Soil Science and Plant Nutrition

pH effects of the addition of three biochars to acidic Indonesian mineral soils

Journal:	Soil Science and Plant Nutrition
Manuscript ID:	SSPN-14-186-F.R5
Manuscript Type:	Full-length paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Martinsen, Vegard; Norwegian University of Life Sciences, Environmental Sciences Alling, Vanja; Norwegian Geotechnical Institute (NGI), Nurida, Neneng; Indonesian Soil Research Institute (ISRI), Mulder, Jan; Norwegian University of Life Sciences, Environmental Sciences Hale, Sarah; Norwegian Geotechnical Institute (NGI), Ritz, Christian; University of Copenhagen, Basic Sciences and Environment Rutherford, David; US Geological Survey, Heikens, Alex; United Nations Development Program (UNDP), Asia – Pacific Regional Centre, Breedveld, Gijs; Norwegian Geotechnical Institute (NGI), Cornelissen, Gerard; Norwegian Geotechnical Institute (NGI),
Keywords:	soil amendments < Fertilizers and Soil Amendments, Soil Fertility
-	

SCHOLARONE[™] Manuscripts

1	pH effects of the addition of three biochars to acidic Indonesian mineral
2	soils
3	
4	Martinsen, V. ^a , Alling, V. ^{b*} , Nurida, N.L. ^c , Mulder, J. ^a , Hale, S.E. ^b , Ritz, C. ^d , Rutherford
5	D.W. ^e , Heikens, A. ^f , Breedveld, G.D. ^b and Cornelissen, G. ^{a, b,g}
6	
7	^a Department of Environmental Sciences (IMV), Norwegian University of Life Sciences
8	(NMBU), P.O. Box 5003, NO-1432 Ås, Norway.
9	^b Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevål Stadion, NO-0806 Oslo,
10	Norway. *Present address: Section for Waste and Contaminated Soil, Norwegian
11	Environment Agency, Strømsveien 96, NO-0663 Oslo, Norway.
12	^c Indonesian Soil Research Institute (ISRI), Bogor, Indonesia.
13	^d Department of Basic Sciences and Environment, Faculty of Life Sciences, University of
14	Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
15	^e US Geological Survey, Denver, CO, USA.
16	^f United Nations Development Program (UNDP), Asia – Pacific Regional Centre, Bangkok,
17	Thailand. The views expressed in this publication are those of the authors and do not
18	necessarily represent those of the United Nations, including UNDP, or its member states.
19	^g Department of Applied Environmental Sciences (ITM), Stockholm University, 10691
20	Sweden.
21	
22	Corresponding authors: Gerard Cornelissen: gco@ngi.no (+47 977 24 503); Vegard
23	Martinsen: vegard.martinsen@nmbu.no (+47 649 65 577).
24	
	1

25 ADSILACI	25	Abstract
-------------	----	----------

	Soil Science and Plant Nutrition
25	Abstract
26	Soil acidity may severely reduce crop production. Biochar (BC) may increase soil pH and
27	cation exchange capacity (CEC) but reported effects differ substantially. In a systematic
28	approach, using a standardized protocol on a uniquely large number set of 31 acidic soils,
29	quantified the effect of increasing amounts (0-30%; w:w) of three types field-produced BC
30	(from cacao shell, oil palm shell and rice husk) on soil pH and CEC. Soils were sampled fi
31	croplands at Java, Sumatra and Kalimantan, Indonesia. All BCs caused a significant increa
32	in mean soil pH with a stronger response and a greater maximum increase for the cacao sh
33	BC addition, due to a greater acid neutralizing capacity (ANC) and larger amounts of
34	extractable base cations. At 1% BC addition, corresponding to about 30 tons ha ⁻¹ , the
35	estimated increase in soil pH from the initial mean pH of 4.7 was about 0.5 units for the ca
36	shell BC, whereas this was only 0.05 and 0.04 units for the oil palm shell and rice husk BC
37	respectively. Besides on BC type, the increase in soil pH upon the addition of each of the
38	three <u>BCs</u> was mainly dependent on soil CEC (low CEC resulting in stronger pH increase)
39	and to a lesser extent on initial soil pH (higher initial pH resulting in stronger pH increase)
40	Addition of <u>BC</u> also increased the amount of exchangeable base cations (cacao shell >> oi
41	palm and rice husk) and CEC. <u>Through this systematic screening of the effect of BC on presented and the eff</u>
42	and CEC of acidic soils, we show that small addition of BC, in particular if made of cacao
43	shell, to acidic agricultural soils increases soil pH and CEC. However, the response is high
44	dependent on type, quality and amount of the added BC as well as on intrinsic soil propert
45	mainly CEC.
46	Key words: Biochar; pH; soil; CEC; Indonesia.
47	
	2
	http://mc.manuscriptcentral.com/sspn

1. Introduction

Biochar (BC) is the solid product formed after organic matter is charred via pyrolysis, i.e. without access to oxygen and at high temperature (250-900°C). Depending on its intrinsic properties and recalcitrance (Harvey *et al.*, 2012). BC may present a way of sequestering carbon in soils (Lehmann, 2007). In addition, BC can improve soil fertility (Atkinson et al., 2010; Glaser et al., 2002) and may serve as an attractive soil amendment for soils of low agricultural quality. Long-term use (100 to 1000 years) of BC as a soil amendment originates from the tropics: the *Terra preta* soils in the Amazonian forest have an improved fertility (Steiner *et al.*, 2007). It is known that the indigenous people added charcoal to these soils, and still today 100-1000 years later, these soils have enhanced physical and chemical properties due to the BC, compared to surrounding soils (Glaser *et al.*, 2001; Glaser *et al.*, 2002; Lehmann et al., 2003; Neves et al., 2003). Biochar characteristics are strongly determined by source material and production procedure

(Brewer et al., 2011; Chun et al., 2004; Jha et al., 2010; Spokas et al., 2012). The production temperature has been shown to have a profound effect on the C content, pH and CEC of the BC (Chen et al., 2008). The feedstock of the BC has also been shown to be of importance for the liming capacity of the BC (Yuan and Xu, 2011; Yuan *et al.*, 2011). Upon mixing with BC, changes in soil pH are affected by CEC and levels of exchangeable acidity (acid saturation), which in turn depend on climatic conditions (leaching), mineralogy, clay content and amount and quality of soil organic matter (McBride, 1994; Ziadi and Sen Tran, 2007). Soils with high CEC and large acid saturation are well-buffered with respect to pH (Ziadi and Sen Tran, 2007). These factors combined with intrinsic BC characteristics may therefore be important in

influencing how BC changes soil pH and fertility and thus <u>BC's</u> potential impacts on crop
production (Spokas *et al.*, 2012).

