − T100 are set
independently, there is a dependency between the GEV
parameters in the prior distribution (hereafter, this
elicitation approach is referred to as the Coles &
Tawn prior). If we define the vector:

θ ; μ; σ; �ð Þ (19)

and the vector:

φ ; T10;T100� T10;T1000� T100ð Þ (20)

then the Coles & Tawn prior can be expressed as:

T10 , γ α ¼ 0:91; β ¼ 172ð Þ (21)

T100� T10 , γ α ¼ 0:91; β ¼ 172ð Þ (22)

T1000� T100 , γ α ¼ 0:91; β ¼ 172ð Þ (23)

f ðθÞ ¼ @φ

@θ










fφ φ θð Þ

� �
(24)

where fφ is the distribution of φ described in Equations
(21)–(23).Thus, the prior distribution is readily avail-
able for the station-wise analysis. However, for models
with common shape parameter or shape parameter
from a common distribution, care must be taken. In
the case of an underlying common distribution
(hypothesis b) for the shape parameter, it is this dis-
tribution that determines the prior for the shape para-
meter, not the individual return periods. Similarly, for
a constant � (hypothesis c), this cannot be specified by
the return values of a single station, so that a separate

prior distribution is used instead. In this case, we used
a normal prior distribution:

�,N 0; 0:5ð Þ (25)

which has a 95% credibility band roughly from −1 to +1.
Given the shape parameter, location and scale para-
meter, a distribution can be determined by the distribu-
tion of T10 and T100 − T10, which again were assigned
a gamma distribution with 95% prior credibility interval
3–600 mm. Thus, for hypothesis c:

f �; μi; σi
� �

i¼1;...;m

� �
¼ f �ð Þ

Ym
i¼1

f μi; σi
� �j�� 	

(26)

If �i is considered to belong to one of two regions
(hypothesis d), �region1 or �region2, then similarly:

f �region1; �region2; μi; σi
� �

i¼1;...;m

� �
¼ f �region1

� 	
f �region2
� 	Ym

i¼1

f μi; σi
� �j�region of i
� 	

(27)

For the distributional model for �, i.e. hypothesis b,
we get

f μ�; σ�; μi; σi; �i
� �

i¼1;...;m

� �
¼ f μ�

� �
f σ�
� 	Ym

i¼1

f �ijμ�; σ�
� �

f μi; σi
� �j�i� 	 (28)

where μ� and σ� are the two parameters of the distribu-
tion for �. For a spatial model, where the distribution

Figure 3. Effect of a narrow posterior band with the Coles & Tawn prior (Equations (21)–(23)) for the shape parameter, �, compared
to one with the wide � prior (Smith’s prior, Equations (16)–(18)). Green line: GEV distribution fitted to the data (Coles & Tawn prior);
blue lines: 95% posterior credibility interval (Coles & Tawn prior); red lines: 95% posterior credibility interval (Smith’s prior).

HYDROLOGICAL SCIENCES JOURNAL – JOURNAL DES SCIENCES HYDROLOGIQUES 7



of the shape parameters, f �
� �

, is described in

Equations (5)–(12) and (30)–(32), we similarly get:

f μi; σ i; �i
� �

i¼1;...;m

� �
¼ f �

� �Ym
i¼1

f μi; σ i
� �j�i� 	

(29)

Only normal and lognormal models for � were tried;
both have just one location parameter and one scale
parameter. The results based on the lognormal model
are not shown, since the model gave a worse fit com-
pared to the normal model.

For the spatial models, we used a uniform prior on
the log scale for the discretized characteristic correla-
tion length, R. Thus, this prior was simply constructed
by specifying that all log ranges are equally probable
and that the range is more than 1 km (most stations
were placed more than that distance apart from each
other) and not so large that two stations on the oppo-
site side of Earth are strongly correlated. For the
regression coefficient, we used a normal distribution
so that:

βh 2 �0:0001; 0:0001ð Þ (30)

βϕ1 2 �0:0022; 0:0022ð Þ (31)

βϕ2 2 �0:000025; 0:000025ð Þ (32)

with 95% prior probability. This means that we do not
expect � to change by more than 0.1 for every 1000 m,
nor to change by more than 0.2 from the Equator to a
pole.

