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Hiie Nõlvak1, Jaak Truu2, Baiba Limane3, Marika Truu4,
Guntis Cepurnieks5, Vadims Bartkevičs6, Jaanis Juhanson7, Olga Muter8
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Abstract. Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause

serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using

laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and

phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes

in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant

decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day

tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most

profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue

fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses

suggested the survival and elevation of the introduced bacterial strains throughout the experiment.
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Introduction

The nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT),

has been extensively used for over 100 years, and this

persistent toxic organic compound has resulted in soil

contamination and environmental problems at many

former explosives and ammunition plants, as well as

military areas (Stenuit, Agathos 2010). TNT has been

reported to have mutagenic and carcinogenic potential

in studies with several organisms, including bacteria

(Lachance et al. 1999), which has led environmental

agencies to declare a high priority for its removal from

soils (van Dillewijn et al. 2007).

Both bacteria and fungi have been shown to

possess the capacity to degrade TNT (Kalderis et al.

2011). Bacteria may degrade TNT under aerobic or

anaerobic conditions directly (TNT is source of carbon

and/or nitrogen) or via co-metabolism where addi-

tional substrates are needed (Rylott et al. 2011). Fungi

degrade TNT via the actions of nonspecific extracel-

lular enzymes and for production of these enzymes

growth substrates (cellulose, lignin) are needed. Con-

trary to bioremediation technologies using bacteria or

bioaugmentation, fungal bioremediation requires

an ex situ approach instead of in situ treatment (i.e.

soil is excavated, homogenised and supplemented

with nutrients) (Baldrian 2008). This limits applicabil-

ity of bioremediation of TNT by fungi in situ at a field

scale.
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abstract. Although increasing numbers of research papers regarding biochar are being published worldwide, in some 
countries growing interest in biochar has only recently been observed; this is true of Poland. We analysed information 
on biochar research in Poland alongside lessons learned elsewhere in order to identify the significant opportunities 
and risks associated with biochar use. This data fed into a GIS-based multicriteria analysis to identify areas where 
biochar application could deliver greatest benefit. We found that 21.8% of agricultural land in Poland has at least 
moderate indication for biochar use (soil organic matter below 2% and pH below 5.5), while 1.5% was categorized 
as a priority as it also exhibited contamination. Potential barriers identified included biomass availability and associ-
ated risks of indirect land-use change due to possible national and transnational biomass production displacement. 
Biochar use could have positive global consequences as a climate change mitigation strategy, particularly relevant in a 
country with limited alternatives. Scaling up a mitigation technology that is viable on account of its co-benefits might 
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Introduction

Biochar is considered a tool of potential relevance to sus-
tainable agricultural development (Sohi et al. 2010; Zim-
merman et  al. 2011; Jindo et  al. 2012).  It influences a 
range of soil physical, chemical and biological properties, 
in ways that tend to favour crop productivity (Lehmann, 
Josef 2009). This influence varies according to environ-
mental factors, soil type and the type of biochar used (Bie-
derman, Harpole 2013). Productivity increases attributed 
to biochar tend to have been greatest for soils with low pH 
and coarse texture (Cornelissen et al. 2013; Haefele et al. 
2011; Sohi 2012; Yeboah et al. 2009). The meta-analysis of 
Jeffery et al. (2011) reported an overall grand mean crop 
yield increase of 10% with the range between –28 and 
39%, while others report yield impacts ranging from –71% 
to 324% (Sohi et al. 2009). The largest yield increases have 
been reported where a combination of biochar and fertil-
izer has been used (Gathorne-Hardy et al. 2009; Peng et al. 
2011).

The practice of applying charcoal to soil to improve 
soil fertility and mitigate contamination is not a new con-
cept (Glaser et al. 2002). However, the scientific study of 
using biochar to improve the properties of soils is rela-
tively new. Over recent years there has been increasing 
interest, mainly in developed countries, to substantiate 
the benefits and the mechanistic explanation for these 
outcomes. In parallel, field experiments have been un-
dertaken in developing countries to investigate whether 
biochar is a cheap, practical and viable addition to fertil-
izers and organic inputs to increase soil quality and ben-
efit yields on poor tropical soils (Cornelissen et al. 2013; 
Crane-Droesch et  al. 2013; Yamato et  al. 2006). Recent 
research also shows that biochar application should shift 
away from on-farm production and application of pure 
biochar, towards combined biochar-inorganic fertilizer 
products (Clare et al. 2014).

