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The bed entrainment rate in a gravity mass flow is uniquely determined by the properties
of the bed and the flow. In depth-averaging, however, critical information on the flow
variables near the bed is lost and empirical assumptions usually are made instead. We
study the interplay between bed and flow assuming a perfectly brittle bed, character-
ized by its shear strength τc, and erosion along the bottom surface of the flow; frontal
entrainment is neglected here. The brittleness assumption implies that the shear stress
at the bed surface cannot exceed τc. For quasi-stationary flows in a simplified setting,
analytic solutions are found for Bingham and frictional-collisional (FC) fluids. Extending
this theory to non-stationary flows requires some assumptions for the velocity profile. For
the Bingham fluid, the profile of a “proxy” quasi-stationary eroding flow is used; the rhe-
ological parameters are chosen to match the instantaneous velocity and shear-layer depth
of the non-stationary flow. For the FC fluid, a two-parameter family of functions that
closely match the profiles obtained in depth-resolved numerical simulations is assumed;
the boundary conditions determine the instantaneous parameter values and allow compu-
tation of the erosion rate. Preliminary tests with the FC erosion formula incorporated in
a simple slab model indicate that the non-stationary erosion formula matches the depth-
resolved simulations asymptotically, but differs in the start-up phase. The non-stationary
erosion formulas are valid only up to a limit velocity (and to a limit flow depth if there is
Coulomb friction). This appears to mark the transition to another erosion regime—to be
described by a different model—where chunks of bed material are intermittently ripped
out and gradually entrained into the flow.
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1. Introduction

The purpose of this paper is to shed light on the constraints that the rheological prop-
erties of a gravity mass flow (GMF) and the bed over which it flows impose on the
formulation of erosion laws in the framework of depth-integrated flow models. Erosion is
determined by the flow variables near the bed–flow interface, but this information is not
accessible in the type of model we consider. The typical approach—adopted in a large
number of depth-averaged models from different fields, as summarized by Eglit & Demi-
dov (2005)—is to postulate a heuristic erosion law with a freely adjustable parameter.
On physical grounds, however, the erosion rate must be uniquely determined by the state
of the system, hence there must be severe constraints on the allowed form of the erosion
law in depth-averaged models.
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There exist extensions of depth-averaging that make information on the dynamics of
the vertical profiles of the fields available by expanding the fields along the z-direction in
terms of a suitably chosen complete set of basis functions and truncating the series after
the first few terms. They are variably termed the method of weighted residuals (Finlayson
& Scriven 1966; Kowalski & McElwaine 2013), Kantorovich technique (Scheiwiller &
Hutter 1982; Scheiwiller 1986) or long-wave approximation (Ruyer-Quil & Manneville
2000, 2002; Scheid et al. 2006). While they hold great promise, we will not pursue them
further here because they have not found widespread application yet.

We wish to concentrate on the flow dynamics in this paper and avoid the issue of excess
pore pressure, which plays a major role in the process of soil erosion and is discussed,
e.g., by Iverson (2012). This work is mainly theoretical, and for the sake of mathematical
tractability we study systems that are not easily realisable in the laboratory. However, the
basic principles emerging from our study can be applied to more realistic flow models of
different GMF types in the future. Where we attempt to make contact with observations
from natural GMFs, we mostly use observations from snow avalanches because their
internal dynamics is easier to measure than that of, e.g., debris flows or rock avalanches.

1.1. Qualitative information from experiments

The following is a condensed summary of the author’s interpretation of the experimental
findings that are most relevant in the present context. Appendix A discusses additional
aspects.

Issler et al. (2000) and Gauer & Issler (2004) conjectured four different erosion mecha-
nisms in snow avalanches, see fig. 1; similar mechanisms are expected to operate in other
types of GMFs. With some modifications, they are (i) mechanical ploughing at the front
of dense flows, (ii) eruption at the front due to pore-pressure gradients in the bed, (iii)
continuous scour along the bed–flow interface, and (iv) intermittent ripping of entire
chunks of bed material. There is by now fair evidence that these mechanisms indeed op-
erate in snow avalanches, even though the details and the particular conditions of their
occurrence have not been fully elucidated yet.

Measurements or direct observations from slush flows are scarce, but one may expect
the basic mechanisms to be similar to those in snow avalanches. In debris flows, the
measurements of Berger et al. (2011) indicate scour or ripping as the responsible mech-
anism while ploughing does not seem to play a significant role. Excess pore pressure in
the bed facilitates erosion. Hungr & Evans (2004) make a strong case for liquefaction
of soil by rapid undrained loading to be an important mechanism in strongly entraining
rock avalanches, with erosion occurring only after shearing of the substrate has built up
sufficient excess pore pressure. The numerical studies by Crosta et al. (2009a,b) point
towards ploughing or scour as the relevant mechanism in rock avalanches, depending on
the substrate properties.

Erosion depths of several metres are not uncommon in debris flows, which may last
for several minutes or even tens of minutes. The mean erosion speed is then of the order
of we ∼ 10−3–10−2 m s−1, but the peak values are likely one to two orders of magnitude
larger, leading to mass influx rates of up to 100–1000 kg m−2 s−1. The 1929 Arvel rock
avalanche (western Switzerland), whose flow depth probably was close to 50 m, excavated
some 20 m of alluvial deposits at the toe of the rock slope in probably less than 10 s, i.e.,
at an erosion rate of 4000 kg m−2 s−1 or more.

In dry-snow avalanches, erosion is often limited to the new-snow layer, where the
(brittle) shear strength is at most a few kilopascal. For small avalanches, Sovilla et al.
(2001) observed entrainment of up to 200 kg m−2 and a rapid drop of erosion depth on
slopes gentler than about 30°. In large dry-snow avalanches, the author has observed
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Figure 1. Schematic representation of the four conjectured erosion mechanisms in snow avalan-
ches [modified from (Issler et al. 2000)]. Ploughing (a) and eruption (c) occur at the very front
of the flow, while intermittent ripping (b) and sustained scour (d) operate along the bottom of
the flow. The model presented in this work applies to scour only.

erosion depths of 2 m (limited by the amount of erodible snow), corresponding to more
than 300 kg m−2, even on counter-slopes. If the entire snow pack is wet and weakened,
full-depth erosion and even entrainment of topsoil occur frequently; entrainment may
then exceed 500 kg m−2. In these situations, frontal ploughing appears to dominate.
Frontal erosion is also important in dry-snow avalanches, though the mechanism may
be eruption or ripping rather than ploughing, as interpreted by Sovilla et al. (2006).
These authors report entrainment rates up to 350 kg m−2 s−1during short intervals of
less than a second. Erosion speeds (rates) sustained over several seconds are, however,
usually below 0.2 m s−1(30 kg m−2 s−1) at depth-averaged internal avalanche velocities
in the range 20–50 m s−1.

1.2. Earlier modelling attempts

Despite the low degree of attention entrainment has received in the literature, there have
been several attempts to formulate entrainment in a dynamically consistent way. [Depth-
resolved formulations including both the bed and the flow do not encounter the conceptual
problems that are discussed here, although technical challenges of different nature arise
(Crosta et al. 2009a)]. We review them briefly because some show the difficulties we try
to overcome in this work, and others deal with different erosion mechanisms that should
also be included in a future practical model.

Briukhanov et al. (1967) and Eglit (1968) modelled frontal erosion as a shock condition
similar to a hydraulic jump and thus circumvented the need for using variables that are
lost in depth-averaging. Importantly, the strength of the erodible layer of the bed enters
the jump condition for the momentum and so determines the front propagation velocity.
The avalanche front is seen as a non-material boundary that moves faster than the
particles in the flow and that extends through the entire erodible snow layer, whose depth
has to be specified a priori. Experimental observations show, however, that in many cases
only part of the new-snow layer, which typically can be considered the erodible layer, is
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entrained by the flow. We expect this entrainment theory to be particularly pertinent for
wet-snow avalanches, but very little work has been done on this topic to date.

One of the very few proposals for determining the erosion rate in a dynamically consis-
tent way without adjustable parameters is due to Grigorian & Ostroumov (1977), later
adapted by Sovilla et al. (2006). As in Eglit’s model, they treat the interface between the
bed and the flow as a shock front, but let it be inclined at a variable angle α so that the
model describes scour rather than ploughing and the erosion depth is not determined a
priori. Mass and momentum balance across the shock front determine α as a function
of the overburden pressure, the velocity, and the strength of the snow cover; the erosion
speed, we, is then given in terms of the depth-averaged flow velocity, ū, by we = ū tanα.
A debatable point, however, is their adding the stagnation pressure of the flow to the
hydrostatic overburden pressure.

Cherepanov & Esparragoza (2008) adopted a fracture-mechanical approach, empha-
sizing the energy expended in breaking the bonds of the snow particles in the bed. In
this way, they arrived at a natural description of ripping while scour does not appear
to arise naturally. Focusing on the fracture mechanical aspects of the problem, they did
not deal with the flow dynamics near the interface. Their approach is in many aspects
complementary to ours, but it is not obvious at this point how to combine them. We will
not deal with ripping in this paper, but comment on its connection to the inherent limits
of applicability of the model to be developed here.

The earliest attempt known to the author that emphasizes the role of the flow rheology
is the erosion formula by Norem & Schieldrop (1991) for a frictional-visco-plastic fluid of
density ρ, flow depth h and depth-averaged velocity ū on a slope inclined at an angle θ.
As it showcases all the difficulties encountered in the quest for a truly consistent solution
of the problem, we briefly discuss it here. They considered the case where the bed shear

strength, τc, is smaller than the shear stress at the bottom of the flow, σ
(b)
xz ; the latter

depends on h and the shear rate immediately above the bed, γ̇b. They approximate γ̇b
from the depth-averaged velocity, ū, and the chosen rheology by assuming the velocity
profile shape of a non-eroding flow at equilibrium. A momentum flux ρweū from the
flow to the eroded material is required to accelerate the latter. Matching this momentum

flux to the (fictitious) discontinuity of the shear stress at the interface, σ
(b)
xz − τc, the

entrainment rate is found to be

ρwe =
σ

(b)
xz (h, ū)− τc

ū
. (1.1)

The gravitational traction on the flow along the slope being σg ≡ ρhg sin θ, the accelera-

tion of the flow becomes (τg − σ(b)
xz )/(ρh) with these assumptions. Norem & Schieldrop’s

model considers only one-directional coupling between the erosion process and the flow—
it disregards the modification of the velocity profile by the entrainment process, i.e., the
details of how the eroded material is incorporated into the flow. This may lead to signifi-
cant errors in determining the evolution of both the velocity and the erosion rate. Iverson
(2012) encountered the same dilemma and discussed different possible assumptions, but
elementary arguments do not suffice to select the correct solution or at least the best
approximation.