5.2 Hypothesis testing

Bayesian hypothesis testing is based on the Bayesian
model likelihood (BML, see Appendix). From this, one
can calculate model probabilities (where one can com-
pare multiple hypotheses), or the Bayes factor (where
one compares two hypotheses). Using the latter
approach, Bayesian hypothesis testing can be repre-
sented by an analysis of the Bayes factors (Jeffreys
1961), which compares the data prediction strength of
one hypothesis with the data prediction strength of
another. The Bayes factor interpretation scale from

Jeffreys (1961) is given in Table 1, which provides an
evaluation of how many times data are more probable
under Model 1 compared to Model 2. However, the
amount of time series (stations) analysed is of high
importance. For example, if for every station the data
are just 5% more probable under Model 1 than under
Model 2, with data from 169 stations this gives a Bayes
factor of 103–104, which represents very significant
evidence.

In other words, even a small difference per station will
provide strong evidence if the number of stations is high
enough; and the opposite will occur if the number of
stations is low, so that a poor value for the Bayes factor
can be expected with almost no regard to the strength of
an effect. For instance, a low Bayes factor of 3 for 17
stations (as is shown in Table 2) means that the data
under Model 1 are 6% more probable than under Model
2. This difference is 1% bigger than in the previous exam-
ple. However, because only a few stations were analysed,
the resulting Bayes factor (equal to 3) cannot be consid-
ered as strong evidence (see Jeffreys 1961 and Table 1).
That is why it is essential to be careful when making an
inference based on data from just a few stations.

Different priors may also lead to different parameter
estimates. As shown in Table 2, the estimates of the
shape parameter, �(medians), differ depending on the
choice of prior. However, since Smith’s prior has a rather
unrealistic nature, whereas the Coles & Tawn prior
incorporates reasonable assumptions (T10, T100 − T10
and T1000 − T100), the estimates based on the Coles &
Tawn prior are supposed to be more trustworthy than
those based on Smith’s prior. Nevertheless, the posterior
95% credibility intervals from both priors overlap a lot.

While the shape parameter analysis itself was per-
formed using Bayesian methodology, we performed

Table 1. Jeffreys’ interpretation scale for the Bayes factors.
Bayes factor Strength of evidence

<1 Negative (supports the other model)
1–3 Barely worth mentioning
3–10 Substantial
10–30 Strong
30–100 Very strong
>100 Decisive

Table 2. International, Norwegian and Extended international datasets: Bayes factors for distributional � vs individual � and constant
� vs distributional � models, and estimates of the shape parameter’s median and posterior 95% credibility interval. Smith’s prior is
described in Equations (16)–(18), while the Coles & Tawn (C&T) prior is described in Equations (21)–(23).

Datasets Prior
Distributional �
vs individual �

Constant �
vs distributional � Median

Posterior 95%
credibility interval

International (169 stations) Smith 10319 10167 0.108 0.098–0.119
C&T 10121 4000 0.117 0.106–0.127

Norwegian (71 stations) Smith 10129 1070 0.034 0.022–0.049
C&T 1060 20 0.044 0.028–0.062

Extended international (1495 stations) C&T 101114 5 × 105 0.119 0.115–0.123
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some simple classic tests on the estimated shape para-
meters from the spatial analysis, in order to see if
climate classes or climate groups could explain some
of the differences. This was done using p-values from
ANOVA testing. Also, the BIC (Bayesian information
criterion), where a classic estimate of the likelihood is
penalized by the model complexity (using a Bayesian
justification for the penalty term), was utilized for
selecting among climate classes and climate groups.

6 Results and discussion

6.1 Phase I: global, distributional or constant
shape parameters for the International, Norwegian
and Extended international datasets

As described in Section 4, in the first phase of this
study we tested hypotheses a, b and c.