Several studies have confirmed an increased crop production after BC amendment, although other studies found small or no effects (Jeffery et al., 2011; Spokas et al., 2012). The addition of BC to soil, in combination with fertilizer, has been reported to increase yield (Chan et al., 2007; Asai et al., 2009) or have no effect (Jeffery et al., 2011). Yamato et al. (2006) experienced significantly increased yields of maize and peanut and attributed this to the increases in pH and CEC for Indonesian soils after the addition of <u>BC of</u> bark from A. *mangium*. In an acid Alfisol from NSW Australia, radish crop yields were significantly greater when BC was added in combination with fertilizer as compared to fertilizer only (Chan et al., 2007). The positive effect of BC on crop production may be due to pH and CEC increases and changes in the physical properties of the soils, rather than to nutrients associated with the BC per sé (Chan et al., 2007). Also, Asai et al. (2009) showed greater increases in rice yields in Laos, when fertilizer additions were combined with BC, as compared to the addition of fertilizer alone. Increases in pH and CEC of acidic soils are commonly observed in response to BC amendments (Glaser et al., 2002). However, most studies only included a limited number of soils (Alburquerque et al., 2014; Atkinson et al., 2010; Lehmann, 2007). In studies of pH-neutral soils from the USA Mid-west, Laird et al. (2010) showed only minor increases in both soil pH (<1 pH unit) and CEC (~3 cmol_c/kg) in response to 2% BC additions. Recently a meta-analysis (Jeffery et al., 2011) revealed an overall positive effect of BC addition to soils on crop productivity with greatest effects in acidic and neutral pH soils with a coarse or medium texture. The main mechanisms were suggested to be liming effects and improved

Soil Science and Plant Nutrition

96	water holding capacity (Jeffery et al., 2011). A significant increase in soil pH upon BC
97	addition was also confirmed in a meta-analysis by Biederman & Harpole (2013), who used
98	underlying a combination of several independent studies, which in contrast to our approach,
99	involve a wide variation in protocol and applied techniques. The change in soil pH upon BC
100	addition was related to the initial soil pH and the alkalinity of the BC. A systematic study of
101	the effect of different types and doses of BC on such a large number of soils has to our
102	knowledge not been conducted so far.
103	
104	More than 50% of the agricultural soils in Indonesia are acidic (Uexküll and Mutert, 1995).
105	Oxisols (USDA, Soil taxonomy) and Ultisols are common in the tropics and are characterized
106	by low pH, low CEC and high contents of aluminium- (Al(OH)3) and iron-hydroxides
107	(Fe(OH) ₃) (Van Wambeke, 1992). These features cause severe phosphorus (P) deficiency due
108	to the strong sorption of PO_4^{3-} to oxide surfaces in the soils and the formation of insoluble
109	iron (Fe) and aluminium (Al) phosphates (Cross and Schlesinger, 1995). At the same time, the
110	low CEC of the eroded soils causes considerable leaching of nitrogen (N) making fertilization
111	both inefficient and expensive (Chan et al., 1993; Thomsen et al., 1993). The low pH of these
112	soils also results in elevated concentrations of Al. Dissolved Al in soils tends to increase
113	exponentially to high values particularly at pH below 4.5 (Berggren and Mulder, 1995;
114	Mulder et al., 1989) and may reach levels toxic to plants (Kinraide, 2003).
115	
116	We investigated the general effectiveness of three types of locally produced BC to acidic
117	Indonesian soils in terms of changes in soil pH and CEC. In addition, we assessed if these
118	changes can be directly related to initial soil characteristics and BC properties. According to
119	our knowledge, this is the first study to systematically investigate effects of different BCs on
120	selected soil chemical properties according to a standardized protocol, using a large number
l	5

Soil Science and Plant Nutrition

121	of soils (31). Most other studies focus on a limited number of soils only (Butnan et al., 2015;
122	Alburquerque et al., 2014) or involve meta-analysis, where the underlying studies apply a
123	range of techniques (Biederman & Harpole, 2013; Jeffery et al., 2011). The large number of
124	soils allowed us to draw conclusions on the effect of soil characteristics on the pH effect of
125	the BCs.
126	In most earlier studies, laboratory-made BCs were used. Such biochars are mostly made in a
127	muffle furnace or microwave oven. These approaches bear little relevance for a tropical rural
128	situation where simple traditional kiln technologies are the norm. Thus here "real-world" BCs.
129	actually made and used in field experiments using locally made pyrolysis units, were tested.
130	The use of field-made biochars represents a realistic situation for small scale farmers because
131	advanced BC production systems, microwave ovens and furnaces are unavailable in such
132	situations (Spokas et al., 2012).
133	Our main questions were: To what extent does BC increase in both soil pH (Q1) and CEC
134	(Q2) with increasing concentrations of BC. How does the increase in soil pH depend on initial
135	soil CEC and pH (Q3). How do changes in soil pH and/or CEC depend on BC type (Q4).
	6
	http://mc.manuscriptcentral.com/sspn

136	2. Material and methods
-----	-------------------------

137 2.1. Site description and sampling

The samples were collected from 31 different sites (agricultural fields < 100 ha), from Java (site 1), Sumatra (site 2-22) and Kalimantan (site 23-31), Indonesia (Fig. 1 and Table 1), At each of the 31 sites, soil samples of 250-1000g from 10-15 points (depth 0-15 cm) were bulked, air dried at \pm 35 °C for 12 h and thoroughly mixed by hand. The sites were chosen to represent a wide range of well-drained acidic agricultural land in Indonesia, both regarding geographic distribution, agricultural use and soil properties. Soils at sites 2 to 12 were collected in close proximity to each other. However, both the content of C and the CEC varied by a factor of five, so the samples represented variable soil characteristics even though they were geographically close together. In the laboratory, each of the 31 bulked soil samples (sieved at 2 mm) were divided into 21 subsamples ($\sim 10-50$ g), to which was added either 0, 0.1, 0.3, 1, 3, 10 or 30 % (dw) of one of three BCs (sieved at 2 mm).-Assuming a bulk density of 1.5 g cm⁻³ (typical for A-horizons in tropical soils, cf. Batjes (1996)) and a soil depth of 20 cm (common depths for the plough layer) these amounts of BC correspond to 0, 3, 9, 30, 90, 300 and 900 tons BC ha⁻¹.