In a number of laboratory set-ups for granular-flow experiments, e.g., rotating-drum or
sand-pile experiments, entrainment is an essential part of the process and has therefore
been studied by several authors. An erodible bed increases the mobility of dry granular
flows substantially according to the laboratory experiments by Mangeney et al. (2010).
Bouchaud et al. (1994) proposed the influential BCRE model for the evolution of sand
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piles (assuming thin flows), which was later modified for thick flows by Boutreux et al.
(1998). Conversion of static grains to rolling ones and vice-versa, i.e., entrainment and
deposition, is the essential ingredient in the model. It emphasizes the notion of an equilib-
rium slope and the role of curvature, with hollows being filled in and ridges being eroded
preferentially, while it does not consider the rheology of the flowing material explicitly.
Neither does the flow velocity enter the expression for the erosion rate explicitly, but it
may influence it through two parameters whose values are not determined by the BCRE
theory. As very lucidly reviewed by Aradian et al. (2002), Douady et al. (1999) were able
to remedy this shortcoming by formulating the problem as a depth-averaged flow model
and assuming Coulomb friction and a linear velocity profile. The latter is suggested by
experiments on very dense gravity-driven shear flows in a vertical plane, which find the
shear rate to be determined by the gravitational acceleration g and the particle diameter
d as Γ̇0 ∼

√
g/d irrespective of the vertical position inside the flow [see, e.g., (Rajchen-

bach 2003) for a brief review and a theoretical analysis]. The resulting model has the
same structure as the BCRE model, but the coefficients in the expression for the erosion
rate are now fixed. In our notation, their result reads

we =
g(sin θ − µ cos θ)

Γ̇0

=
2gh(sin θ − µ cos θ)

ū
. (1.2)

The stumbling block in the Norem–Schieldrop model is avoided here because this rheology
allows essentially only one shear rate, irrespective of whether erosion takes place or not.
In a rotating drum, on the other hand, the rotation speed determines the erosion rate,
but the shapes of the interfaces and the avalanche surface as well as the flow velocity
are unknown. In his elegant theoretical and experimental study, Gray (2001) obtained
explicit solutions assuming slip conditions and a uniform velocity profile.

Experiments on a snow chute revealed piece-wise linear velocity profiles, with high
shear very near the bed and significantly less shear above (Bouchet et al. 2004). This
led Naaim et al. (2004) to adapting the approach by Douady et al. (1999) to a snow-
avalanche model that can be applied to practical problems. Important achievements of
that work are conceptually separating the erosion process from the entrainment process,
showing explicitly how the eroded material is entrained into the flow, and emphasizing
the crucial role of the shear rate near the bed. Within the made assumptions, they obtain
a consistent and uniquely determined solution, but it is an open question to which degree
the piece-wise linear velocity profile is able to describe natural avalanches.

1.3. Simplifications and limitations

Among the four erosional mechanisms mentioned in sec. 1.1, we focus exclusively on
modelling scour in this paper. For a realistic description of the motion of snow avalanches,
models for ripping and frontal erosion need to be developed as well, however.

In the following, we will consider two example rheological laws, namely a Bingham
fluid and a frictional-collisional granular fluid. The relation between the shear rate and
the shear stress for plane-shear flows can be written as

σ̂xz = sgn(γ̇)(τ̂y + ν|γ̇|) (1.3)

for the Bingham fluid, with τ̂y the yield strength and ν the (Bingham) viscosity, and

σ̂xz = sgn(γ̇)
(
µσ̂zz +Kγ̇2

)
(1.4)

for the frictional-collisional (FC) granular fluid. Here and henceforth, stresses with a
caret (ˆ) are stresses divided by the flow density, e.g., τ̂y ≡ τy/ρf ; in our notation,
compressive stresses are positive. µ is the Coulomb friction coefficient and K (units m2)
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the consistency. Both rheological laws exhibit threshold behaviour: If the shear stress
is less than τ̂y and µσ̂zz, respectively, the material does not flow and the shear stress
cannot be computed directly from the rheological equation.

The main reason for choosing these two example rheological equations is their math-
ematical tractability. However, there are also a number of flow models in practical use
that apply them: The Bingham rheology quite successfully models clay-rich mudflows
and subaqueous debris flows (Hungr 1995; Imran et al. 2001; Pastor et al. 2009); it may
also be applicable to wet-snow avalanches, but few measurements exist and little work
has been done on this problem. The frictional-collisional rheology is a candidate rheology
for describing dry-snow avalanches and rock avalanches. It can be considered a simplified
version of the NIS model (Norem et al. 1987) or a minimal extension of the Voellmy
(1955) friction law to a complete rheological model—two models widely used in snow
avalanche engineering. It also duplicates some features of rheological laws based on the
kinetic theory of granular media (see, e.g., Louge 2003) like the depth-averaged velocity
growing with the flow height as ū ∝ h3/2. However, it does not predict the existence of
a minimal flow height, hstop, or the concavity of the steady-state velocity profile at the
base.

In the interplay between the flow rheology and the entrainment rate, the stress bound-
ary condition at the interface between bed and flow plays a key role, as will be seen in
secs. 2.1 and 2.2. We make the simplest assumption, namely that the bed material is a
perfectly brittle solid that breaks instantaneously when the shear stress reaches a critical
value, τc. We postulate that the shear stress does infinitesimal work breaking the surface
of the bed and that the eroded material assumes the rheological properties of the flow.
While obviously an idealization, these assumptions are not too far from reality in the
case of natural snow, which becomes brittle at shear rates above approximately 10−3 s−1

and breaks as soon as the shear reaches values of the order of 10−2. Mellor (1977, pp.
31–32) indicates that existing measurements of the comminution energy per unit volume
of snow differ by orders of magnitude, but even the highest values appear to be in the
range of the frictional work expended by the flowing avalanche. Erosion is the result of
friction between the flowing particles and the bed, and it appears reasonable to suppose
that scouring is a rather efficient erosion mechanism. Thus there is no indication that our
assumptions are in disagreement with the properties of snow, but the question deserves
further study.

The postulated brittleness of the bed suggests that the boundary condition for the
shear stress at the bed–flow interface should be

σ(b)
xz ≡ σxz|z=0 = τc. (1.5)

(For simplicity, throughout this paper we restrict ourselves to flows in the vertical plane,
with the x-direction along the slope and z perpendicular to it.) This is analogous to
Owen’s hypothesis (1964) for the bed shear stress in aeolian sand or snow transport.
We cannot rigorously prove the validity of eq. (1.5), but there is a negative feed-back
mechanism that makes it plausible: If the slope is steep enough and the flow sufficiently

thick for erosion to be possible, erosion would nevertheless stop if σ
(b)
xz were to fall below

τc. The flow would then accelerate and σ
(b)
xz would grow again until the threshold is

reached and erosion resumes. If the bed shear stress exceeds the threshold, the shear
stress inside a finite layer at the top of the bed will be larger than τc and instantaneous
failure will occur throughout a finite-depth layer. While this mass is being accelerated,

σ
(b)
xz at the newly formed interface drops below τc and the system is being driven back to

the equilibrium shear stress (1.5).
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The adequacy of the brittleness assumption for other types of GMFs is debatable.
Taking rock avalanches as an example, the brittleness assumption is a poor approximation
for a talus slope or clayey soil; indeed, Hungr & Evans (2004) present strong evidence
for massive entrainment of liquefied soil to form a lubricating layer and to increase
the run-out distance of rock avalanches dramatically. Weathered bedrock, however, may
show behaviour similar to the one we postulate. In the case of a Bingham fluid, the
assumption of a perfectly brittle bed turning into a yield stress fluid upon entrainment
appears counter-intuitive. Nevertheless, it may still be an acceptable first approximation
if the bed material weakens rapidly after its peak strength has been reached. The bed
undergoes some shearing and erosion is not immediate, but these effects may be negligible
on the time and length scales of the flow. In quick-clay, such remoulding will cause the
yield strength and viscosity of the material to drop by orders of magnitude, but not to
zero. The erosion process is no longer localised at an interface of infinitesimal thickness
in such materials, but occurs gradually across a layer. However, if this layer is sufficiently
thin, the brittleness assumption should be a convenient starting point for a more detailed
analysis.

The assumption of a constant shear strength τc throughout the bed immediately leads
to a geotechnical stability problem: The shear stress in an inclined bed increases with
depth due to the material’s own weight. Thus, if the shear stress equals τc at the top of
the bed when erosion occurs, it exceeds τc deeper in the bed. The only way to circum-
vent instantaneous collapse of the bed throughout its entire depth is to assume that τc
increases with depth more rapidly than the gravitational traction, i.e.,

dτc/dz < −ρbg sin θ, (1.6)

where ρb is the bed density, g the gravitational constant, and θ the slope angle. Such
behaviour is not unrealistic; for example, it may be due to sintering or cementing in
cohesive materials like snow or clay. For simplicity, we assume here that the bed is
geotechnically stable even under continuous erosion at its surface, where its shear strength
is postulated to be constant.

We will not discuss deposition in this paper (except for a few remarks in sec. 2.1).
In non-cohesive granular materials, particles are equally rapidly trapped by a hollow as
they are dislodged by sufficiently energetic collisions. Hence deposition can be treated in
the same way as erosion in those systems. However, there are fundamental differences
between the two processes for the cohesive solid beds we consider. The forces mediating
the bonds between particles have very short range. The complex processes forging bonds
therefore require intimate contact and typically operate on time scales of seconds or
longer. In contrast, bonds break in the course of microseconds or less under the prevalent
conditions in a rapid GMF. As discussed by Issler & Jóhannesson (2011), deposition is
also contingent upon the bed exerting a larger shear stress on the flow than the latter
can sustain internally; if this condition is not fulfilled, the flow is simply decelerated.
Experiments with piles of cohesionless granular materials show the neutral angle, φn, for
which trapping of rolling grains is equally probable as dislodging of static grains, to be
somewhat larger than the dynamic friction angle, φd, so that true deposition may occur
in that case. Flows of settling particle suspensions provide another example where the
condition is met and deposition is observed: In the transition layer between the bed and
the flow, particles come into frictional contact with each other and the shear stress may
greatly exceed the viscous shear stress inside the flow. However, such effects are unlikely
to occur in the type of idealized solid/fluid material we consider.

The present work originated from the investigation of a toy model that is simplified
with respect to both rheology and flow configuration to the point where explicit solutions
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Figure 2. Sketch of the thought experiment representing the flow configuration studied in
sec. 2. The slope and the flow are infinitely long. The bed is eroded at the speed we. We use a
moving co-ordinate system with z = 0 at the bed–flow interface, thus the bed and flow have a
uniform bed-normal upward velocity we. Without disturbing the flow, mass is skimmed off the
top surface (curved arrows) at the same rate as it is eroded from the bed.

can be obtained (Issler & Jóhannesson 2006, 2011). These solutions are invaluable for
understanding the basic principles at work and for finding ways of tackling the full
problem, either numerically or through analytic approximations. The toy model will
therefore be discussed first in sec. 2.1. Section 2.2 shows that solutions can also be found
at least for one non-linear rheology of interest in the context of granular flows. At the
present stage of experiments on gravity mass flows, it is difficult to test our theoretical
predictions in detail, but available measurements from snow avalanches show that they
have the correct order of magnitude.

Extending the theory to variable flow depth is challenging mathematically. Issler &
Pastor Pérez (2011) and Eglit & Yakubenko (2014) therefore applied numerical meth-
ods in a depth-resolved framework, but retained the uniform-flow approximation so that
derivatives in the flow direction vanish. Those studies provided clues for developing ap-
proximate, but dynamically self-consistent expressions for the erosion speed (sec. 3).
Closer examination of these formulas reveals that their range of applicability is limited
in terms of admissible flow depths and velocities. We do not yet have a full solution over
the entire range of these variables, but the physical reason behind the break-down of our
method emerges in sec. 4 and indicates promising directions for future work on the topic.

2. Consistent erosion models for quasi-stationary flows

This section aims at elucidating the interplay between the flow rheology and the bound-
ary condition for the shear stress in detail. We simplify the problem in another respect,
however, by considering a quasi-stationary, but eroding flow. As pointed out by Iverson
(2012), such a flow cannot exist in reality, but we can create it as a thought experiment
by assuming the slope and the flow to be infinitely long. Erosion moves the interface
between the bed and the flow at a speed −we in the direction normal to the bed. In
order to keep the flow depth constant, mass is skimmed from the top of the flow at the
same rate as it is eroded from the bed, without exerting any force on the flow, see fig. 2.
For simplicity, we assume the densities of the snow cover and the avalanche to be equal
and use a co-ordinate system moving with the interface.