The results of the Bayesian comparison between the
models for the International, Norwegian and Extended
international datasets, as well as the estimates of the
shape parameter’s median and posterior 95% credibil-
ity interval, are given in Table 2. In all cases, the model
selection suggests a constant shape parameter (hypoth-
esis c). According to Table 2, the evidence for the shape
parameter, �, being global (common constant value;
hypothesis c), is decisive for both datasets with both
priors (Bayes factor: 4000–10319), except for the
Norwegian dataset with the Coles & Tawn prior,
where the evidence is still strong (Bayes factor = 20).

6.2 Phase II: examining regional differences

The significant difference between the � estimates for
the International and Norwegian datasets (0.117 and
0.044, respectively) in combination with the decisive
evidence for the global constant value of this parameter
(Table 2), suggested that further investigation was
required to find out whether the shape parameter is
globally constant or gradually changing, giving rise to
regional differences. To this end, a new set of hypoth-
eses was created to make regional inference on �

(hypothesis d, described in Section 4).
The results of the Bayesian comparison between the

models for the International and Norwegian datasets and
their subsets, such as USA, Europe, UK, South USA,
North USA, East USA and West USA (described in
Section 2), are presented in Table 3. A dataset in each
row of Table 3 represents the data from the combined set
of stations for the two regions. When evidence is in favour
of one constant shape parameter, rather than two regional
ones, the Bayes factor for model c vs model d is given,
rather than the Bayes factor for model d vs model c:

Bc;d ¼ 1=Bd;c (33)

We found evidence of regional differences between
the International dataset and Norway, between the UK
and Norway, and between West and East USA. We did
not find evidence for regional differences between the
USA and the UK, between South and North USA, or
between West USA and Norway. Estimated medians and
posterior 95% credibility intervals of the shape parameter
for the same datasets/subsets are shown in Table 4.

According to the results summarized in Table 4, �
assumes values between 0.028 and 0.156 (95% credibil-
ity interval) and varies depending on the region. A
positive � supports Koutsoyiannis’ conclusion that the
EV2 distribution (� > 0) should be used for inference
on extreme precipitation instead of the Gumbel distri-
bution (� ¼ 0), since the latter underestimates the
values (Koutsoyiannis 2004a, 2004b).

We found decisive evidence that � is different for
Norway than for the UK (Table 3). This indicates that
neither the location on the western coast of the
European continent nor the proximity to an ocean has
a significant influence on the value of �. Moreover, we
found even stronger evidence for the South and North
USA having a common shape parameter. This rejects
the hypothesis that � depends strongly on latitude.

Nevertheless, � is undoubtedly different for the
Norwegian stations compared to the International
(Bayes factor = 2 × 1010; Table 3); in addition there is

Table 3. Bayes factors for a regional model, d, vs constant
shape parameter model, c, for various selections of two regions.
Smith’s prior is described in Equations (16)–(18), while the
Coles & Tawn (C&T) prior is described in Equations (21)–(23).

Dataset Prior

Common constant
� vs separate
constant �

Separate constant
� vs common
constant �

USA vs Europe Smith 4000 –
C&T 4 –

International vs Norway C&T – 2 × 1010

Norway vs UK C&T – 800
South USA vs North USA C&T 1700 –
West USA vs East USA C&T – 3
West USA vs Norway C&T 20 –

Table 4. Estimates of the shape parameter, �, median and
posterior 95% credibility interval using the Coles & Tawn
prior (Equations (21)–(23)).

Datasets Median
Posterior 95%

credibility interval

Norway (71 stations) 0.044 0.028–0.062
USA (141 stations) 0.115 0.103–0.128
Europe (28 stations) 0.124 0.101–0.151
UK (24 stations) 0.124 0.097–0.156
West USA (17 stations) 0.069 0.038–0.100
East USA (124 stations) 0.120 0.106–0.135
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evidence of a difference between the western and east-
ern parts of USA.