154 2.2. Biochar production

Three types of BC (cacao shell, oil palm shell, and rice husk) were produced in a locally constructed unit (Fig. S1) of 30-40 L, and a chamber temperature around 250-350 0 C (average 300°C). Several pyrolysis times were tested and the ratio of <u>BC</u>:syngas and the <u>BC</u> yield were measured. The pyrolysis times were selected after charring the respective feedstock materials for 1, 2 and 3.5 h. The optimal pyrolysis time was selected on the basis of the amount of

160	carbon recovered (i.e., the C content times the yield), as part of the motivation for using <u>BC</u> is
161	the C sequestration effect. In addition, the characteristics of the BC (%ash, N, P) varied by <
162	5% between the three pyrolysis times (Table S1). The yield for each of the three BC produced
163	(compared to dry weight of feed stock) were 22.0%, 53.5% and 30.4% for cacao shell, oil
164	palm shell and rice husk, respectively (Table S1).
165	
166	2.3. Analysis of soil and biochar soil mixtures
167	pH of the soil and the <u>BC</u> soil mixtures was determined electrometrically (<i>W/V Orion Model</i>
168	410A) in a soil suspension with distilled water as well as a 1 M KCl solution (weight soil:
169	volume solution ratio of $1:5$). The CEC and exchangeable cations were determined by
170	percolation with 1M ammonium acetate (pH = 7.0) followed by extraction with 0.17 M
171	sodium chloride after washing with alcohol. pH was measured on four soil samples without
172	added BC and in each of the 0.1, 0.3, 1, 3, 10 or 30 % BC soil mixtures at each site. CEC was
173	measured without BC at each site (for characterization) and in each of the 0, 0.1, 0.3, 1, 3, 10
174	or 30 % BC soil mixtures of each of the five sites 18, 19, 24, 30, 31 (i.e. on four soil samples
175	without added BC at each of the five sites). Base cations (Ca, Mg, K, Mn and Na) replaced by
176	ammonium ions (NH_4^+) were measured in the first <u>eluent</u> with a flame spectrophotometer
177	(Perkin Elmer, AAS 3300). After washing with ethanol (96%) to remove excess ammonium
178	acetate, adsorbed NH_4^+ was displaced by Na^+ - ions. The CEC was determined
179	colorimetrically as the total amount of extracted NH_4^+ ions, using blue indofenol
180	complexation (Ciesielski and Sterckeman, 1997; Rhine et al., 1998), using a
181	spectrophotometer (Autoanalyzer 3 Bran Luebbe) at 636nm. The procedure used for
182	determining CEC might have underestimated the actual CEC due to dissolution of organic
183	matter and subsequent hydrolysis as reported by Harada and Inoko (1980). The exchangeable
184	acidity (H^+ and Al^{3+}) was measured in 1 M KCl solutions, where phenolphthalein was added 8

185	and the solution titrated with 0.02 M NaOH to pH 7. For exchangeable Al ³⁺ , 1 M NaF was
186	added to the titrated sample, and the solution was titrated back to pH 7 with 0.02 M HCl (until
187	colour disappears). The difference between these two measurements equals the approximate
188	exchangeable H ⁺ concentration (Mc Lean in Black et al.(1965)). Total C and N were
189	determined by the dry combustion (Nelson and Sommers, 1982) (Leco CHN-1000; Leco
190	Corporation, Sollentuna, Sweden) and the Dumas method (Bremmer and Mulvaney, 1982),
191	respectively. Due to the absence of carbonates in the native soils, suggested by their low pH,
192	total C represents organic C before BC addition. All measured soil attributes are listed in the
193	supporting information (Table S2).
194	
195	2.4. BC analyses
196	pH of the three BCs was determined electrometrically (Orion, model 720, Orion Research
197	Inc., Cambridge, MA, USA) in a suspension with distilled water and 1M KCl (10 ml BC and
198	25 ml water/KCl solution), respectively. The CEC and exchangeable cations of the BCs (air-
199	dried and sieved at 2 mm) were determined by percolation with 1M ammonium acetate (pH =
200	7.0) followed by extraction with 1 M potassium chloride after washing with alcohol. In the
201	first eluent base cation concentrations were determined using ICPOES (Optima 5300 DV,
202	PerkinElmer Inc., Shelton, CT, USA). Extractable acidity was determined by back titration
203	with 0.05 M sodium hydroxide to pH 7. The sum of exchangeable base cations and acidity
204	was used to determine CEC (i.e. including base cations leached from ashes) according to
205	Schollenberger & Simon (1945). After washing with propan-2-ol the samples were extracted
206	with KCl and the CEC determined photometrically as the total amount of extracted NH_4^+ ions
207	(Photometer, Gilford Instrument). In addition, CEC was determined after saturation with 1M
208	KCl and subsequent extraction with 0.5M NaNO3 according to the method described by
209	Mukherjee <i>et al.</i> (2011). Total C and N were determined as described above.
	9

2
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 10 10 10 10 10 10 10 10 10 10 10 10 10
4
5
6
/ 0
9
10
11
12
13
14
15 16
17
18
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
20
21
22
23
2 4 25
26
27
28
29
30
30 31 32 33 34 35 36 37 38 39
33
34
35
36
37
38
39 40
41
42
43
44
45
46 47
47
49
50
51
52
53
54 55
55 56
57
58
59
60

210

211	The BCs (samples of approximately 10 and 100 mg) were analysed for moisture and ash
212	content on a thermogravimetric analyzer (TGA). The samples were heated to 150 °C and held
213	at that temperature for 45 minutes. The percentage mass loss after this hold time is reported as
214	the percentage moisture in the <u>BC</u> . The temperature was raised to 650 °C and held for one
215	hour then raised to 900 °C and held for 45 minutes. The combined weight loss at these two
216	temperatures is taken as the loss on ignition (LOI) and the percentage ash (100% less LOI)
217	reported on a dry weight basis. In addition, approximately half a gram of sample was weighed
218	into a polypropylene bottle, 50 mL of an aqueous solution of 0.05 N HCl and 0.1 N NaNO3
219	was added and the mixture equilibrated on a rotator for 16 to 24 hours. The mixture was
220	filtered through a nominal 0.7 um glass fiber filter and the filtrate back titrated with 0.05 N
221	NaOH and 0.1 N NaNO ₃ solution. The acid consumed is reported in cmol _c /kg and represents
222	the acid neutralizing capacity (ANC).
223	
224	The surface area (BET) of the chars was determined by adsorption of nitrogen (N ₂) at -196°C,
225	using an automated surface area analyzer at US Geological survey, Denver Colorado. The
226	samples were out-gassed by heating at 110°C under a flow of ultrahigh purity helium at 10
227	cm ³ min ⁻¹ for 16 to 24 hr prior to analysis. Isotherm data were recorded at partial pressures of
228	N_2 between 0.05 and 0.95 atmospheres. The apparent surface areas of samples were obtained
229	from the statistical monolayer capacities of N ₂ from the BET plots (Atkins, 1990). For further
230	details see Rutherford et al. (2005).
231	
232	2.5. Statistical analyses
233	To describe the intrinsic nonlinear relationship between BC addition and the observed soil
234	pH, a nonlinear regression model was used. For each of the three BCs oil palm shell, cacao