Considering temperate climate, an example of a Eu-
ropean country, where limited research related to biochar 
has been carried out is Poland. Agriculture plays an im-
portant role in the economy of the country: it is the only 
sector where exports systematically exceed imports (CSO 
2013). Favourable location of the country at the cross-
roads of main communication routes in Europe enables 
agricultural products from Poland to reach over half a bil-
lion of consumers. Yet, current agricultural productivity in 

Poland is relatively low, due to generally poor soil quality 
(acid soils of low organic matter content) and extensive 
farming (Królczyk et  al. 2014; CSO 2012). Developing 
new sustainable and clean technologies to improve agri-
cultural output is therefore a priority for the country. Av-
erage yields of wheat, one of the main crops, is 50% of 
its potential (FAO, IIASA 2010). Agricultural production 
is forecast to increase in the future, yet the area of arable 
land in Poland is diminishing due to urbanization and 
transport development, among other factors (Krasowicz 
et al. 2011; Jonczyk, Stalenga 2010). In addition, national 
legislation and international conventions oblige Poland 
to ensure greater environmental protection and manage-
ment, known as “greening measures” to protect natural 
landscapes. To this end, a proportion of agricultural land 
must be managed as “Ecological Focus Areas” (BES 2013). 
The country is therefore an interesting example where it is 
necessary to develop new technologies to seek sustainable 
intensification of agricultural production. In recent years 
there has been increasing interest in biochar research in 
Poland (see Supplementary Material).

In this paper we provide a multi-level model for an 
appraisal of the potential benefits of biochar application, 
firstly by overlaying the spatial distribution of relevant soil 
variables within a GIS, and evaluating these results as the 
first step in a (reconnaissance-scale) multicriteria analy-
sis. Each of the criteria feeding into this analysis are dis-
cussed in greater detail in their regional context. Finally, 
non-physical, and less tangible, socioeconomic and politi-
cal factors which would need to be considered in a more 
detailed analysis, are briefly presented.

The development of spatial decision support sys-
tems (SDSS), such as GIS, and their successful integration 
with multicriteria decision-making methods (MCDM) 
has been well summarized by Malczewski (2004). One 
of the primary uses of such systems has been to evalu-
ate rural land use options, a concept which predates com-
puterization, in the form of conventional map overlays 
(FAO 1976). The “suitabilities” evaluated by such systems 
have typically been types of land use, as opposed to land 
treatments, but as both the technologies and the method-
ologies have advanced, the scope of such spatial analyses 
seems almost unlimited. Though still unusual, such analy-
ses have included individual soil treatments (Passuello 
et  al. 2012), and even biochar (Ahmed et  al. 2010). An 

be cost-effective, which could, in turn, adjust national perspectives and stronger involvement in developing mitigation 
policies at the regional level. Biochar has much promise in temperate conditions and further research should therefore 
be assigned to explore biochar’s environmental and socio-economic impacts.

Keywords: biochar, carbon sequestration, GIS-based multicriteria analysis, land remediation, sustainable agricultural 
production.
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important factor in any spatial analysis is scale. While de-
tailed land use planning decisions would be appropriate at 
a large scale, e.g. 1:25,000, here, at the countrywide scale, 
only reconnaissance level considerations are realistic.

With the increasing intensification of agriculture, 
many temperate countries interested in using biochar 
now have an opportunity to benefit from lessons learned 
elsewhere, so as to maximize agricultural productivity 
and protect ecosystem services. Poland, with its twin pres-
sures of large areas of relatively low quality agricultural 
land, and losses of farmland to infrastructure, alongside 
endemic environmental concerns, is well placed to ex-
plore the potential of such long-term land improvement 
without the need for expensive or harmful intensification. 
Furthermore large areas of land which are marginal for 
agriculture in Poland could nevertheless produce feed-
stock for biochar.  Although the focus here is on the re-
gional context, general conclusions and implications for 
decision-making are transferable to other countries. The 
most pertinent research caveats discussed here may also 
be particularly relevant in the regions where biochar re-
search has not been taken up. Hence, places with little or 
no data for the suitability of biochar, could benefit from 
the results of MCDM applied to physically and socioeco-
nomically similar areas.   

1. Methods

A content analysis was performed (Bryman 2008) to se-
lect the most pertinent factors underlying the successful 

application of biochar. Drawing on a literature review and 
expert opinion, the most likely factors that would drive 
successful use of biochar in temperate regions were deter-
mined to be soil pH, soil organic matter, soil texture and 
contaminant loads. These variables were overlaid spatially 
to produce the first map for Poland of potential areas that 
could benefit from biochar application in terms of increas-
ing agricultural productivity and mitigating soil contami-
nation.