In this setup, with x along the flow direction and z normal to the bed, the velocity
field reduces to

u(x, y, z, t) = (u(z), 0, 0) (2.1)
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and explicitly satisfies the mass balance equation ∇ · u = 0. The momentum balance
equation is trivially satisfied in the y direction and provides the expression for hydro-
static pressure in the z direction: σ̂zz(z) = −gz · (h − z), where gz = −g cos θ, g is the
gravitational acceleration and θ the slope angle. (Here and in the rest of the paper, we
designate specific stresses and material strengths, i.e., stresses and strengths divided by
the flow density, by a caret over the symbol. We use σ̂ij for the specific stresses and τ̂ c,
τ̂y for specific strengths.) In the x direction, this equation describes the acceleration of
the eroded material from speed 0 at the interface z = 0 to u(h) at z = h under the action
of gravity (with gx = g sin θ) and the shear stress gradient inside the avalanche:

weγ̇(z) = gx + σ̂′xz(z), (2.2)

with the prime here and henceforth denoting an ordinary derivative with respect to z
when there is no dependence on other variables. The left-hand side is the convective
derivative in our simplified setting, and the right-hand side contains the body force and
the external forces on an infinitesimal control volume at a distance z from the interface.
Note that eq. (2.2) reduces to eq. (1.2) if one assumes γ̇(z) = Γ̇0 and the Coulomb friction
law σ̂xz(z) = −µ(h− z)gz.

Let the rheological relation between the shear rate and the shear stress be of the form

σ̂xz(z) = σ̂xz(γ̇(z), σ̂zz(z)). (2.3)

The shear stress gradient is then given by

dσ̂xz
dz

(z) =
∂σ̂xz
∂γ̇

(z) · γ̇′(z) +
∂σ̂xz
∂σ̂zz

(z) · σ̂′zz(z). (2.4)

Inserting this into eq. (2.2), one obtains an ordinary (but in general non-linear) differential
equation for the shear rate γ̇(z). The erosion speed, we, plays the role of a parameter,
but it can be determined by imposing the boundary condition σ̂xz(0) = τ̂ c.

2.1. Eroding Bingham fluid

In the absence of entrainment, a two-dimensional, stationary, gravity-driven simple shear
flow of a Bingham fluid exhibits a plug layer that extends from the surface of the flow at
z = h to a height z = r above the bed:

r = h− τ̂y
gx
. (2.5)

The shear stress profile is linear,

σ̂(0)
xz (z) = gx(h− z), (2.6)

the shear rate diminishes linearly from the bed to the height r,

γ̇(0)(z) =

{
gx(r−z)

ν , z 6 r;

0, z > r,
(2.7)

and the velocity profile is parabolic in the shear layer if there is no sliding at the bed,

u(0)
x (z) =

{
gx
2ν

(
2rz − z2

)
, z 6 r;

gx
2ν r

2, z > r.
(2.8)

With entrainment, the velocity profile will remain constant in time in our idealized
situation, but deviate from eq. (2.8). The shear stress being zero at the surface z =
h, there will still be a plug layer. As there is no acceleration, the plug layer depth
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is unchanged from the expression eq. (2.5). Upon applying eqs. (2.4) and (1.3) for a
Bingham fluid to eq. (2.2), we obtain

γ̇′(z)− we
ν
γ̇(z) = −gx

ν
, 0 6 z 6 r. (2.9)

Temporarily assuming the entrainment speed we to be given and applying the boundary
condition γ̇(r) = 0, we find the solution

γ̇(z) =


gx
we

(
1− e

−weν (r−z)
)
, 0 6 z 6 r;

0 r 6 z 6 h.

(2.10)

From this we obtain the following velocity and shear-stress profiles if we assume no slip
at the bed:

ux(z)=


gx
we

[
z − ν

we

(
e
−weν (r−z)

− e
−weν r

)]
, 0 6 z 6 r;

gx
we

[
r − ν

we

(
1− e

−weν r
)]

, r 6 z 6 h,

(2.11)

σ̂xz(z)=

 τ̂y + νgx
we

(
1− e

−weν (r−z)
)
, 0 6 z 6 r;

gx(h− z), r 6 z 6 h.

(2.12)

By expanding the exponential functions to second order, one easily verifies that eqs.
(2.10)–(2.12) reduce to eqs. (2.6)–(2.8) in the limit we → 0.

These formulas suggest the following scaling for lengths, velocities and stresses, with
dimensionless quantities designated by a tilde:

z = hz̃, σ̂xz = gxhσ̃xz τ̂y = gxhτ̃y, τ̂ c = gxhτ̃ c,

r = hr̃, ux = gxh
2

2ν ũx, we = ν
h w̃e;

(2.13)

note that r̃ = 1− τ̃y. Then the velocity and stress profiles and the momentum form factor
(or Boussinesq coefficient), defined by

fB =
u2

ū2
=
h
∫ h

0
u2
x(z)dz[∫ h

0
u(z)dz

]2 , (2.14)

are given by the expressions listed in table 1.
It remains to implement the stress boundary condition σ̂xz(0) = τ̂ c or σ̃xz(0) = τ̃ c.

Using the pertinent expression from table 1 at z̃ = 0 yields the transcendental equation

1

w̃e

(
1− e−(1−τ̃y)w̃e

)
= τ̃ c − τ̃y (2.15)

for the dimensionless erosion rate w̃e in terms of the dimensionless yield strength τ̃y and
the dimensionless shear strength of the snow cover, τ̃ c. Note the physical requirement
0 6 τ̃y < τ̃ c < 1. Equation (2.15) can be recast as

wew = vev, (2.16)

where

v := − 1− τ̃y
τ̃ c − τ̃y

, w = v + (1− τ̃y)w̃e. (2.17)
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Erosion Domain Shear-stress profile Velocity profile Form factor

σ̃xz(z̃) ũx(z̃) fB

No
[0, r̃]

[r̃, 1]
1− z̃

2r̃z̃ − z̃2

r̃2
1.10

Yes

[0, r̃]

[r̃, 1]

1− r̃ +
1− e−w̃e(r̃−z̃)

w̃e

1− z̃

2

w̃e

[
z̃ − e−w̃e(r̃−z̃) − e−w̃er̃

w̃e

]
2

w̃e

[
r̃ − 1− e−w̃er̃

w̃e

] 1.13
(w̃e = 4.46)

Table 1. Vertical profiles of shear stress and longitudinal velocity in steady-state flows of
Bingham fluids with and without entrainment. All quantities are non-dimensionalized according
to eq. (2.13). In the limit of vanishing entrainment, i. e. w̃e → 0, all profiles with entrainment
reduce to the corresponding profiles without entrainment. The Boussinesq form factor fB given
by eq. (2.14) is evaluated for r̃ = 0.5, and for τ̃ c = 0.7 in the case of entrainment. The value of
w̃e indicated in brackets corresponds to the physically consistent entrainment rate.
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Figure 3. Quasi-stationary flow of a Bingham fluid with non-dimensional yield strength τ̃y
over an erodible bed with dimensionless shear strength τ̃ c: (a) Dimensionless entrainment rate
w̃e and (b) ratio of surface velocities of entraining and non-entraining flows. Quasi-stationary
eroding flow is not possible for τ̃y > τ̃ c.

v takes values in the range −∞ < v < −1 so that vev ∈ D := ] − 1
e , 0[. The general

solution can be expressed in terms of Lambert’s non-elementary W function, which is
defined as the solution x(y) of the equation xex = y. In the possible range of v, W is
two-valued, with W0(− 1

e ) = W−1(− 1
e ) = −1 and W0(D) = ]−1, 0[, W−1(D) =]−∞,−1[.

The equation for the dimensionless erosion speed now reads w = W (vev). As v < w, v
corresponds to the lower branch W−1 and w = W0(vev). The erosion speed thus becomes

we =
ν

h

1

1− τ̃y
[W0(vev)− v] ; (2.18)

the dimensionless quantity w̃e is plotted as a function of τ̃y and τ̃ c in fig. 3.
One may obtain a first-order approximation and circumvent the evaluation of the

non-linear equation (2.15) by using the parabolic shape of the velocity profiles of non-
entraining flows even with entrainment or deposition. To this end, apply the boundary
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Figure 4. Non-dimensionalized profiles of (a) shear-stress and (b) velocity for quasi-stationary
flows of Newtonian and Bingham fluids on an inclined plane, with and without entrainment or
deposition. The parameter values are r̃ = 0.5 for the Bingham fluid, τ̃ c = 0.7 for the entraining
flows, and σ̃xz(0) = 1.5 for the depositing flows. (c) Velocity profiles for non-entraining, entrain-
ing and depositing Newtonian and Bingham fluids, scaled with their surface velocity. The same
parameter values are used as in the plots (a) and b). (d) Dependence of the entrainment rate
on the bed shear strength τc for various values of the yield strength τy of the Bingham fluid. All
quantities are non-dimensionalized according to eq. (2.13), with σg ≡ ρhgx.

condition for the bed shear stress to the integrated form of eq. (2.2) to get weu(h) =
hgx− τ̂ c, and to eq. (1.3). Together with the relation u(h) = u(r) = 2rγ̇(0) for a parabolic
velocity profile, one arrives at

w̃e ≈
2

τ̃ c − τ̃y
1− τ̃ c
1− τ̃y

, (2.19)
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τc τy ν we qe
(Pa) (Pa) (m2 s−1) (m s−1) (kg m−2 s−1)

700 500 0.0168 0.075 15.0

800 600 0.0125 0.050 10.0

800 300 0.0489 0.050 10.0

900 600 0.0165 0.025 5.0

Table 2. Examples of entrainment rates obtained for different combinations of snow-cover
strength (τc), yield strength (τy) and Bingham viscosity (ν) in the flow. Idealized stationary
flow with density 200 kg m−3, flow height 1 m and surface velocity 20 m s−1on a 30° slope.

ũ(1) ≈ (1− τ̃y)(τ̃ c − τ̃y). (2.20)

The Boussinesq form factor (which appears in the momentum balance) changes only
by a small amount as long as dynamically sustainable entrainment rates are specified,
see the last column of table 1. However, the relative error in the entrainment rate and
velocity increases rapidly with increasing entrainment rate, i.e., with decreasing ratio
(τc − τy)/(hgx). In the case τ̃ c = 0.7, τ̃y = 0.5 (implying r̃ = 0.5), the approximation
yields w̃e = 6.0 and υ(1) = 0.1, whereas the self-consistent solution is w̃e = 4.46 and
υ(1) = 0.134.

Comparison of the predicted entrainment rates with experimental data is difficult
because erosion rates have rarely been measured, and then mostly in dry-snow avalanches
(Gauer & Issler 2004; Sovilla 2004) for which a Bingham fluid is a poor approximation. For
an order-of-magnitude check, table 2 lists entrainment speeds and rates that would result
from a typical slow, humid granular snow avalanches on a 30° slope, with a flow depth
of 1 m, a density of 200 kg m−3 and a surface velocity of 20 m s−1. The values of τc were
chosen in a realistic range while τy and ν result from the requirement u(h) = 20 m s−1.