http://mc.manuscriptcentral.com/sspn

1

Soil Science and Plant Nutrition

shell, and rice husk, a three-parameter exponential function (Equation (1) was fitted to

2
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 8 9 10 112 3 4 5 6 7 8 9 10 112 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
22
23
24
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
57
38
39
40
41
41
42
43
44
45
46
40
47
48
49
50
51
52
53
54
55
56
57
58
50
59
60

255	shen, and the husk, a time-parameter exponential function (Equation (1) was fitted to
236	describe the response of soil pH (in H_2O and KCl, respectively) to BC addition (0, 0.1, 0.3, 1,
237	3, 10 and 30%).
238	
239	$y=a+b^{*}(1-exp^{(-x/c)})$ (1)
240	
241	In Equation (1) x is the amount of added BC (%) and y denotes soil pH (the dependent
242	variable). In the regression model <u>parameter</u> "a" represent <u>s</u> the mean soil pH level for soils
243	without BC addition (i.e., for 0% BC). Parameter "b" represents the maximum additional
244	increase in soil pH (added to the level a) as BC addition is increased from 0% to 30%.
245	Parameter "c" is the rate of change (i.e. a rate constant, which has the reciprocal unit of
246	percentage BC added; the smaller the rate <u>constant c</u> the faster are the changes in pH per unit
247	increase in BC in soil).
248	
249	Initially, we assumed that the model parameters <u>"b"</u> , and <u>"c"</u> differed between <u>BC types</u> ,
250	whereas <u>only a single parameter "a" was used for all soils to denote the</u> common mean level
251	in soil pH without BC addition. Due to substantial variation in soil characteristics between the
252	31 sampling sites (Table 1), site-specific variation <u>was modelled</u> in the regression parameters
253	<u>"a", "b" and "c"</u> by introducing random effects so that each model parameter was the sum of a
254	contribution reflecting the pure BC effect and another contribution, reflecting the site-specific
255	effect. This means that we extended the ordinary nonlinear regression model based on
256	Equation (1), as it ignored variation between sites, to a nonlinear mixed-effects regression
257	model with site-specific random effects (e.g. Crawley (2007) and Pinheiro and Bates (2000)).
258	Likelihood ratio tests were used to simplify the fixed-effects structure of the models (Table
259	S3), i.e., we investigated whether or not the model parameters <u>"b"</u> and <u>"c"</u> were in fact BC-
	11

	Soil Science and Plant Nutrition
260	specific (cf. Suuster et al. (2011)). The resulting estimated mean curves for the three BCs
261	reflect the trends seen across all sites. Additionally, the same nonlinear mixed models were
262	fitted to the subset consisting of sites <u>18, 19, 24, 30, 31</u> (Table 1) randomly selected for the
263	analysis of CEC to determine the effect of BC addition on CEC and exchangeable base
264	cations (Table S3).
265	
266	Subsequently, linear regression was used for analysing the relationship between the estimated
267	site-specific rates of change (<u>"c"</u> parameters) obtained from the nonlinear mixed model
268	analysis (i.e., the estimated fixed effect and random effect added up) and initial pH, CEC and
269	total C of the soils at each site. This analysis is independent of BC type as BC-specific
270	differences in the rates of change amounts to vertical shifts in the rate constants. For the linear
271	regression we used the cacao shell BC rates of change. We present parsimonious models
272	obtained after model reduction using backwards stepwise elimination of non-significant
273	terms.
274	
275	The statistical software package "R", version 2.13.2 (R Development Core Team, 2011), was
276	used for all statistical analyses. The nonlinear mixed-effects models were fitted using the
277	function <u>"nlme"</u> in the R extension package nlme (Pinheiro et al., 2011). Visualization of the
278	fitted models was achieved using the package ggplot2 (Wickham, 2009).
279	
280	3. Results
281	3.1. Properties of the soils and the biochars
282	The selected Indonesian soils from the 31 sites were acidic (mean $pH_{(H2O)} = 4.7 \pm 0.47$ (sd), n
283	= 122, mean $pH_{(KCl)}$ = 3.9 ± 0.28 (sd), n = 122) with a moderate CEC (mean 7.5 ± 4.03 (sd)
	12
	12
	http://mc.manuscriptcentral.com/sspn

Soil Science and Plant Nutrition

1 2 3 4	
4 5 6 7	
8 9 10	
11 12 13 14 15 16 17	
15 16 17	
18 19 20 21	
20 21 22 23 24 25 26 27 28 29 30 31 32 33	
26 27 28	
29 30 31 32	
34 35	
36 37 38 39	
40 41 42 43	
44 45 46	
47 48 49 50	
51 52 53 54	
55 56 57	
58 59 60	