The soil acidity data layer (Fig. 1A) was derived 
through a ranking method, assigning topsoil pH data 
(pH in KCl) (Łopatka et al. 2007) at approximately 45 000 
sampling locations (Terelak et al. 1997) to polygons of the 
digitized soil agricultural map (Stuczyński, Jadszczyszyn 
2007). The soil contamination data layer (Fig. 1B) was pro-
duced through Inverse Distance Weighted (IDW) interpo-
lation of topsoil total cadmium data representing the same 
45 000 sampling locations (Terelak et al. 1997) followed by 
averaging values to polygons of soil in an agricultural map 
1:100000 (Terelak et al. 1997). Cadmium was selected for 
calculation of metal inactivation needs due to its potential 
risk to uptake in the food chain (Siebielec et al. 2008). It 
has also been correlated to other metals of similar origin 
(industry, soil parent rock material), for example, zinc 
and lead. According to national regulations the threshold 
for Cd content in agricultural soils is 4 mg kg–1, and this 
value was applied for mapping. Above this level the soils 
should be subjected to remediation. The Polish agricul-
tural threshold value for Cd (of 4 mg kg–1) is of immediate 
relevance to the framing of this manuscript and is in keep-
ing with other threshold values applicable to the EU; for 
example, the UK Soil Guidance Values for allotment soils 
(1.8 mg kg-1) and residential soils (10 mg kg–1) (Martin 
et al. 2009). It is noteworthy that each country has its own 
thresholds for heavy metal contamination and criteria to 
evaluate contaminated land. Validation of interpolation 
was performed using an independent set of samples (216 
locations across the country) and revealed standard errors 
of 0.94 and 0.54 for pH and Cd content, respectively. 

All data was imported and overlaid using ArcGIS 
v.9.2 software. Upon the literature review and expert con-
sultation, the following criteria were adopted to prioritize 
the areas for biochar application (strong indication): soils 
contaminated with cadmium (>4 mg kg–1) or character-
ized by soil organic matter below 1% (very low content 
according to environmental legislation) and pH <= 4.5 
(very acidic soil according to criteria used in assessment 
of soils in Poland) and being sands. Soil organic matter 
content and soil texture are shown in the Figure 1C and 
1D, respectively. To classify areas as those with medium 
potential for biochar use the following criteria were used: 
soil organic matter below (or equal to) 2% (considered 
low by environmental guidelines) with pH lower or equal 
to 5.5 (considered acid soil) and with soil texture being 

Fig. 1A. Soil acidity in Poland. The soils below pH 4.5 are very 
acidic and soils with pH range 4.5–5.5 are acidic according 
to criteria used in assessment of soils in Poland. Most of the 
country is covered by the areas of acid soils with pH below 
5.5. Supplementary Material includes data on each category 
(medium and strong potential) per region in Poland
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sand or loamy sand. Any area with elevated levels of con-
tamination would also be classified as having medium po-
tential for biochar use. The flowchart of methodology is 
presented in the Figure 2.

2. results and discussion

2.1. Increasing organic matter and acidity regulation

In Poland, most of the soils are characterized by low to 
average contents of soil organic matter (Fig. 1C). Soils 
classified as very acid and acid occupy over 50% of the 
country (Fig. 1A; Siebielec et al. 2012) and over 70% of the 
soils in the country require periodic liming to manage pH 
(Supplementary Material). On this account and given soil 
texture (high sand content), we found that 21.8% of the 
agricultural area in Poland is characterized by a medium 
potential for biochar use, while strong potential was found 
for 1.5% of the agricultural area in Poland (Fig. 3). 

Soil acidity and low humus content are the biggest 
threats to soil quality in Poland according to the State 
Research Institute of Soil Science and Plant Cultivation 
(Siebielec et  al. 2012). Furthermore, common agricul-
tural crops in Poland, such as wheat and barley, require 
pH over 6.5 to give highest yields and lower pH results in 
lower yields (by 15–20% of the possible attainable yield) 
(Fotyma et al. 2009; Carver, Ownby 1995). Increasing pH 
of soils is therefore a priority and necessity within agricul-
tural management in Poland. Furthermore, across Europe 
soil is under increasing pressure from inappropriate agri-
cultural and industry practices, which undermine the ca-
pacity of soil to continue to perform its crucial ecosystem 

services (COM 2006a). Sixteen percent of Europe’s total 
land area is affected by erosion (12% and 4% subject to 
water and wind erosion, respectively) while 45% of Euro-
pean soils have low organic matter content (COM 2006b).