To conclude this section and illustrate the similarities and differences between deposi-
tion and entrainment, we modify our toy model, supplying material at the top at surface
velocity and removing it at the bottom after it has come to rest. Deposition makes the
non-dimensionalized shear stress profile (cf. fig. 4.a) convex instead of concave in the
shear layer; the value at the bed interface exceeds the gravitational traction. Similarly,
the velocity normalized by its value at the surface is larger in the shear layer than in the
flow without deposition, opposite to the effect of entrainment (see fig. 4.c). In contrast
to the eroding flow, the material properties do not impose a boundary condition for the
bottom shear stress in the depositing flow. The rate at which mass is supplied to the flow
at its surface speed determines the flow velocity according to eq. (2.11), with negative
wd instead of positive we. We stress, however, that determination of the deposition rate
in more realistic situations requires explicit modeling of the flow dynamics and consol-
idation processes at the bed–flow interface, which cannot be carried out strictly within
the framework of depth-averaged equations.

2.2. Eroding frictional-collisional fluid

Next we apply the general momentum-balance formula (2.2) for quasi-stationary en-
training flows in a simple-shear configuration to the frictional-collisional granular fluid
described by eq. (1.4). We obtain a non-linear ordinary differential equation for the shear
rate if we again assume the erosion speed we to be known:

weγ̇(z) = gx + µgz + 2Kγ̇(z)γ̇′(z). (2.21)
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First, we divide by 2Kγ̇(z) and separate variables, then integrate one side over z from h
to z, the other side over γ̇ from γ̇(h) = 0 to γ̇(z) to obtain

−h− z
2K

=
γ̇(z)

we
+
gx + µgz
w2
e

ln

(
1− weγ̇(z)

gx + µgz

)
.

This becomes dimensionless,

w̃e + ln(1− w̃e) + (1− z̃)q = 0, (2.22)

with w̃e(1) = 0 at the flow surface, if we define

w̃e(z̃) :=
weγ̇(hz̃)

gx + µgz
, z̃ :=

z

h
, q :=

w2
eh

2K(gx + µgz)
. (2.23)

The solution of this transcendental equation cannot be expressed in terms of elementary
functions, but with the help of Lambert’s W function one obtains

w̃e(z̃) = 1 +W0

(
−e−1−(1−z̃)q

)
(2.24)

after a few manipulations on eq. (2.22). In the interval [−1/e, 0[, where Lambert’s W
function is two-valued, the upper branch W0 has to be selected. The exponent in the
exponential function in the argument of W0 ranges from −∞ for small z̃ and large q to
−1 at z̃ = 1, thus the argument of W0 lies in the range [−1/e, 0[, with the function value
in the range [−1, 0[ so that w̃e(z̃) ∈ [0, 1[.

Next we want to apply the boundary condition σxz(0) = τc to determine we from
w̃e(0), but the solution w̃e(0) = W0(−e−1−q) given above is of no help because both
q and w̃e contain the unknown we. However, inserting the expression for w̃e(0) from
eq. (2.23) into the definition of q allows us to eliminate one of the instances of w̃e by
transforming eq. (2.22) at z̃ = 0 into

w̃c + ln(1− w̃c) +
1

2

1

1− p
w̃2
c = 0, (2.25)

with

w̃c :=
we

gx + µgz

√
τ̂ c + µhgz

K
, p :=

gx − τ̂ c/h
gx + µgz

(2.26)

For lack of a better name, we will call p the entrainment stress parameter as it is the ratio
of the shear stress available for entrainment and the non-static shear stress. p and all
factors in w̃c except we are given by the general set-up of the system (gx, gz, h) and the
rheology of the flow (µ, K) or the bed (τ̂ c). Thus the entrainment speed can be obtained
once the solution to eq. (2.25) has been found numerically.

Several important points can be read off eqs. (2.25) and (2.26) immediately. First,
for a stationary flow to be possible, the down-slope gravitational force must be larger
than the Coulomb friction, thus gx + µgz > 0 is required (recall that gz < 0). Second,
erosion is possible only if the down-slope gravitational bed shear stress is larger than
the snow-cover strength, gxh > τ̂ c. This constrains p to positive values. Third, if the
Coulombic part of the shear stress alone were larger than the snow-cover strength, the
snow cover would fail at once to a finite depth even if the flow is at rest. Thus we have
to demand τ̂ c + µgzh > 0, which in turn leads to p < 1. Incidentally, one arrives at the
same conclusion by expanding eq. (2.25) around w̃c = 0. Fourth, if eq. (2.25) is to be
real, w̃c < 1 follows immediately. Fifth, for p very close to 0, i.e., barely above the erosion
threshold, we expand to first order in p and to third order in w̃c and find that w̃c ≈ 3

2p.
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Figure 5. Dimensionless entrainment speed of a frictional-collisional fluid in quasi-stationary
flow as a function of the dimensionless parameter p, eq. (2.26). It is closely approximated by the
function sin(πp/2).

Sixth, when p approaches 1, w̃c is also driven towards 1, pw̃2
c + w̃c −→ 1 + p. Expanding

eq. (2.25) in δ = 1− p and ε = 1− w̃c, one finds ε ≈ e−1/(2δ).

When we plot the numerical solution of eq. (2.25) as a function of p, we find that it is
surprisingly well approximated by the simple function sin

(
π
2 p
)

(fig. 5). This appears to
be a coincidence, and the agreement is not perfect, but the relative difference between
the approximate and exact solutions is less than 6% for small values of p and diminishes
for larger p. An approximation of this quality may be useful in numerical flow models
as it avoids solving the non-linear equation millions of times: For a given value of p one
may use

w̃c(p) ≈ sin(πp/2). (2.27)

The next steps are to find the shear stress and velocity profiles. The former is given
by

σ̂xz(hz̃) = −µgzh · (1− z̃) +Kγ̇2(hz̃)

= −µgzh · (1− z̃) +K
g̃2

w2
e

[
1 +W0

(
−e−1−(1−z̃)q

)]2
. (2.28)

Recall that we is chosen such that γ̇(0) = γ̇c, thus σ̂xz(0) = τ̂ c. Since W0(−1/e) = −1,
one confirms σ̂xz(h) = 0. To find the velocity profile, we have to evaluate the integral of
eq. (2.24), with an exponential function as the argument of W0. To this end, we substitute
w = W0

(
−e−1−q+qz̃), equivalent to wew = −e−1−q+qz̃ with w running from w1(z̃) :=

W0

(
−e−1−q+qz̃) to w2 := W0

(
−e−1−q). After switching the direction of integration, the

integral becomes elementary:

u(hz̃) =
hg

we

{
z̃ − 1

2q

[
(1 + w2)2 − (1 + w1(z̃))2

]}
. (2.29)

One immediately confirms u(0) = 0. Ascertaining u′(h) = 0 directly from eq. (2.29) is
less straightforward, but can be accomplished by expanding the left and right-hand sides
of e−1−q+qz̃ ≡ x = wew around z̃ = 1 (or x = −1/e) and w = −1, respectively, and using
this in the total differential of eq. (2.29). Because of w1(1) = W0(−1/e) = −1 and eqs.
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Variable Units 1 2 3 4 5 6 7

θ ° 45 45 45 30 41 24.8 22.3
h m 1.0 1.0 1.5 1.0 1.0 1.0 1.5
µ — 0.302 0.381 0.2235 0.20 0.25 0.20 0.24
K m2 2.5×10−4 5.0×10−4 5.0×10−4 5.0×10−4 1.0×10−2 5.0×10−3 5.0×10−3

τ̂ c m2 s−2 2.5 3.0 3.0 2.5 3.0 3.53 5.0

us,0 m s−1 92.8 61.8 127.1 53.4 14.3 14.4 21.5
ū0 m s−1 55.7 37.1 76.3 32.0 8.6 8.6 12.9
fB,0 — 1.250

we m s−1 0.120 0.161 0.147 0.075 0.398 0.045 0.030
us m s−1 36.9 24.5 50.5 32.3 8.6 12.9 19.3
ū m s−1 19.7 13.1 26.9 18.2 4.9 7.7 11.4
fB — 1.324 1.324 1.324 1.293 1.293 1.257 1.257

Table 3. Erosion speed (we), mean and surface velocity (ū, us), and form factor (fB) for
selected flow configurations of a quasi-stationary frictional-collisional fluid on an inclined plane.
The second group of variables (ū0, us,0) represents non-eroding flows with the same parameters
except τ̂ c > hgx.

(2.23) and (2.24), one obtains the surface velocity from eq. (2.29) as

u(h) =
hgx − τ̂ c
we

, (2.30)

in agreement with what momentum conservation dictates. The same technique allows
evaluation of the depth-averaged flow velocity, ū, and the form factor eq. (2.14), but the
resulting expressions are lengthy and not particularly illuminating.

Table 3 gives examples of erosion rates and velocities as predicted by this theory. The
slope angle θ, flow height h, and rheological parameters µ and K are typical of medium-
size to large snow avalanches. Assuming an avalanche density of 250 kg m−3, τc values
between 0.6 and 0.9 kPa result, which can also be considered realistic. Note that the
calculated erosion speeds are the rates at which the avalanche flow depth increases (if
the eroded snow is not redistributed). If the snow-cover density is 125 kg m−3, say, the
snow cover is eroded twice as fast as indicated in the table. Cases 4, 6 and 7 are closest to
the situation at the measurement location at the Vallée de la Sionne test site. With the
chosen parameter values, the velocities are much lower than observed near the fluidized
front, but may approximately match the velocity in the dense core of the avalanches in
case 4. However, in the events we have profiling radar data of, the supply of erodible
snow was already exhausted by the head of the avalanche and τc of the old snow was too
large for erosion to occur.

For case 4 of table 3, fig. 6 compares the resulting velocity profile (normalized by its
value at the flow surface) to the well-known Bagnold profile 1 − (1 − z̃)3/2 that would
result if there were no entrainment. The difference is qualitatively similar to the one
observed for the Bingham rheology. If the gravitational traction hgx exceeds the shear
strength τ̂ c only slightly, the mean and surface velocity are close to the ones obtained in a
non-eroding flow with the same parameters (cases 6 and 7). If the difference between hgx
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Figure 6. Quasi-stationary flow of an eroding frictional-collisional fluid: Profiles of the velocity
normalized by its value at the surface (left-hand plot, full line) and the shear stress normalized by
the gravitational traction gxh (right-hand plot, full line). For comparison, the Bagnold velocity
profile (left-hand plot, dashed line) and the shear stress in a non-entraining stationary flow
(right-hand plot, dashed line) are also shown. The parameter values are those of Case 4 in
table 3. Note that the surface velocity of the entraining flow is only 60% of the surface velocity
of the non-entraining flow in this case.

and τ̂ c becomes substantial, the erosion speed increases and the flow velocity decreases.
The velocity profiles then approach straight lines except near the surface, where they
curve very sharply to satisfy the condition u′(h) = 0. This is also reflected in the form
factor, which is 5/4 for a Bagnold profile and 4/3 for a linear profile. Cases 1–3 and 6,
7 have fB close to 4/3 and 5/4, respectively. Since γ̇(z̃) 6 γ̇(0) = γ̇c, the mean velocity
is limited to ūmax = hγ̇c. As for the Bingham fluid, the shear stress profile is curved,
starting from τ̂ c at z = 0—in contrast to the linear profile in a non-entraining flow.

3. Extension to non-stationary flows

3.1. General dynamical considerations

Gravity mass flows in Nature start from rest, go through successive acceleration and
deceleration phases due to the non-uniform topography, and finally come to rest again.
Thus they are never in a truly (quasi-)stationary phase. Also, in reality no skimming
occurs; instead, the flow depth grows, and eventually so does the velocity even on an
infinitely long inclined plane. Therefore we need to address the question how the exact
solutions for quasi-stationary flows developed in sec. 2 can be adapted to non-stationary
flow conditions. At best, one may hope to find exact solutions in very simple topographies,
e.g., an infinitely long inclined plane (Eglit & Yakubenko 2014). In cases of practical
interest, i.e., with complex topography, some simplifying assumptions have to be made.
However, they should be consistent with the physics and the assumptions used in deriving
depth-averaged models. The uniqueness of the solutions achieved in the quasi-stationary
case will be lost due to the approximations being non-unique.