284	cmol _c /kg, n = 43, Table S2). The mean percentage of organic C and N was 1.7 ± 1.67 (sd).
285	and 0.1 ± 0.1 (sd) <u>%</u> , respectively (n= 31, Table 1) with levels of C ranging from 0.43% to
286	8.9%. There were substantial differences in the properties of the three <u>BCs</u> (Table 2). pH and
287	ANC were in the range of 6.7 (oil palm shell BC) to 10.5 (cacao shell BC) and 36 cmol _c /kg
288	(oil palm shell BC) to 217 cmol _c /kg (cacao shell BC), respectively. NH ₄ Ac-extractable
289	cations and CEC were greater for the cacao shell BC (197 and 30-37 cmol _c /kg, respectively)
290	as compared to the oil palm shell BC (35 and 11-20 cmol _c /kg, respectively) and the rice husk
291	BC (20 and 7-26 cmol _c /kg, respectively).
292	
293	3.2. Changes in soil pH in response to BC addition
294	As pH_{H2O} and pH_{KCI} were significantly correlated (r= 0.96, p<0.001, n= 674) and both
295	parameters responded to the addition of BC in a similar fashion, only the pH _{H2O} are shown in
296	figures and used in the models presented. Recalling that model parameter <u>"a"</u> represents the
297	mean pH for all sites without BC addition (thus the same for all 3 BC types), the pH response
298	to BC addition is determined by model parameters "b" (maximum additional increase in pH)
299	and <u>"c"</u> (the rate of change) only. The estimated parameters <u>"b"</u> for the pH _(H2O) response upon
300	the addition of cacao shell-, oil palm shell- and rice husk-BCs were significantly greater than
301	0 (p <0.001) for all three <u>BCs</u> (Table 3) therefore, resulting in a significant increase in pH with
302	BC addition (Question 1; Fig. 2). In addition, the mean response in soil pH as a function of
303	BC addition differed substantially between the three types of char (Question 4). More
304	specifically, we found that parameter <u>"b"</u> was not significantly different between oil palm
305	shell and rice husk ($p=0.59$), whereas parameter <u>"c"</u> was significantly different ($p=0.048$;
306	Table S3). There were highly significant differences in both parameters <u>"b"</u> (greater) and <u>"c"</u>
307	(smaller) between cacao shell on the one hand and oil palm shell and rice husk on the other
308	(p <0.0001 in both cases) illustrating a stronger response and a greater maximum increase in 13

Soil Science and Plant Nutrition

309	soil pH with addition of cacao shell BC as compared to oil palm shell and rice husk BC. We
310	found a significant linear relationship between the estimated parameters <u>"c" (i.e. the rate of</u>
311	<u>change in pH)</u> for the cacao shell <u>BC</u> addition to the different soils and the initial CEC ($c =$
312	$3.2 + 0.58$ *CEC, $R^2 = 0.71$, $p < 0.001$, Fig. 3) indicating a more distinguished effect on soil pH
313	upon BC addition for low CEC soil than for high CEC soil with high buffering capacity
314	(Question 3).
315	
316	3.3. Changes in soil CEC and levels of base cations with biochar addition
317	The cation exchange capacity (determined only for sites <u>18, 19, 24, 30, 31</u> , Table 1) increased
318	significantly (<i>p</i> <0.001) with BC addition (<u>Question</u> 2, Table 3, Fig. 4). At 30% BC addition,
319	the CEC increased to 8.12 and 7.93 cmol _c /kg for the cacao shell/oil palm shell and rice husk
320	BC soil mixtures, respectively, as compared to the initial CEC of 5.62 cmol _c /kg at the five
321	sub-sites (Table 3). There was no significant ($p=0.42$) difference in the <u>"b"</u> parameter (2.51)
322	between the three BCs but parameter "c" was significantly greater (hence a smaller rate of
323	change in CEC, <u>Question 4</u>) for the rice husk <u>BC</u> as compared to cacao shell and oil palm
324	shell <u>BCs (p<0.0001)</u> , which did not differ significantly from each other ($p=0.32$).
325	Furthermore, there was a highly significant increase in amounts of extractable Ca and Mg
326	upon the addition of all three BCs ($p < 0.001$; Table 3, Fig. 4). In contrast, only the addition of
327	cacao shell BC significantly increased levels of K (p <0.001). For Ca, Mg and K the
328	parameters <u>"b"</u> and <u>"c"</u> were significantly different for the cacao shell BC as compared to the
329	oil palm shell and rice husk BC's (p<0.05; Table 3, Fig. 4). Significantly larger <u>"b"</u>
330	parameters for the cacao shell BC indicate a larger maximum increase in the amount of base
331	cations for this <u>BC</u> .
332	
333	4. Discussion
	14

Page 15 of 53

Soil Science and Plant Nutrition

334	The cacao shell, oil palm shell and rice husk <u>BCs</u> differed substantially in physical and
335	chemical properties (Table 2). Large differences in the quality of BCs due to intrinsic
336	feedstock properties and production procedures have been reported previously by e.g. Chen et
337	al. (2008), Yuan and Xu (2011), Yuan et al. (2011) and Rutherford et al. (2012). Assessing
338	the ameliorative effects of low temperature BC generated from nine different crop residues,
339	Yuan and Xu (2011) found a great variation in soil pH, alkalinity and amounts of extractable
340	base cations, with the most prominent difference occurring between legume vs non-legume
341	feedstocks. The pH and alkalinity of the BCs was in general greater in legumes as compared
342	to non-legume feedstocks due to a larger uptake of alkali ions in the former. In addition to
343	feedstock properties affecting the quality of BC, the production temperature and method may
344	also be of significant importance as e.g. reported by Budai et al. (2014) for corncob and
345	miscanthus BCs. In our study the production procedure is similar for the three BCs, with the
346	exception of a shorter pyrolysis time for the oil palm shell BC. This shorter time was selected
347	for reasons described in the method section. However, the resulting differences in yield and
348	ash content between 1h and 3.5h pyrolysis time for the oil palm shell was small (4.9% and
349	0.3% respectively, Table S1). In addition, the differences in properties are between the cacao
350	shell <u>BC</u> on the one hand, and oil palm shell and rice husk on the other. If pyrolysis time was
351	to explain the differences between the \underline{BC} properties, the oil palm shell \underline{BC} should have been
352	the material with properties much different from the two other materials. Thus, the different
353	properties of the three BCs are likely caused by the feedstock. Furthermore, the amount of
354	NH ₄ Ac-extractable cations is in the order cacao shell>>oil palm shell>rice husk while the
355	CEC (i.e. excluding the ash fraction) is in the order cacao shell>>rice husk~oil palm shell
356	(Table 2). This clearly illustrates the importance of methodology when determining CEC, viz.
357	sum of base cations and acidity as compared to analysis of extractable NH ₄ -N or K. Potassium
358	in particular was found at the highest concentration in the cacao shell BC ₂ which also had the 15