In this context biochar is a potential tool to increase 
soil pH and soil organic matter content. The pH of biochar 
can vary from pH 4 to 12 (Lehmann 2007), but in general, 
when biochar is produced at a sufficient temperature (over 
350 °C) for adequate time (which, depending on the oven 
and the pyrolysis type, can be up to a few hours) to ensure 
that biochar has little ash and a reasonable carbon content 

Fig. 1B. Soil contamination with trace metals (cadmium) in 
Poland. According to national regulations the threshold for 
Cd content in agricultural soils is 4 mg kg-1. Above this level 
the soils should be subjected to remediation

Fig. 1C. Soil organic matter in Poland ( Stuczyński, Jadczyszyn 
2007; discussion in the Supplementary Material)

Fig. 1D. Soil texture in Poland
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(normally around or above 50%), it displays an alkaline 
pH (above 7). A number of studies on different types of 
biochar from different pyrolysis processes demonstrated 
a liming effect of biochar in the soil (Gaskin et al. 2010; 
Kloss et  al. 2012, 2014; Singh et  al. 2010; Uzoma et  al. 
2011). When biochar is added to an acidic soil, it tends 
to increase soil pH with a broadly beneficial effect, par-
ticularly with respect to nutrient cycling, e.g. biochar addi-
tions of 2% w/w have been found to raise pH by 1.0 (Laird 
et al. 2010). It has been claimed that adding inappropri-
ately alkaline types of biochar can exacerbate an unfavour-
ably high soil pH (Kishimoto, Sugiura 1985), however 
such soils tend to be highly buffered and in practice the 
effect is often neutral (Schmidt et al. 2014). Diminished 
soil acidity accompanied with yield improvement has been 
reported by many authors (Major et al. 2010; Van Zwieten 
et al. 2010; Vaccari et al. 2011). The effect of biochar on 
soil and yields is not only dependent on biochar but also 
on the soil characteristics such as soil texture, soil organic 
matter and pH. Most of the pot and field experiments were 
related to highly weathered, nutrient-poor tropical soils 
(Glaser et al. 2002; Blackwell et al. 2009; Sohi et al. 2010). 
According to Verheijen et al. (2010) the highest increase 
in soil pH is observed as a consequence of biochar addi-
tion when the initial pH of soil is low and positive effects 
on crop productivity might be a result of liming effect and 

Fig. 2. Flowchart of the 3-step methodology to derive prioritization of biochar use for sustainable land management. First, the 
literature was reviewed to provide data input to spatial prioritization. In this study we used organic matter content, soil pH, soil 
texture and contamination level to arrive at the prioritization map. Subsequently we discuss other benefits of biochar and the most 
important practical considerations that must be taken into account before biochar is applied. Some considerations from the step 3 of 
this methodology could enrich spatial prioritization; their use however is subject to data availability (and therefore not included in 
this study)

Fig. 3. Preliminary prioritization of areas that could benefit 
from biochar use. In orange are the areas with medium 
potential for biochar use: elevated cadmium OR (SOM <= 
2 AND pH <= 5.5 AND (texture = sand OR loamy sand)), 
which equals 21.8% of the agricultural area. Red colour 
indicates strong potential for biochar application: soils 
contaminated with cadmium OR (SOM <= 1 AND pH <= 4.5 
AND texture = sand), which equals to 1.5% of the agricultural 
area in Poland
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nutrients cycling (Jeffery et al. 2011; Powlson et al. 2011; 
Rajkovich et al. 2012; Verheijen et al. 2010). In a recent 
review of 57 field experiments across all continents (Tam-
meorg 2014) observed the highest increase in crop pro-
ductivity following biochar addition in sandy soils with 
a low soil matter organic content. Biochar also increased 
soil organic matter content and supported the retention of 
nutrients and water (Tammeorg 2014). Positive effects on 
soil and plants were found by Kuka et al. (2013) and Yang 
et al. (2013), which might partly be a result of the increase 
in pH. Sandy soils are likely to have greatest benefits from 
biochar than clayey soils (Atkinson et al. 2010), which is 
promising in the context of Polish soils. 