In order to concentrate on the essentials, here we consider an infinitesimal column of
variable mass and flow depth h(t) moving along a path Z(X), parametrised by its arc
length s, at depth-averaged speed ū(t) ≡ ṡ(t). This allows us to drop terms with partial
derivatives in the tangential plane, but we will account for the internal velocity profile.
The flow depth may change due to erosion at the speed we from the bed. In order to show
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the differences with the quasi-stationary system studied in sec. 2, we also allow skimming
from the flow surface at the speed ws, but set ws = 0 afterwards. The equation of motion
involves gravitational driving, the specific bed shear stress σ̂xz 6 τ̂ c, and the decelerating
effect of entraining mass from rest and losing mass moving at the speed u(h) > ū:

ḣ = we − ws, (3.1)

˙̄u = gx − sgn(ū)

∣∣∣σ̂(b)
xz

∣∣∣
h
− (we − ws)

ū

h
− ws

u(h)

h
. (3.2)

∣∣∣σ̂(b)
xz

∣∣∣ =


τ̂y +

6

(3− r)r
νB
|ū|
h
, ū < ūthr, Bingham fluid

µg cos θ +K

(
5ū

2h

)2

, ū < ūthr, FC fluid

τ̂ c, ū > ūthr.

(3.3)

r̃ is the sheared fraction of the flow depth, see sec. 2.1. In the quasi-stationary case
(qs) treated previously, erosion at the bed was balanced by skimming at the surface,
wqs
e = wqs

s , thus h = cst. from eq. (3.1). In contrast, the non-stationary case (ns) is
characterized by wns

s = 0. If entrainment occurs, the equation of motion becomes

gx − sgn(ū)
τ̂ c
h

=


wqs
e u(h)

h
quasi-stationary,

wns
e ū

h
+ ˙̄u non-stationary.

(3.4)

In the stationary case, the problem consisted in finding wqs
e and u(h) for a given value of

their product. The non-stationary case raises the additional problem of apportioning the
excess specific shear stress hgx − τ̂ c between entrainment (wns

e ū) and acceleration (h ˙̄u).
Simply setting wns

e (ū, θ, h, τ̂ c) ≈ wqs
e (θ, h, τ̂ c) in eq. (3.4) is a poor choice because

the entrainment rate is determined by the stress gradient at the interface between bed
and flow, which depends strongly on the flow velocity. In the following, we will discuss
two possible extensions based on different approximations, one for the Bingham fluid and
another for the FC fluid. While they cannot claim the same degree of rigour as the results
obtained so far, they can be applied to real-world problems and eventually compared to
numerical approaches that resolve the bed-normal dimension (Crosta et al. 2009b; Issler
& Pastor Pérez 2011; Eglit & Yakubenko 2014).

For completeness, we state the full set of equations for a quasi-three-dimensional depth-
averaged flow model (with ws = 0). The fields h(x, t) and u(x, t) ≡ (ux(x, y, t), uy(x, y, t))
replace h(t) and ṡ(t). Neglecting curvature-dependent terms for simplicity, we obtain the
mass balance and the momentum balance in conservative form,

∂th+ ∂j(hūj) = we(h, ūk, xl), (3.5)

∂t(hūi) + ∂j(huiuj ) = hgi + ∂j(hˆ̄σij)− σ̂(b)
iz . (3.6)

The indices i, j, k, l take the values x, y, and summation over repeated indices is un-
derstood. In eq. (3.6), the stresses are averaged over the flow depth except for the bed

shear stress σ̂
(b)
iz , and the momentum flux term can be expressed in terms of ūi and the

(unknown) form factor fB as huiuj = fBhū
2. The term proportional to we,s in eq. (3.2),

quantifying the deceleration of the flow due to the acceleration of the entrained mass
from rest to the flow velocity, does not appear explicitly in eq. (3.6); it is recovered,
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Figure 7. The dimensionless erosion speed weh/ν of a Bingham fluid as a function of the
dimensionless depth-averaged velocity α = ū/(hγ̇c) for two combinations of the dimensionless
bed shear strength, τ̃ c = τ̂ c/(hgx), and the relative shear-layer depth, r̃ = r/h. The points
corresponding to the solutions of the corresponding quasi-stationary systems are marked with
symbols. The curves end at the maximum value of α that is compatible with the chosen value
of r̃.

however, if one transforms the momentum balance equation into the equation of motion
by substituting the mass balance equation into it. Also note that eq. (2.2) should be
extended to

we(x, y, t)γ̇(x, y, z, t) =
ui
|u|

[ gi(x, y) + ∂j σ̂ij(x, y, z, t) + ∂zσ̂iz(x, y, z, t) ] (3.7)

(with summation over the indices i, j ∈ {1, 2}) when normal-stress gradients occur.

3.2. Approximate solution for the Bingham fluid

A central ingredient in the present theory of erosion and entrainment is the assumed
brittle behaviour of the bed material, which locks the bed shear stress at the value of the
bed shear strength, τc. For a given rate-dependent rheology, this determines the shear
rate at the bed–flow interface, γ̇c, independent of the depth-averaged flow velocity, ū.
The derivative of the shear rate, however, is linked to the flow velocity, and at the same
time it is a determining factor in the equation for the erosion rate, see eq. (2.2). (Note
that Issler & Pastor Pérez (2011) derived this equation for a non-stationary flow.) There
is a one-to-one relation between γ̇′(0) and ū in the quasi-stationary case, but not in the
non-stationary case.

In order to obtain an approximate erosion rate for non-stationary flows, we therefore
need to make a reasonable assumption concerning the derivative of the shear rate at the
bed–flow interface. To this end, at any given time we adopt the velocity profile of a quasi-
stationary eroding “proxy” flow with the same flow depth, shear-layer depth and critical
shear rate. However, we use a different viscosity ν′ for the depth-averaged velocities to
match between the original non-stationary flow and the proxy flow. In calculating the
erosion speed, we use the original value of ν. Conceptually, this is analogous to the
assumption, routinely made in depth-averaged flow models without entrainment, that
the velocity profile is identical to that of an equilibrium flow with the same velocity.

The approximating profile function v(z, t) has to satisfy four conditions: (i) no slip at
the interface, v(0, t) = 0, (ii) vanishing shear in the plug layer, ∂zv(z, t) = 0 for z > r,
(iii) critical shear stress for erosion at the interface, ∂zv(0, t) = γ̇c, and (iv) matching
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depth-averaged velocities between the non-stationary flow and quasi-stationary proxy
flow, v̄(t) = ū(t). The first and second conditions are automatically fulfilled by the
solution eq. (2.11) if r or, equivalently, r̃ ≡ r/h match between the two flows. Applying
the scaling of eq. (2.13) with the viscosity ν′, we obtain the depth-averaged velocity as

ν′ū

h2gx
=
r̃

χ

(
1− r̃

2

)
+

r̃

χ2
− 1 + χ

χ3

(
1− e−r̃χ

)
. (3.8)

(We write χ instead of w̃e to emphasize that this equation does not give us the en-
trainment rate of the non-stationary flow.) Now we implement the condition (iii) stated
above and find 1− e−r̃χ = χν′γ̇c/(hgx), giving us ν′ in terms of χ. By substituting this
in eq. (3.8) and rearranging terms, we obtain the following equation for χ:

0 = F (χ) ≡


(

1+χ
χ2 + α

) (
1− e−r̃χ

)
− r̃

χ −
(
1− r̃

2

)
r̃, χ 6= 0

0, χ = 0
(3.9)

Again, this is a transcendental equation—this time depending on the dimensionless pa-
rameter α ≡ ū/(hγ̇c)—and needs to be solved numerically. We can substitute χ(α) into
the expression for γ̇′(0),

γ̇′(0) = − γ̇c
h

χ

er̃χ − 1
, (3.10)

and obtain the erosion rate by evaluating eq. (2.2) at z = 0:

we = max

(
0 ,

gx
γ̇c
− ν

h

χ(α)

er̃χ(α) − 1

)
. (3.11)

If the depth-averaged velocity is equal to that of the quasi-stationary flow, ū = ūqs and
α = αqs, then ν′ = ν in eq. (3.8) and χ(αqs) = w̃qs

e . Recalling the scaling of we and that
νγ̇c/(hgx) = τ̃ c − τ̃y, one verifies that eq. (3.11) recovers the erosion speed of the quasi-
stationary flow, given by eq. (2.15). This is exemplified in fig. 7, where the corresponding
solutions of the quasi-stationary equations are marked by symbols.

The maximum function appears in eq. (3.11) because we demand the erosion rate to
be positive for the reasons discussed in sec. 1.3. However, this condition is not equivalent
to the condition χ > 0, which separates velocity profiles that are straighter (χ > 0) or
more rounded (χ < 0) than a parabolic profile, respectively. The threshold velocity can
be determined from eqs. (3.11) and (3.8): Some algebra on eq. (3.11) shows the threshold
value of w̃e to be w̃thr

e = −(τ̃ c + r̃ − 1)−1, which can be substituted into eq. (3.9) to
obtain ūthr.

Figure 7 plots the erosion speed (3.11), scaled with ν/h, versus the depth-averaged
velocity (3.8), scaled with hγ̇c, for two combinations of the shear-layer depth r divided
by h and the bed shear strength divided by hgx. The graphs end at ū/(hγ̇c) = r̃(1− r̃/2),
which is the limit velocity for flows with convex velocity profiles, as we have assumed
here. The corresponding limit value of the erosion speed is weh/ν = (τ̃ c + r̃ − 1)−1.

3.3. Approximate solution for the frictional-collisional fluid

For the frictional-collisional rheology, we explore a different approach. Rather than match-
ing profile functions of a quasi-stationary eroding flow to the depth-averaged velocity
and critical shear rate of the actual non-stationary flow, we approximate the profile func-
tion directly. The numerical simulations of accelerating flows by Issler & Pastor Pérez
(2011) as well as the results of sec. 2.2 show that the profiles approach the straight line
u∞(z) = γ̇cz as the erosive power (and the velocity in the case of non-stationary flows)
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increase. The profiles become increasingly curved near z̃ = 1. The two-parameter family
of functions

v(hz̃) = U(ū, γ̇c) ·
[
1− (1− z̃)β(ū,γ̇c)

]
, β > 1 (3.12)

captures this behaviour. U , the surface velocity of the flow, and the exponent β depend
on variables of the actual non-stationary flow.

As in the case of the Bingham fluid, the first and second of the four conditions (i)
v(0, t) = 0, (ii) ∂zv(h, t) = 0, (iii) ∂zv(0, t) = γ̇c, and (iv) v̄(t) = ū(t) are automatically
fulfilled by the functional form (3.12) if β > 1. One easily calculates ∂zv|z=0 = βU/h
and ū = β

β+1 U . Substituting the latter relation into the former and equating ∂zv to γ̇c,
we obtain

β =
hγ̇c
ū
− 1. (3.13)

The admissible range of β leads to a restriction for the depth-averaged velocity,

ū

hγ̇c
<

1

2
, (3.14)

the limit corresponding to a straight-line velocity profile. Values of β larger than the
Bagnoldian value of 3/2 may arise, e.g., during start-up of the flow: The velocity profile
evolves progressively from a plug-like shape with very high values of curvature near
the bottom towards nearly linear profiles with the curvature concentrated at the top.
Similarly, when a flow enters a steeper segment of the path, β will initially increase
rapidly, possibly beyond 3/2, and then diminish again as the flow adjusts to the new
conditions.