Blanchet et al. (2009) differentiated between extreme
rainfall and extreme snowfall distributions, referring to
Katz et al. (2002). In an attempt to explain our results,
we investigated the hypothesis of the shape parameter
being dependent on the form of precipitation (rain/
snow) by analysing the Norwegian dataset from the
following subgroups for selecting annual maxima:

(1) Norway (summer, 71 stations): only observa-
tions from 1 May to 1 October were used;

(2) Norway (winter, 71 stations): only observations
from 1 October to 1 May of the following year
were used;

(3) Norway (summer rain, 61 stations): only obser-
vations specified as “rain” in periods from 1
May to 1 October were used;

(4) Norway (the rest, 71 stations): all observations
from the Norwegian dataset excluding Norway
(summer rain) were used;

(5) Norway (rain, 61 stations): only observations
specified as “rain” were used; and

(6) Norway (snow, 71 stations): only observations
specified as “snow” and/or “sleet” were used.

Our results, presented in Table 5, showed no depen-
dence of the shape parameter on the precipitation form
in Norway, and the hypothesis was eventually rejected.

Strong evidence (Bayes factor = 20) was found for a
common constant shape parameter for West USA and
Norway. Both data regions belong to mountain areas;
however, the stations within each dataset are situated at
different elevations. Possibly it is the ruggedness of an
area that has an influence on precipitation pattern and,
hence, on the shape parameter, rather than the height
above sea level alone. However, a spatial analysis was
needed to investigate this question.

6.3 Phase III: spatial analysis of the Extended
international dataset

The second part of the data analysis (Section 6.2) has
given strong evidence for there being regional differ-
ences in the shape parameter. Since the Extended inter-
national dataset contained stations distributed globally,
we considered spatial models rather than regional or
global models to be more appropriate for this analysis.
In this manner, we were able to extract the spatial
patterns suggested by the data, as well as find some
characteristics of these patterns in the form of charac-
teristic correlation length R (described in Section 4)
and regression coefficients.

From the estimated BML (see Appendix) values, we
found evidence that height and possibly latitude were
variables that worked well as linear predictors for the
shape parameter, while squared latitude did not
improve the results. In other words, hypotheses f and
g were preferred over hypotheses e and h (Section 4).
The Bayes factor, which discerns between presence or
absence of a height dependency, was Bfvse � 1025, while
the Bayes factor for a linear latitude dependency vs a
second-order polynomial dependency was Bgvsh � 1050:
However, due to computational limitations, we could
not resolve which of hypotheses f and g had evidence
on its side (as the BMLs were approximately equal for
the two hypotheses).

Despite the numerical uncertainty connected to the
estimation, the analysis suggested that R = 250 km, with
a 95% credibility interval (150 km, 500 km). Thus,
regions corresponding to small countries or administra-
tive regions within larger countries can be assigned
roughly the same shape parameter, but larger areas
such as continents can be expected to be heterogeneous.
This can also be seen in the maps of the estimated �
values (medians; Figs. 4 and 5). Corresponding maps
with standard deviations of the estimates are shown in
Figures 6 and 7. Both maps present estimated � values
for 0 m elevation (sea level). The model g (hypothesis g)
considers latitude, as shown in Equation (11).

Some similarities can be seen in the spatial distri-
bution patterns of � estimates simulated by the two
models f and g. The eastern coast of the USA has
lower values than its western coast; Australia has the
opposite situation combined with stronger gradients.
The whole of Scandinavia and the northwestern parts
of Russia show low values. The southern part of
Norway has the lowest estimated values of �. Eastern
Siberia, the coastal area of the Caspian Sea and the
northern coast of the Black Sea have relatively high
values. The highest values were estimated for
Australia by both models.

Table 5. Bayes factors (Norwegian data subsets; Coles & Tawn
prior only, see Equations (21)–(23)): common constant � vs
separate constant �.

Datasets

Common constant �
vs separate
constant �

Separate constant
� vs common
constant �

International vs Norway (rain) – 4 × 107

International vs Norway
(summer)

– 8 × 107

Norway (summer rain) vs UK – 10
Norway (summer rain) vs
Norway (the rest)

2.3 –

Norway (summer) vs Norway
(winter)

40 –

Norway (rain) vs Norway
(snow, sleet)

20 –
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While it may seem obvious from Figures 6 and 7
that the estimated shape parameter generally has a
lower value for model f than for model g, two notes
of caution should be made:

(1) This is a trend per area rather than per station.
It turned out that the shape parameter estimates
for model f were not different from the shape
parameter estimates for model g when averaged

Figure 4. Map of the estimated �: model f (hypothesis f).