2.2. Biochar and contaminated land remediation

Many years of intensive land use due to coal mining and 
metal ore smelting activities have resulted in serious con-
tamination of some arable soils, especially in Upper Silesia 
(southern Poland) (Loska et al. 2004; Karczewska, Kabała 
2010), therefore we found this area to have a strong po-
tential to benefit from biochar use (Fig. 3). The degree of 
the contamination problem is not entirely known, but el-
evated concentrations of heavy metals, PAHs, oil deriva-
tives have been reported in arable soils throughout Poland 
(Fig. 1B; Tóth et al. 2016a, 2016b; Siebielec et al. 2012). 
The in situ application of amendments to contaminated 
soils to bind pollutants (to provide conditions that pro-
mote plant growth and stimulate ecological restoration) 
have been reported worldwide, but in Poland such prac-
tices are rare. 

Biochar is highly porous and has functional groups 
that enable it to interact with both organic and inorganic 
species present in soil (Amonette, Joseph 2009; Reid et al. 
2013). Thus, there is potential to remediate contaminated 
soils through the sorption and entrapment of contami-
nants by biochar. Although the use of activated carbon to 
treat contaminated soils and sediments is well established 
(Hale et al. 2012; Werner et al. 2005; Zimmerman et al. 
2004), the application of biochar as a partially activated 
material to treat contaminated soil is less investigated. 
Regarding inorganic contaminants, several studies have 
shown the potential for a range of biochar materials to 
ameliorate soil contaminated with metals and metalloids, 
these include: broiler litter derived biochar (Cu, Ni and 
Cd) (Uchimiya et  al. 2010); hardwood-derived biochar 
(Cd and Zn) (Beesley et  al. 2010); pecan-shell biochar 
(Zn) (Novak et al. 2009); biochar from orchard prunings 
(Cd, Pb and Zn) (Fellet et al. 2011); rice straw and bean 
straw biochar (Cd) (Zheng et al. 2015), and; sewage sludge 
bichar (As) (Khan et al. 2014).

Research carried out in Poland to date has principally 
focused on biochar binding of organic pollutants (Oleszc-
zuk et al. 2014, 2012a, 2012b; Jośko et al. 2013) as well as 

for composting (Czekała et al. 2016; Malińska et al. 2014, 
2016, 2017). Other pilot studies of biochar use have been 
made in south-west Poland in the remediation of soils 
contaminated with multiple trace metals (Cu, Pb, Zn, Cd, 
As, Ni) from copper smelters. These suggest that biochar 
made from wheat straw and miscanthus and used at 2% 
(w/w) concentration could reduce bioavailability of Cu, 
Zn and Pb and uptake by plants growing on highly con-
taminated soils (Medyńska-Juraszek 2014). We note, how-
ever, that biochar-metal associations, while they mitigate 
risks,  do not necessarily reduce risks to below acceptable 
levels. Here it is important to acknowledge: i) the extent to 
which metal concentrations are elevated (in cases of gross 
contamination biochar may lack sufficient adsorptive ca-
pacity to fully mitigate metal risks) and ii) prevailing envi-
ronmental conditions, such as pH and redox potential (as 
prevailing conditions may be unconducive to metal sorp-
tion; favouring metal dissolution to the soil pore water) 
(Zheng et al. 2015; Zhang et al. 2016). Nonetheless, given 
these initial bioremediation-focused studies that suggest 
that biochar amendment to soil is a useful tool in reducing 
environmental risk of pollutants, we emphasize the need 
for further investigation.

In addition to heavy metals, elevated concentrations 
of pesticides have been reported in Poland (Sutrawska, 
Kołodziejczyk 2006; Eurostat 2016). At such locations 
biochar, on account of its sorptive capacity, could ame-
liorate the impact of pesticides by reducing exposure of 
non-target receptors, for example, soil biota, groundwater, 
surface waters and aquatic organisms. Reduced pesticide 
availability in soils would also be anticipated to reduce 
pesticide uptake to food crops and further accumulation 
into the food chain. Such reduced soil-to-plant transfer 
of pesticides has been reported in biochar-amended soils 
for both insecticides (Pylypiw et al. 1997) and herbicides 
(Pylypiw et  al. 1993). Direct biochar placement within 
soils or as a permeable barrier (e.g. trenching) in the ri-
parian zone could provide mitigation of herbicide transfer 
to surface waters. Biochar may provide an important sink 
where excess runoff occurs but the knowledge on this top-
ic is still scarce. Although in Poland little is known about 
pesticides residues in general, some areas of the country 
(such as Lower Silesia and Opole Silesia) were reported to 
have high residues of herbicides and fungicides in soils, 
water, plants and animal tissues, which corresponds to the 
high doses of pesticides used in these regions (Sutrawska, 
Kołodziejczyk 2006). Research into this area would be of 
particular use in order to prioritize biochar interventions 
in areas of greatest concern (Weissteiner et al. 2014; Biziuk 
2009; Sutrawska, Kołodziejczyk 2006).