The approximate erosion rate of the non-stationary flow follows from eq. (2.2):

we(ū) ≈ Θ(ū− ūthr)we,∞ ·
(

1− ūthr

ū

)
, ū <

1

2
hγ̇c. (3.15)

The scale for the entrainment speed is set by

we,∞ =
h(gx + µgz) + 4Kγ̇2

c

hγ̇c
, (3.16)

but the actual entrainment speed is always smaller by a finite amount because ū is
limited. It grows as a non-linear function of ū from 0 at the threshold velocity

ūthr =
hγ̇c
2

Kγ̇2
c

h(gx + µgz) + 4Kγ̇2
c

(3.17)

to its maximum value (gx + µgz)/γ̇c at ū = 1
2hγ̇c. ūthr may differ significantly from

the value (2/5)hγ̇c obtained by using the non-eroding equilibrium velocity profile. The
exponent β has been eliminated from eq. (3.15), but can be recovered from eq. (3.13) for
calculating the form factor fB = (β+1)/(β+ 1

2 ). Erosion is possible for hgx > τ̂ c−5Kγ̇2
c

if the velocity is high enough, but if the slope is too gentle, the flow is decelerated and
erosion will stop eventually.

Figure 8 shows the non-dimensional approximate erosion speed we/we∞ as a function
of the non-dimensional depth-averaged velocity ū/(hγ̇c) for three different values of the
non-dimensionalized threshold velocity 2ūthr/(hγ̇c). Note that the curves do not pass
precisely through the points corresponding to solutions of the quasi-stationary problem
because the ansatz functions (3.12) do not capture the quasi-stationary profile exactly,
but the agreement is satisfactory.

We may gain some insight into the properties of this formula by considering the asymp-
totic behaviour of the model consisting of eqs. (3.1), (3.2) and (3.15) in the case µ = 0.
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(With µ > 0, the model eventually breaks down as the flow depth increases, see sec. 4.2).
If there is a solution for which the erosion rate tends to a constant value, the flow depth
tends to linear growth in time, h ∼ wet, and becomes very large. As a consequence, the
bed resistance term in eq. (3.2) becomes negligible and the equation of motion simplifies
to

˙̄u ' gx −
ū

t
, (3.18)

solved by ū(t) ' 1
2gxt, i.e., constant acceleration at half the value of the component

of the gravitational acceleration along the slope (Issler & Pastor Pérez 2011). Eglit &
Yakubenko (2014) showed that this asymptotic solution has a linear velocity profile and
that the flow particles accelerate at the rate gx, i.e., at twice the rate of the centre of
mass. The asymptotic velocity corresponds to the limit velocity for which the model
ceases to be applicable (the limit itself growing linearly with the flow depth). Inserting
the limits of eqs. (3.16) and (3.17), one sees that we → we,∞ as h→∞ and

we,∞ −→
h→∞

gx
γ̇c

= gx

√
K

τ̂ c
. (3.19)

With the values from Table 1 in (Issler & Pastor Pérez 2011) and g = 10.0 m s−2, one
finds we,∞ = 0.161 m s−1, which agrees with the result from the numerical simulation
[fig. 3.e in (Issler & Pastor Pérez 2011)]. Furthermore, the fact that the erosion speed
tends to we,∞ implies that the velocity profile becomes linear asymptotically.

We can compare the present model in detail with the published depth-resolved simu-
lation by solving the mass-point equations (3.1) and (3.2) for the same parameter val-
ues, i.e., µ = 0, K = 0.005 m2, initial depth (normal to the slope) h0 = 1.05 m,
ρf = 300 kg m−3, τc = 1450 kPa, and constant inclination angle θ = 30°. The actual
model implementation differs somewhat from those equations (see appendix B for de-
tails), but this is of no consequence in the present context.

Figure 9.a shows erosion to start at a lower velocity in the depth-averaged model than
in the depth-resolved one. For this reason, the velocity grows more slowly in the initial
phase than in the depth-resolved simulation. Asymptotically, however, the acceleration
of the centre of mass tends to 1

2g sin θ in both models. The erosion speeds also tend to the
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Figure 9. Avalanche flow on a 30° slope as simulated with a slab model for the frictional–
collisional rheology and the erosion formula (3.15), compared to a depth-resolved simulation
presented by Issler & Pastor Pérez (2011). See the text for the parameter values. (a) Velocity
(left scale) and flow depth (right scale). (b) Erosion speed (relative to flow density, left scale)
and shape factor fB from the depth-averaged and depth-resolved models. Low values of fB
correspond to blunt, plug-like velocity profiles.

same value, but the approach to the asymptotic value differs strongly between the models
(fig. 9.b): we is a monotonically increasing function of time in the depth-resolved model.
In the approximate analytic erosion model, it rapidly jumps to a value about twice as
large as we,∞ after the threshold speed is crossed, then drops about 20% below we,∞,
reaches another local maximum and finally approaches we,∞ from above. Accordingly, the
flow depth is about 25% larger after a drop of 10 km (fig. 9.a). This discrepancy between
the models is closely related to the shape of the velocity profile, as fig. 9.b reveals: The
depth-resolved model computes a profile close to the equilibrium Bagnold shape with fB
slowly growing from 5

4 to 4
3 . In contrast, the depth-averaged flow has a blunter shape

than the Bagnold profile (fB = 5
4 ) during the entire simulation, but will cross over to

an increasingly linear profile if given enough time. Why the approximate model chooses
blunt profiles and how it can be modified to agree more closely with the depth-resolved
model remains to be investigated.

4. Discussion and outlook

4.1. Implications of the proposed erosion and entrainment theory

Perhaps the most fundamental result of the present work is the proof of concept that
erosion and entrainment in depth-averaged models of GMFs can be formulated in a
mathematically self-consistent and physically meaningful way. This is not a priori obvious
because depth-averaging discards information about the state of the system at and near
the bed–flow interface—and it is precisely there that the erosion rate is determined.

Two additional hypotheses helped making the problem tractable: First, the mechanical
problem becomes much simpler if we assume the bed to be perfectly brittle, with a
characteristic shear strength τc. We argued that this is a reasonable approximation for
snow. The central role of this hypothesis in the present approach suggests testing its
applicability in other types of cohesive substrates overflowed by gravity mass flows, like
soil with a substantial content of silt and clay. In this context, excess pore pressure
generated by the flow-induced shearing of the soil may be an important factor (Iverson
2012) that necessitates a different approach.

Secondly, the brittleness assumption suggests adopting an analogue of Owen’s (1964)
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hypothesis, stipulating that the interfacial shear stress is locked at the critical value τc
whenever there is erosion. The validity of this hypothesis cannot be proved or refuted in
the framework of depth-averaged models, but it might be possible to study this question
through discrete-element simulations if the frictional granular bed can be modified so as
to exhibit a finite yield strength at vanishing normal load (Rognon et al. 2008).

Despite its unrealistic features, the toy model introduced in (Issler & Jóhannesson
2006) and developed further in sec. 2 proved to be invaluable because it constrains the
system to the point where it becomes rigorously solvable. It is an open question at present
what other rheological models can be solved in this way, and it should be worthwhile
to explore this direction further. A particularly interesting candidate rheology is the
Jop–Forterre–Pouliquen model for granular materials (Jop et al. 2006).

The explicit analytic solutions (even though in terms of non-elementary functions) of
the quasi-stationary problem were very helpful both in developing a numerical approach
(Issler & Pastor Pérez 2011) and to find analytical extensions to non-stationary flows.
Sections 3.2 and 3.3 illustrate that this process is not uniquely determined. It should
be illuminating to approximately parametrize the numerical solutions for non-stationary
flow of a Bingham fluid presented by Eglit & Yakubenko (2014) in a similar way as was
done in sec. 3.3, or to adapt quasi-stationary eroding solutions of the frictional-collisional
model to the non-stationary case, as we did for the Bingham fluid in sec. 3.2.

Extensive comparison of the predictions of this theory to measurements is not presently
possible. On the one hand, there do not seem to be any laboratory experiments studying
entrainment from a brittle cohesive bed into a flow describable by the rheologies studied
in this paper. On the other hand, full-scale measurements to date (mainly on snow
avalanches) have not measured all the parameters that are needed to determine the flow
rheology and the bed properties. The preliminary back-calculation (app. B) of a small
avalanche whose deposits were studied in great detail exemplifies this: At first sight, the
model underestimates the erosion rate greatly. However, if our interpretation of the event
(app. A) is correct, most of the eroded mass was not really entrained into the flow and
the simplistic slab model may in fact estimate the entrainment rate fairly well. However,
this cannot be ascertained because the bed shear strength, which plays a central role in
our model, was not measured and we had to guess it.

4.2. Validity limits of the theory

At several points in this paper, limitations of the applicability of the presented approach
became apparent from physical considerations or mathematical analysis. These limita-
tions can be traced back to the assumptions that erosion is gradual and that there is
a critical shear strength of the snow pack. Together, they limit the shear rate to values
below the critical value at the interface, γ̇c. Since the shear rate decreases with increasing
distance from the bed, the depth-averaged flow velocity is strictly limited.

Further restrictions arise because the shear stress exerted by an avalanche at rest
must be less than τc in the model. For the Bingham fluid, this implies τy < τc, but
does not restrict the flow depth. The frictional-collisional rheology contains a Coulomb
friction term, which limits the flow depth to h < τc/(µg cos θ). An eroding avalanche on
an inclined plane will eventually exceed this limit, but the theory ceases to apply even
before this point is reached: As h grows, γ̇c decreases towards 0, and so ūmax = 1

2hγ̇c
will at some point fall below ū, which is increasing.

We qualitatively discuss what likely happens in a frictional-collisional avalanche beyond
this point; detailed study and mathematical modelling must be deferred to future work,
however. Due to the growth of h, γ̇c decreases, but this is felt only near the bottom of the
flow while the upper layers continue to accelerate. The decrease of γ̇c directly leads to a
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pronounced increase of we. The velocity profile is originally convex throughout the entire
flow depth, but this cannot be maintained—it remains convex near the top, but becomes
concave near the bottom. The family of profile functions (3.12) cannot accommodate this
shape, hence the break-down of the approximate model. It remains to be seen whether
approximate profile functions can be constructed that capture this transition while still
leading to tractable equations.

However, even if one succeeds in this regard, the system will reach the point where
the Coulomb friction alone overwhelms the shear strength of the bed. The condition
γ̇|z=0 = γ̇c cannot be maintained as γ̇|z=0 would become imaginary. The only possible
reaction of the system seems to be catastrophic failure of the bed over a finite depth
∆b down to a layer where the strength matches the load—this is the erosion mechanism
termed ripping in sec. 1.1. One can probably consider this slab fully disintegrated if it
is perfectly brittle as assumed hitherto, and treat it as a frictional-collisional fluid. The
shear stress at z = 0, which no longer is constrained at the value τc(0), will progressively
accelerate the eroded mass, the velocity profile being concave near z = 0 initially. Over
time, the shear stress at the new interface z = −∆b may grow to the value τc(−∆b) as
the velocity of the eroded slab and the shear rate increase, and then erosion by scour or
by ripping resumes.

If future work confirms these conjectures, the failure of the model at ū = hγ̇c/2 is remi-
niscent of a second-order phase transition that is not captured by the model—all physical
quantities like the velocity or the erosion rate evolve continuously, but the character of
the profile of the shear rate changes discontinuously from monotonic to non-monotonic.
In contrast, the break-down at γ̇c → 0 has the characteristics of a first-order phase transi-
tion where the erosion rate diverges and then drops to 0 while the flow depth increases by
a step. Thus the approximate non-stationary frictional-collisional erosion model needs to
be amended to (i) incorporate profiles with an inflection point and (ii) to accommodate
discontinuous changes in the flow depth.