Figure 5. Map of the estimated �: model g (hypothesis g).
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out over the stations. However, averaged out
over an area, the shape parameter estimates
can be different in the two models.

(2) These are estimates for the situation at sea level,
thus not corrected for the real geographical
height of each point. (Correction for height

Figure 6. Map of the estimated standard deviations: model f (hypothesis f).

Figure 7. Map of the estimated standard deviations: model g (hypothesis g).
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would entail a much finer resolution of the
spatial analysis as well as usage of a global map
with similarly fine resolution for elevation.)

The estimate for the regression parameter for height,
βh, was approximately −0.072 per 1000 m for both
models, so the shape parameter drops for high
altitudes.

6.4 Discussion

Few attempts have been made in the literature to explain
the origin of the spatial differences in the parameters for
the distribution of extreme precipitation. One example
of such an analysis was performed by Blanchet et al.
(2009). However, they used only observations of extreme
snowfall measured during 10 consequent years in the
Swiss Alps (239 stations). As shown in Papalexiou and
Koutsoyiannis (2013), such short time series are not
sufficient to make a good inference on the shape para-
meter and, hence, extreme precipitation distribution.
Nevertheless, Blanchet et al. (2009) found an indication
of nonlinear dependence of the shape parameter on
altitude and mentioned a possible correlation with dom-
inating precipitation systems.

Another investigation performed by Dyrrdal et al.
(2014) that proposed a statistical analysis directly on
areal 24-h precipitation from a gridded dataset in
Norway, suggested that the shape parameter varies
spatially according to the dominating precipitation sys-
tems and, most probably, to the degree of orographic
enhancement. Villarini and Smith (2010), in their study
of flood peak distributions for the eastern United
States, showed that tropical cyclones have a large
impact on the GEV shape parameter values.

Unfortunately, it was not possible in the present
work to test the hypothesis that the shape parameter
depends on the dominating precipitation systems, since
a worldwide spatial classification of dominating preci-
pitation systems does not exist yet. However, we made
an attempt to use the existing Köppen-Geiger climate
classification (http://webmap.ornl.gov/wcsdown/
wcsdown.jsp?dg_id=10012_1, Peel et al. 2007) for this
purpose. Serinaldi and Kilsby (2014) pointed out some
similarities between the Köppen-Geiger classification
zones and the spatial behaviour of their estimates of
the generalized Pareto distribution shape parameter.
We re-grouped the 32 climate zones (Table 6) into 10
zones according to precipitation conditions (Table 7).
Shape parameter estimates (medians, at 0 elevation) for
the Extended international dataset stations (both f and
g models) were then plotted against the climate zones

and the “climate–precipitation” groups to which the
stations belong (according to the Köppen-Geiger cli-
mate classification). The resulting box plots are shown
in Figures 8(a) and (b) and 9(a) and (b) (respectively
for the full classification and for the re-grouped).

There are visible differences in the shape parameter
estimates from different “climate–precipitation” zones.
ANOVA tests suggest that there is strong evidence
(very low p-values, smaller than about 10−15) for the
residuals having different means for different climate
zones as well as for different “climate-precipitation”
groups, for both model f and model g residuals.
Climate zones were compared to “climate–precipita-
tion” groups using BIC, which suggested that the latter
were better for predicting the residuals. However, to
investigate this dependency more research is needed.
Spatial correlation might invalidate these results, as
ANOVA analysis does not take this correlation into
account.

Table 6. Köppen-Geiger climate classification (Peel et al. 2007).