It is worth noting that the map of potential for bio-
char application presented here serves as visualization 
for a reconnaissance study. Even though our database of 
45 000 sampling locations is the most detailed existing soil 
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survey in Poland, uncertainty in individual locations may 
be considerable, since spatial variability of pH and metal 
content is high, as a result of soil management by farm-
ers, parent rock and diversity of industrial sources of con-
taminants in post –industrial regions. Decision making on 
individual locations should therefore be complemented by 
the analysis of soil samples collected from the location of 
interest.  

2.3. physical effects in soil following biochar 
amendment

Like soil organic matter, biochar can counteract both arid-
ity in sandy soils (Uzoma et al. 2011) and improve water 
drainage under inundated conditions of waterlogged clay 
soils (Asai et al. 2009). Biochar can enhance water hold-
ing capacity (WHC) and water use efficiency, which can 
help to reduce water demand (Peake et al. 2014). Biochar-
amended soils have shown increases in WHC from 11 to 
481% especially in sandier soils (Karhu et al. 2011; South-
avong, Preston 2011; Uzoma et al. 2011). Sandy soils were 
therefore selected as priority areas in our spatial model-
ling.

Other physical effects of biochar include reduced 
bulk density (Laird et al. 2010), reduced tensile strength 
(Chan et al. 2007), and decreased soil strength (Busscher 
et al. 2010). The capacity of biochar to improve soil struc-
ture and cohesion has the potential to prevent erosion and 
counteract compaction, and is also directly aligned with 
European soil protection priorities (COM 2006a, 2006b). 
Since improving soil structure and WHC may lead to soil 
stabilization, results of such analysis would also have im-
plications for flood-risk areas. More research is however 
required to assess the best candidate soils and to match 
this assessment with flood risks.

Poland is one of the countries in Europe with the 
least available water per capita (CSO 2013; Siebielec et al. 
2012). The capacity of storage reservoirs in Poland is very 
limited (6% of the annual outflow of water), which does 
not provide adequate protection against periodic surpluses 
or deficits of water (Siebielec et al. 2012). Therefore using 
biochar to address low WHC in Poland agronomically is 
extremely relevant. Projected increases in evapotranspora-
tion under climate change further reinforce the potential 
mitigation strategies that biochar may offer to abate future 
water deficits (SOER 2010). As some authors showed (De-
vereux et al. 2012), it may be possible to reduce irrigation 
frequency or volume in coarse textured soils, soils with 
a large number of macropores or when large amounts of 
biochar are applied.

Another potential benefit from biochar use, un-
mapped here due to data scarcity, relates to nutrients. In 
terms of plant nutrition, biochar can have two effects: 
temporary fertilizing effects, on account of its ash content, 

and longer-term effects, such as changes to pH or cation 
exchange capacity (CEC). Discussion on potential benefits 
from biochar in the context of nutrient availability in Pol-
ish soil can be found in Supplementary Material. 

2.4. potential barriers to biochar utilization 

Several important aspects relating to biochar application 
to soil need full consideration if biochar is to have a role 
to play in sustainable land management in Poland. Most 
pertinent are: 1) safety, 2) social acceptance, 3) lifecycle 
appraisal and, 4) availability of feedstock for biochar pro-
duction.