359	greatest K content in the feedstock (Table S1). This suggests s a better <u>K-</u> fertilizing effect of
360	the cacao shell \underline{BC} when applied to soil, as compared to the oil palm shell \underline{BC} and rice husk
361	BC. However, the addition of rice husk BC may also increase the levels of K in soils, as
362	reported by Haefele et al. (2011). Adding 4.13 kg m ⁻² of carbonized rice husk BC combined
363	with a medium fertilizer rate significantly increased levels of K from 441 mg kg ⁻¹ to 620 mg
364	kg ⁻¹ in anthraquic Gleysols (depth 0-0.15 m), at the IRRI lowland research farm in the
365	Philippines (Haefele et al., 2011).
366	
367	Soil pH was more sensitive and had a greater maximum increase with the addition of cacao
368	shell BC as compared to oil palm shell and rice husk BC. Soil pH increased rapidly
369	(parameter $c = 8.59$) with only small amounts of cacao shell BC added (Fig. 2A, Table 3). An
370	increase in soil pH from the initial mean value of 4.73 to pH 5 required only addition of 0.6%
371	cacao shell BC. In contrast, much more oil palm shell BC (10 times more) or rice husk BC
372	(<u>12 times more</u>) were needed for the same increase in pH (from 4.73 to 5; Fig. 2A, B and C,
373	Table 3). After 30% BC addition (corresponding to the unrealistic amount of ~900 tons BC
373 374	Table 3). After 30% BC addition (corresponding to the unrealistic amount of ~900 tons BC ha ⁻¹ which was only tested for mechanistic purposes), the estimated soil pH was 8.95 for the
374	ha ⁻¹ which was only tested for mechanistic purposes), the estimated soil pH was 8.95 for the
374 375	ha^{-1} which was only tested for mechanistic purposes), the estimated soil pH was 8.95 for the cacao shell BC and 5.52 and 5.47 for the oil palm shell- and rice husk BCs, respectively. In
374 375 376	ha ⁻¹ which was only tested for mechanistic purposes), the estimated soil pH was 8.95 for the cacao shell BC and 5.52 and 5.47 for the oil palm shell- and rice husk BCs, respectively. In most field experiments, application rates of 0.5-2% (or 15 to 60 ton/ha assuming an
374 375 376 377	ha ⁻¹ which was only tested for mechanistic purposes), the estimated soil pH was 8.95 for the cacao shell BC and 5.52 and 5.47 for the oil palm shell- and rice husk BCs, respectively. In most field experiments, application rates of 0.5-2% (or 15 to 60 ton/ha assuming an incorporation depth of 20 cm and a dry bulk density of 1.5 g/cm ³) are used (Jeffery <i>et al.</i> ,
 374 375 376 377 378 	ha ⁻¹ which was only tested for mechanistic purposes), the estimated soil pH was 8.95 for the cacao shell BC and 5.52 and 5.47 for the oil palm shell- and rice husk BCs, respectively. In most field experiments, application rates of 0.5-2% (or 15 to 60 ton/ha assuming an incorporation depth of 20 cm and a dry bulk density of 1.5 g/cm ³) are used (Jeffery <i>et al.</i> , 2011; Martinsen <i>et al.</i> 2014; Schimmelpfennig <i>et al.</i> 2014). Within this range of BC addition
 374 375 376 377 378 379 	ha ⁻¹ which was only tested for mechanistic purposes), the estimated soil pH was 8.95 for the cacao shell BC and 5.52 and 5.47 for the oil palm shell- and rice husk BCs, respectively. In most field experiments, application rates of 0.5-2% (or 15 to 60 ton/ha assuming an incorporation depth of 20 cm and a dry bulk density of 1.5 g/cm ³) are used (Jeffery <i>et al.</i> , 2011; Martinsen <i>et al.</i> 2014; Schimmelpfennig <i>et al.</i> 2014). Within this range of BC addition our findings clearly show the different potentials of the BCs as liming agents; viz. cacao shell
 374 375 376 377 378 379 380 	ha ⁻¹ which was only tested for mechanistic purposes), the estimated soil pH was 8.95 for the cacao shell BC and 5.52 and 5.47 for the oil palm shell- and rice husk BCs, respectively. In most field experiments, application rates of 0.5-2% (or 15 to 60 ton/ha assuming an incorporation depth of 20 cm and a dry bulk density of 1.5 g/cm ³) are used (Jeffery <i>et al.</i> , 2011; Martinsen <i>et al.</i> 2014; Schimmelpfennig <i>et al.</i> 2014). Within this range of BC addition our findings clearly show the different potentials of the BCs as liming agents; viz. cacao shell BC has a large potential to act as a liming agent, whereas oil palm shell and rice husk BCs

Soil Science and Plant Nutrition

383	ANC (217 cmol_c/kg) as compared to the oil palm shell and rice husk BCs (ANC = 36 and 45
384	cmol _c /kg, respectively; Table 2).

Different effects on soil pH of the addition of various types of BC were previously reported by Yamato et al. (2006) and Yuan and Xu (2011). The addition of 37 tons ha⁻¹ (10 dm³ m⁻², BD_{biochar} 0.37 kg dm³) bark charcoal (Acacia mangium) increased the pH between 0.9 and 1.4 units in soils from three sites in South Sumatra (Yamato et al., 2006). The pH_(H2O) of the charcoal was 7.4, hence more similar to the oil palm shell and rice husk BC than the cacao shell BC used in our study (Table 2). However, at 1% BC addition in our study (i.e. about 30 tons ha⁻¹) the estimated increase in soil pH was about 0.5 units for the cacao shell BC whereas this was only 0.05 and 0.04 units for the oil palm shell and rice husk BC, respectively. Furthermore, adding 1% of different BCs derived from legume and non-legume feedstocks to an acidic ultisol from China, Yuan and Xu (2011) found an increase in pH ranging from 0.18 (non-legume) to 1.05 (legume) units. This corresponds with our findings for the cacao shell BC and further indicates the limited liming potential of the BCs from oil palm shell and rice husk-BCs. Interestingly, both Yamato et al. (2006) and Yuan and Xu (2011) reported a significant reduction in exchangeable acidity $(Al^{3+} and H^{+} cmol_c/kg)$ upon the addition of BC. This positive effect of increased pH and thus reduced risk for Al toxicity was also observed with the addition of cacao shell BC in our study. Based on a subset from the 31 sites (five sites, numbered 18, 19, 24, 30, 31; Table 1) amounts of exchangeable Al³⁺ before BC addition (mean 2.3 ± 2.25 (sd) cmol_c/kg, n= 14) were reduced to zero at all sites after addition of 3% cacao shell BC (Table S2). By contrast, exchangeable Al³⁺ was not eliminated at all sites after the addition of 30% oil palm shell and rice husk BC (mean oil palm shell 0.31 ± 0.38 (sd) $cmol_c/kg$ (n=4) and mean rice husk 0.87 ± 1.56 (sd) $cmol_c/kg$ (n=5)).