No. Code Type
Number of
stations

1 Af Tropical /Rainforest 5
2 Am Tropical /Monsoon 4
3 Aw Tropical /Savannah 10
4 BWh Arid /Desert /Hot 39
5 BWk Arid /Desert /Cold 32
6 BSh Arid /Steppe /Hot 114
7 BSk Arid /Steppe /Cold 181
8 Csa Temperate /Dry summer /Hot

summer
39

9 Csb Temperate /Dry summer /Warm
summer

52

10 Csc Temperate /Dry summer /Cold
summer

9

11 Cwa Temperate /Dry winter /Hot summer 11
12 Cwb Temperate /Dry winter /Warm

summer
9

13 Cwc Temperate /Dry winter /Cold summer 12
14 Cfa Temperate /Without dry season /Hot

summer
335

15 Cfb Temperate /Without dry season
/Warm summer

190

16 Cfc Temperate /Without dry season /Cold
summer

2

17 Dsa Cold /Dry summer /Hot summer 2
18 Dsb Cold /Dry summer /Warm summer 5
19 Dsc Cold /Dry summer /Cold summer 2
20 Dsd Cold /Dry summer /Very cold winter 3
21 Dwa Cold /Dry winter /Hot summer 1
22 Dwb Cold /Dry winter /Warm summer 5
23 Dwc Cold /Dry winter /Cold summer 8
24 Dwd Cold /Dry winter /Very cold winter 3
25 Dfa Cold /Without dry season /Hot

summer
176

26 Dfb Cold /Without dry season /Warm
summer

150

27 Dfc Cold /Without dry season /Cold
summer

54

28 Dfd Cold /Without dry season /Very cold
winter

3

29, 30 ET Polar /Tundra 16, 5
31, 32 EF Polar /Frost 3, 0
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As an overall summary of our analysis, we obtained
a global average (expected value) of the shape para-
meter, which equals 0.139 (model f, estimates for sea
level), with a 95% credibility interval ranging from
0.127 to 0.150. Thus the estimate of 0.15 by
Koutsoyiannis (2004b) obtained from a smaller dataset
is still consistent with, but lies at the high end of, the
range of values suggested by the present analysis of the
extended dataset.

Confirming the statement of Dyrrdal et al. (2014)
regarding the shape parameter’s dependency on the
degree of orographic enhancement, we found a height
dependency, suggesting a decrease of the shape para-
meter of about 0.07 per 1000 m height, with:

βh � 1000 m 2 �0:088;�0:056ð Þ (34)

as a 95% credibility interval. This means that at a
height of 2000 m, the expectation for the shape para-
meter will drop from about 0.14 to zero (the shape
parameter of the Gumbel distribution). However,
extrapolating the decrease of the shape parameter to
negative values can be seen as physically inappropriate
(Koutsoyiannis 2004a). This suggests that the depen-
dency on elevation found may be nonlinear in reality.

The stationary standard variation of the spatial pro-
cess was estimated to be 0.05, with (0.04, 0.06) as a 95%
credibility interval for this parameter. Since the global
expected value was approximately 0.14, this means

Table 7. Re-grouped Köppen-Geiger climate classification with
focus on precipitation.
No. Type Number of stations

1 Rainforest 5
2 Monsoon 4
3 Savannah 10
4 Desert 39
5 Steppe 295
6 Dry summer 112
7 Dry winter 49
8 Without dry season 910
9 ET (Polar /Tundra) 21
10 EF (Polar /Frost) 3

Figure 8. Box plots for the full climate classification: (a) model f; (b) model g.

Figure 9. Box plots for the re-grouped “climate–precipitation” classification: (a) model f; (b) model g.
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that, at sea level, 95% of all stations are expected to
have a shape parameter of between 0.04 and 0.24. At
1000 m height, this changes to �i 2 �0:03; 0:17ð Þ for
95% of all stations.

7 Conclusions

The main conclusions of our study can be summarized
as follows:

● The shape parameters of various stations are
neither entirely separate nor independent if a dis-
tribution is assigned to them (hypotheses a and b
were rejected). At the same time, the results pre-
sented here show that the shape parameter is not a
universal, globally common value, but a regionally
(large-scale) common value. Regions correspond-
ing to small countries or administrative regions
within larger countries can be assigned roughly
the same shape parameter, but larger areas such
as continents can be expected to be heterogeneous.