2.4.1. Biochar safety

The over-riding prerequisite for any soil amendment is its 
safety. Biochar has the potential to introduce toxic chemi-
cals into soil that could damage soil functions. Three 
groups of potentially toxic substances, namely: metals and 
metalloids (such as, As, Cu, Pb, Ni, Zn etc.); polycyclic 
aromatic hydrocarbons (PAHs); and dioxins, are the most 
likely agents to be present in biochar and to represent a 
toxicity hazard. Although environmental impacts attrib-
utable to metals, metalloids, PAHs and dioxins associated 
with biochar are likely to be minimal (Freddo et al. 2012; 
Hale et  al. 2012), special care is required to ensure the 
feedstock materials, particularly if wastes, are not overly 
burdened with high concentrations of metals, metalloids, 
or chlorinated compounds (that may serve as dioxin pre-
cursors). In this regard virgin wood and crop waste resi-
dues are not tainted chlorinated compounds (e.g. associ-
ated with wood preservation) and these feedstocks have 
relatively low metal and metalloid loadings (Zheng et al. 
2015) when compared to, for example, sewage sludge 
(Lu et al. 2016). In keeping with biochar guidance appli-
cable to the EU, for example the Biochar Quality Mandate 
(Shackley et al. 2014) we advocate that biochar produced 
for application to agricultural land should be derived from 
virgin non-waste biomass feedstocks. Pyrolysis conditions 
should also be considered with caution, as lower pyrolysis 
temperatures (<400 °C) have been reported to give bio-
char products with greater PAH loadings when compared 
with biochars produced at higher pyrolysis temperatures 
(Freddo et al. 2012; Hale et al. 2012). 

2.4.2. Social acceptance and inclusion into farmers’ practice

Social aspects are often omitted in the assessment of 
emerging technologies but are paramount for long-term 
utility and effectiveness of an approach (Michałek, Kuboń 
2009). Indeed, in order for regional scale advantages of 
biochar to be achieved, diverse stakeholders, populations 
and decision-makers, along with scientists, have to be ac-
tively interested in optimizing biochar technology in the 
context of their local environment.
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Some specific research questions for biochar in-
clude: what is the social acceptance and consequence of 
implementing biochar into agricultural practice (e.g. job 
creation in sustainable agriculture)?; how would biochar 
work operationally and would it work for both large and 
small scale farmers?; would it work in small-holder closed 
systems (biomass production and use at the same farm)?; 
is there potential for biochar to be used in horticulture 
and organic farming?; and, finally, is it economically vi-
able as compared with other alternatives such as the use of 
lime? These questions also include practical and logistical 
aspects of storage, transport, and farmers’ incorporation 
of biochar into soil.

Another important aspect is to what extent the farm-
ers would prefer to use their biomass for biochar produc-
tion instead of receiving, sometimes substantial financial 
benefits from selling their biomass to power plants, which 
on the other hand, receive subsidies from the generation 
of “green energy”. Conversely, this trend may finish, when 
the subsidies cease, while conversion of biomass to bio-
char may bring the farmers a range of more permanent 
benefits, such as improving the quality of soils, increasing 
agricultural productivity, carbon sequestration and poten-
tial payments from avoided emissions. Preliminary results 
show potential interest of the farmers in Poland to adopt 
biochar, and new studies on social acceptance of biochar 
application are currently being undertaken (Latawiec et al. 
2017).

2.4.3. Feedstock biomass

Having identified candidate areas for biochar deployment 
based on soil conditions, two questions arise. Firstly, the 
feedstock that could be used to make biochar and second-
ly, the availability of these feedstocks, given competing 
current or future uses. It is widely reported that biochar 
deployment is biomass-intensive and may exacerbate the 
global challenge of meeting biomass demands from exist-
ing agricultural land (Strassburg et al. 2014). Increasing 
demand for biomass could lead to inadvertent adverse ef-
fects such as rebound – the economic effect of efficient use 
of inputs leading to increased use. This could lead to in-
country pressure for biomass resources or trans-boundary 
effects from displacement (Strassburg et  al. 2014).  De-
creased net emissions in Poland could result in leakage, 
i.e. net emissions elsewhere through indirect land-use 
change driven by demand for biomass. Production of bio-
char can also be costly and it will be essential to integrate 
biochar production with the recovery of energy.

The main source of biomass in Poland is wood and 
wheat straw (Gradziuk et al. 2001). Biomass crops such as 
shrub willow (Salix spp.) or elephant grass (Miscanthus gi-
ganteus) cultivation is minor, although cultivation of bio-
energy crops has increased (see Supplementary Material). 

Use of green waste and sewage sludge is increasing rapidly. 
These might emerge as important lower-cost, point-source 
feedstock for production of biochar. Clearly, potential 
conflicts exist between the use of land for food produc-
tion versus its use for energy crops, and the allocation of 
land with the express purpose of providing feedstock for 
biochar production could further add to the demands put 
on a limited resource (if the biochar production expands 
beyond the use of organic waste material). Thus it remains 
to be investigated whether current biomass production 
would be enough to meet possible demands for biochar 
in the future and whether it would be practically feasible 
to increase such production. However, 30.8% of Poland is 
under forest, largely on land unsuitable for agriculture and 
which might therefore provide readily available and po-
tentially unwanted feedstock (such as coppice trimmings 
or sawmill waste) with no change of use or competition 
for the same resource.