408	There was a large variation in the response of soil pH to BC addition between the 31 sampling
409	locations, which resulted in different parameter estimates (and thus response curves) for each
410	of the sampling sites (Fig. 2A, B and C). This clearly illustrates the importance of intrinsic
411	soil properties (Table 1) when determining effects of BC addition on changes in soil pH.
412	There was a significant relationship between the estimated parameters <u>"c"</u> for the cacao shell
413	BC additions and initial <u>soil</u> CEC and pH ($R^2 = 0.58$, $p < 0.001$). The parameters decreased (i.e.
414	a greater increase in pH) with an increase in initial soil pH and increased (i.e. smaller increase
415	in pH) with initial CEC, suggesting a greater response in pH with BC addition at sites with
416	low CEC and high pH and thus smaller amounts of exchangeable acidity. Contrary to
417	expectations, the CEC of the soil was more important than the initial soil pH for the pH effect
418	of BC. Of the two explanatory variables, the initial CEC ($R^2 = 0.42$) explained more of the
419	variation seen in the parameter <u>"c"</u> than <u>initial</u> pH ($R^2 = 0.16$). The estimated <u>"c"</u> parameters
420	for sites 9 and 12 were unduly large (19.29 and 15.08, respectively). If these two points are
421	<u>excluded</u> from the regression model, <u>initial</u> CEC is the only parameter retained ($\frac{R^2 = 0.71}{R}$)
422	<u>$p \le 0.001$</u> Fig. 3). In accordance with the model including both CEC and pH, the latter predicts
423	an increased (0.58) value for parameter "c" (thus a smaller pH response with BC addition) per
424	unit increase in CEC (Fig. 3). This is in accordance with the results reported by Streubel et al.
425	(2011) who found a greater increase in soil pH with the addition of herbaceous and woody
426	BCs to a sandy soil (3.3 cmol _c /kg) as compared to silty loamy soils (CEC 15.4-16.6 cmol _c /kg)
427	in Washington. As in our case, the different responses were attributed to an inherently lower
428	buffering capacity of sands as compared to medium and fine texture soils (Streubel et al.,
429	2011).
430	
431	Biochar addition to acidic soils has earlier been observed to increase CEC and amounts of
432	exchangeable base cations (Yuan and Xu, 2011; Yuan <i>et al.</i> , 2011; Glaser <i>et al.</i> , 2002). 18

http://mc.manuscriptcentral.com/sspn

Soil Science and Plant Nutrition

433	According to Glaser et al. (2002), the addition of BC ₂ which naturally includes ash, adds free
434	bases to the soil. This may increase the pH and the readily available nutrients for plant
435	growth. In addition, the nutrient retention can be improved with BC (Hale et al., 2013), an
436	effect that does not derive from the ash but from the BC per se (Glaser et al., 2002). Our
437	results support these findings, despite a more pronounced BC specific effect on the quantity of
438	base cations (and thus soil pH) as compared to CEC (Fig. 4). The addition of 2% BC
439	increased the CEC about 1 and 0.4 cmolc/kg for cacao shell/oil palm shell BC and rice husk
440	BC soil mixtures, respectively (Table 3, Fig. S2). In accordance with its great amount of
441	exchangeable base cations (Table 2), addition of 2% cacao shell BC caused the largest
442	increase in soil exchangeable Ca, Mg and K (0.66, 0.47 and 1.58 cmol _c /kg, respectively).
443	Increases in soil exchangeable Ca, Mg and K due to addition of 2% of the other BCs were
444	significantly smaller (for oil palm shell 0.21, 0.16 and 0.04 cmol _c /kg, respectively and for rice
445	husk 0.04, 0.07 and 0.09 cmol _c /kg, respectively; Fig. 4 and Fig. S2). For the sites included in
446	this study, there was no significant relationship between organic C content and CEC, ($p =$
447	$0.70, R^2 = 0.006, n = 29$). However, when excluding the three sites (23, 25 and 26, Table 1)
448	with organic C content > 3%, the relationship was significant (CEC = $4.16 + 3.78$ %C, $p =$
449	<u>0.04</u> , $R^2 = 0.16$, n= 26). This relationship indicates that the CEC per percent organic C is
450	similar to recently published values for acid forest soils from southern Poland (Gruba and
451	Mulder, 2015). In addition, the average contribution of clay minerals to CEC (4.16 $\text{cmol}_{\text{c}} \text{ kg}^{-1}$
452	soil) in our soils is of the same order of magnitude or slightly smaller than the contribution of
453	soil organic matter (Fig. S3). The three BCs, having CEC values of 30-37, 11-20 and 7-26
454	cmol _c /kg (cacao shell, oil palm shell and rice husk BCs, respectively; Table 2), were added to
455	soils that had a mean CEC of 5.62 cmol _c /kg (Table 3). If there would be no pH-dependent
456	effects on CEC through the addition of 30 % BC, the CEC would potentially increase to \sim 13-
457	15, 7-10 and 6-11.8 cmol _c /kg, respectively. As shown in Fig. 4, we found that at 30% BC 19

Soil Science and Plant Nutrition

2
4
5
6
3 4 5 6 7 8
1
8
9 10
10
11
12
13
14
15
16
17
18
10
11 12 13 14 15 16 17 18 20 21 22 23 24 25 27 28 29 31 32
∠∪ 24
21
22
23
24
25
26
27
28
20
20
30 31 32 33 34 35 36 37 38 39
31
32
33
34
35
36
37
38
30
40
41
42
43
44
45
46
47
48
49
50
50 51
51 52
53
54
55
56
57
58
59
60
00

1

458	addition the modeled mean increase of CEC was 8.12 and 7.93 cmol _c /kg for the cacao
459	shell/oil palm shell and rice husk BC soil mixtures, respectively. The somewhat smaller
460	change in CEC than expected based on the potential might be due to a reduction of the CEC
461	of the BC (pH dependent binding sites at the BCs) when added to the acidic soils.
462	
463	The present paper shows that <u>BC has</u> a <u>pH-increasing</u> effect on soil, and that the effect is
464	dependent on both soil and <u>BC</u> characteristics. The strongest effects were observed for high-
465	CEC BC in the least acid soils with relatively low-CEC. In these soils, the CEC was a more

466 important characteristic than initial pH (Fig. 3). This work will aid in mapping the extent to
467 which <u>BC</u> can have a beneficial effect on soil fertility in acidic agricultural lands.