● The global average (expected value) for the shape
parameter is equal to 0.139, with a 95% credibility
interval ranging from 0.127 to 0.150.

● Shape parameter decreases with elevation: by
0.07 per 1000 m height, with βh � 1000 m 2
�0:088;�0:056ð Þ as a 95% credibility interval:

● There is no detectable dependency of the shape
parameter on the precipitation form (rain/snow).

● It is very likely that the shape parameter varies
according to dominating precipitation systems.
However, more research is needed to define this
dependency.

● It remains unclear whether the shape parameter
changes with latitude in a systematic fashion.

● Maps of the shape parameter’s global distribution
were created (Figs. 4 and 5) and can be used for
estimating extreme precipitation for engineering
purposes. However, uncertainty of ξ (local) values
cannot be neglected, and this uncertainty (see Figs. 6
and 7) is close to the variability of local (median)
estimates across the globe.
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Appendix

Here, we present the Markov chain Monte Carlo (MCMC)
method used in model analysis and the estimation
method for calculating the Bayesian model likelihood
(BML).

MCMC method

Bayesian methodology seeks for each model in question to
analyse the posterior distribution (see Equations (13)–(14)).

This represents knowledge concerning the model para-
meters after the data have been incorporated into the knowl-
edge base. MCMC consists in constructing a special Markov
chain, which samples from the posterior distribution even
when the marginal likelihood (BML) is not known. In gen-
eral, this is achieved by an iterative algorithm, in which each
proposed change in parameter values is subject to rejection
or acceptance. The proposal distribution can depend on the
previous parameter values, so that:

θproposed,hðθproposedjθpreviousÞ (A1)

This is accepted with probability:

paccept ¼ min 1;
f Djθ

proposed

� �
f θproposed
� �

f Djθprevious
� �

f θprevious
� �

0
@

=
hðθproposedjθpreviousÞ
hðθpreviousjθproposedÞ

! (A2)

This is known as the Metropolis-Hastings algorithm
(Hastings 1970). This Markov chain will converge towards
the posterior distribution.

Typically one uses a “burn-in” phase, in which the algorithm
is run but the samples are not kept, in order to allow the
Markov chain to converge to the target distribution. Also,
since there is dependency between one sample and the next, it
is usual to run a set of samples in between those that are kept so
that each kept sample is approximately independent, which we
will call spacing. In our case, a burn-in phase of 4000 samples
gave stable results, as judged by repeated estimates and by later
BML calculations. The spacing between samples was set to 40,
which gave samples whose independence could not be rejected
using a simple auto-regressive test. Then 100 samples were
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returned, meaning that a total of 8000 MCMC iterations were
performed. For the hierarchical spatial models, this was all we
could afford, as the combination of spatial modelling, thou-
sands of parameters (one μ; σ and � parameter for each of 1495
stations), a large dataset and 8000 iterations meant an execution
time of nearly a month with our available computing resources
at the time.

One can make proposal distributions for the whole para-
meter set. However, it is also possible to traverse the para-
meters one parameter at a time and when a particular
parameter is handled the proposal is performed for the value
of that parameter while the values of the other parameters are
held constant. This is often easier to implement. In hierarch-
ical models, such as some of those being examined in our
study, such a parameter set traversal is much simpler to
implement. Thus, we used parameter set traversal
rather than seeking a single proposal for the whole parameter
set.

The implementation and execution efficiency will
depend on the proposal distribution of each parameter. As
we have many different models and many parameters per
model (at least for the hierarchical models), implementation
efficiency was prioritized.