2.5. lifecycle appraisal

Life cycle assessment (LCA) is fundamental to any imple-
mentation of biochar and encompasses broader implica-
tions and impacts. This is important in the assessment of 
biochar use, due to the variety of feedstock used for its 
production and the diversity of technologies for its con-
version (Cowie et al. 2012; Lehmann, Joseph 2009). The 
conversion process involves toxic gases (such as CO) as 
well as volatiles (that can emanate as smoke) and green-
house gases (notably CH4). These emissions could offset 
the avoided CO2 emissions associated with carbon sta-
bilization. Emissions from modern pyrolysis units and 
medium-sized retort kilns should be much lower than 
those from traditional simple kilns, though data are often 
commercially confidential in this area (Meyer et al. 2011; 
Adam 2009).  

By comparing different feedstock materials and pro-
duction technologies through the use of LCA the overall 
positive and negative outcomes of scenarios can be com-
pared. It is vital to match the appropriate technology with 
the specific situation, using research and the experiences 
of previous projects which can be applied to biochar pro-
duction on individual farms. For example, incorporating 
electricity generation (De Miranda et al. 2013), and stud-
ies into carbon sequestration potential of biochar would 
be a good starting point (Hammond et al. 2011; Roberts 
et al. 2010).

Conflicting reports about the stability of the biochar 
matrix also exist (Gurwick et al. 2013). Although biochar 
carbon is more stable than carbon in any other organic 
form (Lehmann et al. 2009) and there is evidence that it 
may also stabilize incumbent soil organic matter (Bach 
et  al. 2016; Glaser et  al. 2002; Lanza et  al. 2016; Smith 
2016), how long exactly biochar remains stable in the 
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soil and the duration of its influence on soil physical and 
chemical properties is not entirely certain (Sohi 2012). Es-
tablishing the recalcitrance of biochar benefits is a clear 
priority if a comprehensive assessment of biochar lifecycle 
is to be achieved.

Determining how specific local conditions and re-
quirements change the balance of impacts for biochar 
production and use is important as it will illustrate the 
ways in which technology and production methods can-
not simply be transferred between different regions with 
the expectations that the same benefits will be derived 
(Sparrevik et  al. 2011; Turtoni et  al. 2011). A relatively 
new development in LCA is life cycle sustainability assess-
ment (LCSA) which combines traditional LCA with life 
cycle integrated assessment (LCIA), which incorporates 
social and economic analysis in order to capture a more 
nuanced and holistic evaluation of the impacts. Poland 
is well placed to instigate a comprehensive research pro-
gramme which would facilitate research into quantifying 
and testing contrasting impact categories to contribute to 
the development and robustness of this methodology. This 
approach is particularly relevant for Poland which is in a 
period of rapid change as EU regulations and policy influ-
ence its development. Using LCSA to quantify the mul-
tiple considerations when selecting feedstock will enable 
better judgements about feedstock type and availability. 
This would provide a unique opportunity to track changes, 
learn lessons and develop an understanding of the way in 
which actions on the ground impact the wider sustain-
ability of a system. As an integral part of the assessment 
of biochar potential in Poland, LCA must be a part of any 
comprehensive research effort to maximize the potential 
benefits from biochar production and use.

conclusions

Given lessons learned elsewhere, a large proportion of 
soils in Poland could potentially benefit from biochar 
application. Given the abundance of acid soils with low 
organic matter, high metal loadings, and low agricultural 
yields, biochar emerges as a potentially attractive option 
for soil enhancement. Deployed widely and strategically, 
it could contribute to increased national output of agri-
cultural commodities, land remediation and co-benefits of 
climate change mitigation. There are, however, challenges 
to be addressed, such as biomass supply. We encourage 
collaboration on this topic, not only because the conclu-
sions are important for the development of sustainable 
agriculture, but also for economies of countries elsewhere 
seeking increased agricultural productivity. Poland, like 
many other countries characterized by extensive agricul-
ture, will need to increase agricultural production without 
expanding to areas spared for nature, so the question be-
comes how to increase agricultural productivity without 

adverse environmental effects. Biochar can not only po-
tentially contribute towards these goals, and hence the 
overarching priorities of sustainable land management, 
but can also result in food production increase while miti-
gating pollution and climate change, thus helping to ad-
dress these pressing global challenges.  
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