4.3. Steps towards practical applications

In hazard mapping, the central task is to predict the run-out distance and other prop-
erties of (future) mass-flow events with long return periods. Practical application of the
presented erosion models in such a context will therefore, among other parameters, re-
quire knowledge of the likely spatial distribution of brittle shear strength during the first
few days after snow storms, when most avalanches are released. One has to expect that
these values depend significantly on the snow climate, altitude, the exposure to radiation
and wind, and the return period. These dependencies need to be investigated through
extensive field measurements. For example, snow around the fjords in western Norway
typically is warm and humid near sea level, but under exceptional conditions it may be
cold and have low cohesion along the entire avalanche path. Under such conditions, aval-
anches have run more than a kilometre farther than usual (Lied et al. 1998). Also, the
shear strength of snow increases significantly with depth in the snow pack. The complex
relationships governing this effect need to be distilled into simple formulas so that the
numerical model can compute the instantaneous shear strength τc(x, y, b(t)) as erosion
progresses.

Our preliminary attempt at back-calculating a real avalanche event with the proposed
erosion formula for frictional-collisional flows (appendix B) exemplifies that the inclusion
of entrainment renders the system highly non-linear and sensitive to the initial and
boundary conditions. We therefore anticipate that—even if we had the perfect model
available—it will take a substantial effort to establish practical procedures that allow
predictive and reliable simulations to be carried out.
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As mentioned in sec. 1.1, there are other important erosion mechanisms besides scour.
The back-calculation of the small avalanche event in app. B indicates that ripping may
affect much larger masses than scour even though it had little influence on the flow
dynamics in that case. Meaningful validation and application of the model will probably
only be possible when all erosion modes are included in a more comprehensive model.
That entrainment model should then be implemented, not in a slab model, but in a
full-fledged quasi-three-dimensional code.

Finally, the present study shows how erosion and entrainment are inextricably linked
to the flow rheology. This conclusion has immediate consequences for experimental stud-
ies of entrainment: Experiments have to be devised such that the rheology of the flow
can be determined simultaneously with the erosion rate and information on the erosion
mechanism gained. This is a great challenge, but if progress can be made, it will give
answers simultaneously to the two main problems in gravity mass flow dynamics.
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Appendix A. Brief overview of experimental knowledge and
constraints on erosion and entrainment

In debris flows (mixtures of water, fine sediment and possibly clasts up to boulder size),
the occurrence of bed erosion and deposition and the significance of these processes for
the flow dynamics are immediately obvious to an observer, see e.g. (Breien et al. 2008;
Mangeney et al. 2010). Also in all other types of rapid or extremely rapid gravity mass
flows, the flowing mass can change greatly. Already in the 1960s, researchers at Moscow
State University recognized the importance of entrainment in snow avalanches and de-
veloped models to describe this process in the framework of depth-averaged continuum
models (Briukhanov et al. 1967; Eglit 1968; Grigorian & Ostroumov 1977). These early
dynamical models were tested with considerable success against measurements from in-
strumented test sites in the Caucasus and the Khibiniy mountains, although detailed
testing of the proposed entrainment mechanisms was not possible with the experimental
techniques available at the time.

Surprisingly, the work of the Moscow group—and the problem of entrainment and



Consistent entrainment laws for avalanches 27

deposition in general—were largely ignored in other countries for decades. On the mod-
elling side, notable exceptions were Brugnot & Pochat (1981), Gubler (1987), Maeno &
Nishimura (1987) and Norem & Schieldrop (1991). Cannon & Savage (1988) may have
been the first to include an (a priori defined) erosion rate in a run-out model for debris
flows. The theory of self-igniting turbidity currents by Parker et al. (1986), as well as
some models of powder-snow avalanche motion inspired by that work, included empirical
expressions for the erosion rate (e.g., Fukushima & Parker 1990; Hermann et al. 1994).

Field observations of erosion in GMFs or dedicated experiments continued to be lack-
ing, however. Issler et al. (1996) highlighted the importance of entrainment and deposi-
tion in the non-dense part of snow avalanches on the basis of field investigations. The
detailed measurements of local mass balance along the Monte Pizzac avalanche path
(Italian Dolomites) by Sovilla et al. (2001) finally rekindled widespread interest in the
issue by showing that the flowing mass increased by up to an order of magnitude over
the release mass in some cases. The important achievement of that work was that both
the eroded and deposited mass were determined at about 15 cross-sections of the path,
taking into account the densities of the original snow cover, the dense deposits and the
somewhat compacted substrate. Erosion and deposition rates were found to vary sub-
stantially between events due to different snow conditions and avalanche sizes. These
small avalanches of less than 500 t maximum mass eroded 50–200 kg m−2 in the steep
reaches of the path, in most cases with little to virtually no deposition. In the run-out
zone, deposition varied from roughly 50 to 600 kg m−2 while erosion continued nearly to
the end, albeit at lower levels of 20–100 kg m−2. At intermediate slope angle, both erosion
(at the avalanche head) and deposition (from the tail) were observed. The critical slope
angle marking the transition from net erosion to net deposition was around 30° for these
avalanches. Note, however, that severe net erosion can occur even on steep counter-slopes
if the avalanche is large and fast enough.

More recently, new surveying techniques like photogrammetry and laser scanning have
allowed studying the mass balance of large snow avalanches as well (Vallet et al. 2001;
Sailer et al. 2008; Sovilla et al. 2010). However, there are significant sources of error:
(i) These measurements determine only the net change of surface elevation, but not the
separate snow-depth changes due to erosion and deposition at the same location. (ii)
The snow depth measurements need to be complemented by manual measurements of
the densities of the undisturbed snow pack, the deposits and the remaining snow cover
(substrate) underneath the deposit at sufficiently many locations (Issler et al. 1996; Sailer
et al. 2008; Issler et al. 2008).

Evidence for the different erosion mechanisms in snow avalanches mentioned in sec. 1.1
comes from the following sources: Ploughing is directly observable in many slow wet-snow
avalanches. It appears necessary for the flow to be at least as dense as the bed and to
have a certain degree of stiffness or cohesion so as to overcome the strength of the snow
cover and to push the eroded masses forward. The erosion mechanism in most of the
events at the test site Vallée de la Sionne, described as ploughing by Sovilla et al. (2006),
likely does not correspond to ploughing in our terminology because the time series of
reflectivity profiles from the profiling radar systems indicate a relatively dilute front.

Instead, the eruption mechanism proposed by Gauer & Issler (2004) is a candidate
mechanism for frontal erosion in dense dry-snow avalanches. It postulates that the load
from the arriving avalanche compresses the porous, contractive snow cover and generates
a gradient of excess pore pressure in it just ahead of the avalanche front. As the interstitial
air is pressed out, the drag it creates inside the snow cover may overcome the cohesion and
weight of the top layer, which then erupts and is immediately picked up by the flow front.
There is only indirect, yet suggestive observational evidence for eruption from videos
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and profiling radar measurements. Louge et al. (2011) and Carroll et al. (2013) recently
suggested a similar mechanism for the dilute front of fast dry-snow avalanches or powder-
snow avalanches and obtained erosion depths compatible with observations. However,
some details appear to need further study, in particular the relation to the pressure
distribution in the avalanche head obtained by McElwaine (2005) for non-eroding powder-
snow avalanches and the rapid dilution of the eroded snow.

Based on their measurements at Vallée de la Sionne, Sovilla et al. (2006) stated that
frontal erosion clearly was dominant; however, it might be more appropriate to talk
about erosion in the avalanche head, which may be from tens to hundreds of metres in
length. Earlier measurements with profiling radar at the same site provided evidence
of substantial erosion going on for about 10 s until the erodible layer was completely
entrained (Issler 2003, and fig. 10). These measurements provide strong evidence for
both intermittent ripping and continuous scour occurring in dry-snow avalanches.

For the purpose of developing and directly testing mechanical models of erosion and
deposition, local time-resolved measurements of the erosion rate together with the char-
acteristic flow variables are needed. In debris flows, the forces are so large that methods
based on the sequential destruction of sectioned measurement columns are the only viable
method to date (Berger et al. 2010). The flow depth and the velocity of clasts at the flow
surface can be measured by analysing video footage, but velocity profiles inside the flow
cannot be obtained. While measuring the bed shear stress with load plates buried in the
bed is difficult due to erosion and deposition occurring, approximate average values can
be obtained from the flow depth, the local slope angle and the estimated density of the
debris-water mixture if the local flow acceleration is approximately zero. The measure-
ments in the channel of the alluvial fan of the Illgraben site in Switzerland reported by
Berger et al. (2011) showed erosion in the studied debris flows to be a gradual or intermit-
tent process occurring mostly in the early phase of flow passage when the discharge was
highest. Typical average erosion speeds were 0.05–0.2 m s−1, corresponding to erosion
rates of 100–400 kg m−2 s−1. In steeper reaches near the apex of the fan, significantly
larger erosion depths were observed than at the measurement site, hence the maximum
erosion rates likely exceed 400 kg m−2 s−1.

In instrumented snow avalanche test sites, vertically arranged arrays of pairs of pho-
todiodes (Nishimura & Maeno 1987) are able to track the evolution of the bed–flow
interface in time by detecting the onset of motion at each sensor level. This is achieved
by analysing the cross-correlations of the light intensity reflected by the passing snow par-
ticles. Profiling radar buried in the ground (Gubler & Hiller 1984) is sensitive to changes
in the dielectric constant of the medium, which is related to the snow density. The undis-
turbed snow cover gives a stationary signal pattern corresponding to a sequence of strata
whereas the flowing avalanche produces a strongly fluctuating signal due to the density
variations when particles pass through the radar beam (fig. 10). It is therefore easy to
track the interface between the undisturbed snow cover and the disturbed region (Issler
2003; Sovilla et al. 2006). Moreover, the signal strength increases with density so that
one may hope to distinguish between density-increasing erosion mechanisms (ploughing,
ripping, scour) and density-decreasing eruption. In practice, however, determining from
the radar images whether a layer was fully entrained into the flow or merely was eroded
and dragged along a short distance is difficult without velocity profile data. (Attempts
at extracting velocity profiles by cross-correlating signals from two radar devices aligned
in the flow direction have only rarely been successful (Gubler 1987) because the cross-
correlations decay rapidly with distance and cross-talk between the radar systems occurs
if they are spaced too closely.)

We illustrate the relevance of this point for understanding the dynamics of avalanche-
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Figure 10. Time series of echo intensity profiles from profiling radar buried in the ground,
looking upward through the snow cover. Time (s) along the horizontal axis, distance from the
ground (m) along the vertical axis, gray value indicates the intensity of the reflected signal.
Before the avalanche arrives, the layering of the snow pack appears as horizontal stripes. Snow
cover surface is at 5.5 m. At t = 15 s and 18 s, 0.6 m and 0.4 m of snow, respectively, were eroded
quasi-instantaneously. Between these events, the erosion speed was approximately 0.2 m s−1.
When the dense body of the avalanche arrived at t = 24 s, the new snow was already eroded
down to the very hard deposit of the preceding avalanche. From (Dufour et al. 1999).

type flows by making some inferences from the data collected by Sovilla et al. (2001) in
the Monte Pizzac path mentioned above. The small 1997-12-05 event, which is used for
back-calculations in appendix B, eroded not only the new-snow layer of approximately
0.3 m, but also substantial parts of the old snow underneath. The total eroded mass
amounted to 9 times the release mass M0, but the moving mass increased only modestly
to a maximum of 1.8M0 because deposition began shortly after release and was almost
equal to the erosion along much of the first half of the path, on which we focus our
attention here. In that path segment, the slope angle decreases from about 32° to about
27°. The front speed peaked at 18 m s−1at the beginning of this segment and diminished
to 15 m s−1at its end. The moving mass M(t) per unit width W was roughly constant at
M(t)/W ≈ 7000 kg m−1. We do not know the flow depth h and length `, but given the
release depth of only about 0.25 m, the channelling at the end of the release zone and the
density of the deposits (280 kg m−3), ρf ≈ 220 kg m−3, h ≈ 0.4–0.6 m and ` ≈ 50–80 m
appear plausible. Erosion and deposition varied in the range me,md = 50–130 kg m−2,
both averaging around 100 kg m−2.