If the proposal distribution is symmetric along the pre-
vious values, so that:

h θproposedjθprevious
� �

¼ hðθpreviousjθproposedÞ (A3)

one term from the acceptance probability falls away and one
is left with the original Metropolis algorithm (Metropolis
et al. 1953). This can be achieved, for instance, by letting:

θproposed ¼ θprevious þ σprop� (A4)

where � is standard normally distributed and is called the
random walk MCMC method (RWMCMC). The RWMCMC
method only depends in efficiency on the standard deviation
of the proposal distribution, σprop. An optimal value for σprop
can be obtained manually, but since we have many models
and a great many parameters (for the hierarchical models),
an automated method for optimizing σprop was sought. An
acceptance rate of approximately 1/3 is deemed near optimal
(Roberts et al. 1997). We thus added a step in the burn-in
phase in which the σprop for each parameter was adjusted up
if there was more than a 1/3 acceptance rate and down if
there was less than a 1/3 acceptance rate.

We also included the use of the parallel tempering algo-
rithm (Geyer 1991), in order to deal with the possibility of
multimodality in the posterior distribution. Tempering con-
sists in that a number, N, of MCMC chains are run in parallel,
one for the target distribution (the posterior distribution),
f ðθjDÞ, and N � 1 for a modified distribution proportional

to f ðθjDÞ1=Ti , for a set of “temperatures”, Ti >Ti�1f gi¼2;...;N .
Thus, each higher distribution will be a smoother version of
the distribution preceding it. Sometimes, the algorithm will
propose switching the values of neighbouring chains. This
makes it possible for the original chain to bridge the gap
between two modes in the target distribution. For the spatial
models, we needed N ¼ 12 parallel chains, with Ti gradually
increasing from 1 to 4, in order to get stable results. Even so,
some runs failed, but we achieved three runs that gave con-
sistent results.

BML estimation

The BML (Equation (14)) of a model can be used for calcu-
lating Bayesian model probabilities or the Bayes factors.
From Bayes’ theorem, the posterior model probability is:

P MjDð Þ ¼ P Mð Þf ðDjMÞPm
i¼1 P Mið Þf ðDjMiÞ (A5)

where m is the total number of models considered, P Mð Þ is
the prior model probability and Mif gi ¼ 1;...;m is the set of
models considered. If no model is preferred a priori, so that
P Mð Þ ¼ 1=m, then the model with the highest BML will be
the model with the highest posterior model probability.
Thus, the BML or the log-BML can be used similarly to
an information criterion, in that model selection consists in
finding the model with the highest BML. The Bayes factor
for model Mi versus model Mj is simply:

Bi vs j ¼ f DjMið Þ=f DjMj
� 	

(A6)

Thus, again, the BML is the only thing that needs calculation.
The BML will often not be analytically available. It can,

however, be estimated using the Monte Carlo technique
known as importance sampling. We used a particular impor-
tance sampler, developed by Reitan and Petersen-Øverleir
(2009) and also explored by Reitan and Aas (2010/2011), to
calculate the BML, which is briefly described here. (It was later
used in other applications.) If one needs to estimate an integral:

Î ¼ g xð Þf xð Þdx (A7)

where f xð Þ is a distribution and g xð Þ is a function, then a
standard Monte Carlo approach would be to sample from
f xð Þ N times and estimate the integral as:

Î ¼
XN
i¼1

g xið Þ (A8)

where xi,f xð Þ. An importance sampler replaces the distribu-
tion f xð Þ with a different distribution h xð Þ and estimates the
integral as:

Î ¼
XN
i¼1

g xið Þf xið Þ=h xið Þ (A9)

where now xi,h xð Þ. If h xð Þ is similar in form to g xð Þf xð Þ,
this alternative proposal distribution can be quite effec-
tive. Since the posterior distribution is proportional to
f DjθM;Mð Þf ðθMjMÞ, a proposal distribution is obtained
by extracting the average and variance from the MCMC
samples. One can then make a multivariate normal pro-
posal distribution which will have approximately the
same first- and second-order moments as the posterior
distribution. The multivariate normal distribution can be
either independent for each parameter (Reitan and Aas
2010/2011), or also catch the linear dependencies between
the parameters in the posterior distribution (Reitan and
Petersen-Øverleir 2009). The latter means will be closer
to the posterior distribution, but would mean calculating
the covariance matrix of the MCMC samples, which is
not practical when the parameter set is very large. Thus,
in this application we opted for independence between
parameters in the proposal distribution.
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