From these data, we infer that the combined retarding forces per unit width due to
friction, erosion and deposition, i.e.,

Fr/W = `σ(b)
xz + (me −md)uf ,

were similar to the slope-parallel gravitational force per unit width, which was of the
order of

Fg/W = ρf `hg sin θ ≈ 35 kN m−1,

the combined retarding stress thus being in the range 0.4–0.7 kPa. This is similar to
the shear strength of the new-snow layer, which one may expect to be in the range
0.5 < τc < 1 kPa given the weather conditions. Since me ≈ md, the force balance is
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compatible with the hypothesis put forth in sec. 1.3 that the bed shear stress takes the

value of the bed shear strength during erosion, σ
(b)
xz = τc.

We may now argue that most of the mass eroded by this particular avalanche in all
likelihood was not fully entrained and mixed into the flow. At an average front speed
uf ≈ 16 m s−1, the avalanche eroded meuf = 800–2200 kg m−1 s−1 (per unit width).
Entraining the entire eroded mass, i.e., accelerating it to the avalanche speed, would
require a momentum transfer rate per unit width of meu

2
f = 12–35 kN m−1, which by

itself is of similar magnitude as Fg/W . If mass is deposited at the same rate from the same
initial average speed, an equal amount of momentum is transferred back to the flow so
that there is no obvious contradiction with the momentum balance. However, if massive
entrainment occurred at the front and massive deposition at the tail, the momentum
balance would be violated locally under the inferred conditions. A mechanically more
convincing interpretation is that the shear stress exerted by the avalanche led to fracture
in a relatively weak layer embedded in the old-snow cover. During the time of passage of
the avalanche, which was of the order of 5–10 s, the snow cover above the fractured layer
was dragged along for a moderate distance and comminuted thereby. [Note, however,
that deposition started significantly farther downstream in the other three avalanches
studied by Sovilla et al. (2001).]

This example serves to show that comprehensive measurements including erosion rates,
velocity profiles, flow acceleration, density, shear strength profiles of the snow cover, and
possibly excess pore pressure are needed to fully understand the erosion mechanisms at
work and to test entrainment models.

Appendix B. Slab model for the frictional-collisional rheology

Here we summarize the main features of the simple slab model that is used in sec. 3.3
to compare the erosion formula to the depth-resolved erosion model and apply it to a
small avalanche whose mass balance was thoroughly measured (Sovilla et al. 2001). The
model is implemented in the programming language Python as a script and can be run
stand-alone or embedded in geographical information system software.

In hazard mapping applications, the spatial distribution of maximum flow depth, ve-
locity and impact pressure is of primary interest. This suggests replacing the time, t, by
the front position, s, as the independent variable in the governing equations (3.1) and
(3.2). By virtue of the relation d

dt = ds
dt

d
ds = ū(s) d

ds , the mass balance transforms into

h′ =
we(h, ū, s)

ū
. (B 1)

The left-hand side of the transformed equation of motion is the spatial derivative of
ū2/2. For simplicity, we will denote it by E in the following, even though it is not the
depth-averaged kinetic energy per unit mass, which is given by 1

2u
2 = 1

2fBū
2. Below

the erosion threshold, we approximate the velocity profile by the profile of a stationary
non-entraining flow, for which γ̇|z=0 = 5

2 ū/h. Thus we obtain

E′ = g sin θ − ūwe
h
− sgn(ū)


(
µg cos θ +

25

2
K
E

h3

)
, ū < ūthr

τ̂ c
h
, ū > ūthr

(B 2)

For we and ūthr, the expressions (3.15)–(3.17) are used with ū =
√

2E.
With a mass-point model, the erosion rate may be computed, but not the more readily
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measurable erosion depth. Calculating the erosion depth becomes possible if we extend
the model to describe a flexible slab of length ` and uniform height. The gravitational
driving term and the Coulomb friction term in eq. (B 2) have to be replaced by averages
over the slab,

g sin θ =
g

`

∫ s

s−`
sin θ(s′)ds′, µg cos θ =

µg

`

∫ s

s−`
cos θ(s′)ds′. (B 3)

The erosion speed, which depends on the slope angle and the possibly variable shear
strength τc(s), should also be averaged, but we use the corresponding values at the front
because the model is too crude to justify the computational effort.

The user has to specify the flow path and the distribution of the initial erodible snow
depth, b0(s), and the bed shear strength τc(s). Further parameters are the initial slab
length `0, the fracture depth h0 (measured normal to the surface), the densities of the
avalanche, ρf , and the snow cover, ρb, and the rheological parameters µ and K. As a
rough substitute for the longitudinal spreading that shallow-water-type models capture
through normal-stress gradients, the user may specify a heuristic parameter λ between
0 and 1 that reduces the growth rate of the flow depth in favour of a length increase:

h′ = (1− λ)
we
ū
, `′ = λ

`

h

we
ū
. (B 4)

Mass is eroded along the entire length of the flow, but added at the tail, which is not
correct energetically and tends to overestimate the flow velocity and run-out distance on
typical concave or hockey-stick-like paths.

The code solves the ordinary differential equations (B 4) and (B 2) by a simple forward-
marching scheme. At each step, sin θ and cos θ and the erosion speed are computed. For
each path segment—typically chosen to be about 1 m long—covered by the avalanche at
the present step, the model checks whether there is enough erodible snow and adjusts
the amount of snow eroded from that segment if necessary. In a more complete model,
the shear strength of the bed should be allowed to vary with depth, either in terms of a
simple formula or as a sequence of layers of different strength (Sovilla et al. 2006).

We illustrate the potential and limitations of a slab model and the proposed erosion
formula in practical applications through a simulation of the 1997-12-05 avalanche in
the Monte Pizzac path in Arabba, Italian Dolomites, whose mass balance was studied in
detail by Sovilla et al. (2001). See also appendix A for a brief discussion of some dynamical
aspects of this event that will be relevant for assessing the simulations. We chose this event
for several reasons: (i) The path is channelised and has approximately constant width,
minimising errors due to the simplified slab geometry of the model. (ii) Both erosion
and deposition were measured in many cross-sections, taking into account the different
densities of the layers. (iii) This event was a small, relatively slow dry-snow avalanche.
Hence one expects fluidisation effects to be mild so that the frictional-collisional rheology
with constant density may adequately describe the flow. (iv) This was the first event of
the season, thus there are no hard deposits of earlier avalanches in the gully and the
snow cover can be assumed homogeneous in the spanwise direction of the flow.

We constructed a (crude) path profile from the map and site information in (Barbolini
& Issler 2006, chap. 3.2). According to the description of the event in (Sovilla et al.
2001), the release depth was only about 0.25 m (measured normal to the ground). The
measured new-snow density of 135 kg m−3 indicates that the flow height would quickly
drop to 0.15 m during the break-up of the slab. Such a low value requires implausible
parameter values in the flow model to attain the measured run-out distance and to
entrain snow. We chose to use h0 = 0.4 m at a density ρf = 220 kg m−3 instead, which
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Figure 11. Simulation of the 1997-12-05 avalanche at the test site Monte Pizzac (Arabba,
Italian Dolomites) described and analysed by Sovilla et al. (2001). (a) Front velocity along the
path as simulated by the frictional-collisional model with distribution parameter λ set to 0 and
0.5, respectively. For comparison, a simulation with similar parameters, but without erosion is
also shown. (b) Slab depth and erosion depth along the path for the two cases with erosion
shown in panel (a). In the case λ = 0.5, the entire erodible snow cover was entrained between
x = 170 m and 200 m. See the text for more details.

may be justified as the result of funnelling in the transition from the release area to the
narrow gully. At the time of release, the old snow cover was about 0.6 m deep (vertically
measured) and overlain by 0.3 m of new snow. There are no published measurements of
the shear strengths of these layers, but the small dimensions of the avalanche suggest a
fairly soft slab and low shear strength of the new-snow layer. The fact that the avalanche
also eroded substantial parts of the old snow soon after release and along most of the
track imposes a lower bound on the flow depth and/or an upper bound on the shear
strength of the snow cover: For erosion to occur beneath a 0.4 m deep avalanche with
density 220 kg m−3 on a slope of 35°, τc 6 0.7 kPa is required. Deeper layers likely have a
shear strength of 2 kPa or more (except possibly for thin weak layers), thus a flow depth
of at least 1 m would be required for eroding them by the scour mechanism.

In the simulations, the rheological parameters were tuned to reproduce the observed
run-out distance. Constant values of τc in the range 0.5–0.7 kPa quickly lead to the break-
down of the erosion formula because the velocity exceeds the limit 1

2hγ̇c; higher values of
τc give too little or no erosion. As discussed in sec. 4.2, break-down of the erosion formula
most likely marks the transition to the ripping erosion regime that needs to be described
by a different mathematical model. For the sake of testing the model behaviour, we let
τc increase almost linearly from 0.5 kPa at x = 100 m to 0.9 kPa at x = 400 m as an ad
hoc measure so that the erosion formula continued to be applicable.

As fig. 11.b reveals, the avalanche simulated with the stretching parameter λ = 0,
i.e., constant length, increased its mass to approximately 1.7 times the release mass. In
the corresponding simulation with λ = 0.5, the mass increased to 2.3 times the release
mass as the length grew from 66 m to 101 m. These values are reasonably close to the
measured maximum moving mass, which was 1.8 times the release mass. However, the
observed total eroded and deposited masses amounted to nine times the release mass.
In particular, the simulated erosion per unit area peaks at 25–30 kg m−2 in the case
λ = 0 and at 40 kg m−2 (limited by the erodible snow) for λ = 0.5, and it ceases at
x ≈ 360 m and 390 m, respectively. The observed erosion peaked at close to 150 kg m−2,
dropped to nearly 0 in a more gently inclined path segment around x = 400–450 m and
grew again to more than 100 kg m−2 until close to the stopping point. The measurements
do not reveal, however, whether these masses were fully entrained in the flow or merely
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dragged along for a short distance. The latter alternative is likely if the ripping mode
of erosion was operative (see the discussion at the end of appendix A). The longitudinal
profile of the front speed is quite well reproduced by the simulation without entrainment,
but underestimated if snow is entrained. A more extensive scan of the parameter space
might achieve better agreement, but does not appear warranted given the simplicity of
the model and the uncertainties of the boundary conditions.

Despite the many assumptions made in the present analysis, some important conclu-
sions may be drawn from this example: (i) The discrepancy between the observed and
simulated erosion depths does not imply failure of the proposed erosion formula. Rather,
the fact that it reaches the limits of its applicability if τc is not carefully tuned, is in
agreement with our inference that ripping must have been the dominant erosion mecha-
nism. (ii) A combined entrainment model for ripping and scour, possibly also ploughing
and eruption is needed for meaningful comparison with experimental data. (iii) Detailed
post-event surveys as in (Sovilla et al. 2001) need to be complemented by direct mea-
surements of the acceleration, flow depth, density, velocity profile and erosion rate at
selected points in order to subject an erosion model to a conclusive test.
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