468

469 Acknowledgements

470 The Norwegian Research Council funded the study through a FriMuf (Free Projects in

471 Environment and Development) project, number 204112 (principal investigator JM), and a

472 FriPro personal stipend to GC (Norwegian Research Council project number 217918). Jubi

473 Jubaedah (ISRI Bogor) and Verania Andria (UNDP) are thanked for fruitful discussions.

474

475 Supplementary data

476 The supplementary data contains one figure and three tables.

2		
3	477	References
4		
5	470	
6	478	Alburquerque, J. A., J. M. Calero, V. Barrón, et al. 2014. Effects of biochars produced from
7	479	different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and
8	480	Soil Science 177:16-25.
9	481	Asai,H., Samson,B.K., Stephan,H.M., Songyikhangsuthor,K., Homma,K., Kiyono,Y.,
10	482	Inoue, Y., Shiraiwa, T. and Horie, T., 2009. Biochar amendment techniques for upland rice
10	483	production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field
12		
12	484	Crops Res., 111(1-2): 81-84.
	485	Atkins, P.W., 1990. Physical Chemistry. Oxford University Press, Oxford.
14	486	Atkinson, C.J., Fitzgerald, J.D. and Hipps, N.A., 2010. Potential mechanisms for achieving
15	487	agricultural benefits from biochar application to temperate soils: a review. Plant Soil,
16	488	337(1-2): 1-18.
17	489	Batjes, N.H., 1996. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci., 47(2):
18		• • • • • • • • • • • • • • • • • • • •
19	490	151-163.
20	491	Berggren, D. and Mulder, J., 1995. The Role of Organic-Matter in Controlling Aluminum
21	492	Solubility in Acidic Mineral Soil Horizons. Geochim. Cosmochim. Acta, 59(20): 4167-
22	493	4180.
23	494	Biederman, L. A., and W. S. Harpole. 2013. Biochar and its effects on plant productivity and
24	495	nutrient cycling: a meta-analysis. Global Change Biology Bioenergy 5:202-214.
25	496	Bremmer, J.M. and Mulvaney, C.S., 1982. Nitrogen-total. In: A.L.Page, R.H.Miller, and
26		
27	497	D.R.Keeney (Editors), Methods of soil analysis Part 2 Agronomy 9. American Society of
28	498	Agronomy, Madison, Wisconsin, USA, pp. 595-624.
29	499	Brewer, C.E., Unger, R., Schmidt-Rohr, K. and Brown, R.C., 2011. Criteria to Select Biochars
30	500	for Field Studies based on Biochar Chemical Properties. Bioenergy Research, 4(4): 312-
31	501	323.
32	502	Budai, A., L. Wang, M. Gronli, et al. 2014. Surface Properties and Chemical Composition of
33	502	Corncob and Miscanthus Biochars: Effects of Production Temperature and Method. Journal
34		
35	504	of Agricultural and Food Chemistry 62:3791-3799.
36	505	Butnan, S., J. L. Deenik, B. Toomsan, et al. 2015. Biochar characteristics and application
37	506	rates affecting corn growth and properties of soils contrasting in texture and mineralogy.
38	507	<u>Geoderma 237–238:105-116.</u>
39	508	Chan,K.Y., Van Zwieten,L., Meszaros,I., Downie,A. and Joseph,S., 2007. Agronomic values
40	509	of greenwaste biochar as a soil amendment. Aust. J. Soil Res., 45(8): 629-634.
41	510	Chan, M.D., Bouldin, M., CRAVO, M.S. and Bowen, W., 1993. Cation and Nitrate Leaching in
42		
43	511	an Oxisol of the Brazilian Amazon. Agron. J., 85(2): 334-340.
44	512	Chen, B., Zhou, D. and Zhu, L., 2008. Transitional Adsorption and Partition of Nonpolar and
45	513	Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic
40	514	Temperatures. Environ. Sci. Technol., 42(14): 5137-5143.
40 47	515	Chun, Y., Sheng, G.Y., Chiou, C.T. and Xing, B.S., 2004. Compositions and sorptive properties
47 48	516	of crop residue-derived chars. Environ. Sci. Technol., 38(17): 4649-4655.
	517	Ciesielski,H. and Sterckeman,T., 1997. A comparison between three methods for the
49 50		
50	518	determination of cation exchange capacity and exchangeable cations in soils. Agronomie, $17(1) - 0.1($
51 52	519	17(1): 9-16.
52	520	Crawley, M.J., 2007. The R book. Wiley, Chichester, England.
53	521	Cross, A. and Schlesinger, W.H., 1995. A Literature-Review and Evaluation of the Hedley
54	522	Fractionation - Applications to the Biogeochemical Cycle of Soil-Phosphorus in Natural
55	523	Ecosystems. Geoderma, 64(3-4): 197-214.
56	525	
57		21
58		21
59		
60		

/		
2 3	524	Glaser, B., Haumaier, L., Guggenberger, G. and Zech, W., 2001. The 'Terra Preta' phenomenon:
4	525	a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88(1): 37-41.
5	526	Glaser, B., Lehmann, J. and Zech, W., 2002. Ameliorating physical and chemical properties of
6	527	highly weathered soils in the tropics with charcoal - a review. Biol. Fertility Soils, 35(4):
7	528	219-230.
8	529	Gruba, P., and J. Mulder. 2015. Tree species affect cation exchange capacity (CEC) and
9	530	cation binding properties of organic matter in acid forest soils. Science of the Total
10 11	531	Environment 511:655-662.
12	532	Haefele,S.M., Konboon,Y., Wongboon,W., Amarante,S., Maarifat,A.A., Pfeiffer,E.M. and
13	533	Knoblauch,C., 2011. Effects and fate of biochar from rice residues in rice-based systems.
14	534	Field Crops Res., 121(3): 430-440.
15	535	Harvey, O.R., Kuo, L.J., Zimmerman, A.R., Louchouarn, P., Amonette, J.E. and Herbert, B.E.,
16	536	2012. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration
17	537	Potential of Engineered Black Carbons (Biochars). Environ. Sci. Technol., 46(3): 1415-
18	538	1421.
19	539	Hale, S.E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G.D. and Cornelissen, G., 2013. The
20	540	sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn
21	540 541	cob biochars. Chemosphere, 91(11): 1612-1619.
22	542	Harada, Y., and A. Inoko. 1980. The measurement of the cation-exchange capacity of
23 24	542 543	composts for the estimation of the degree of maturity. Soil Science and Plant Nutrition
24 25	543 544	26(1): 127-134.
26		
27	545 546	Jeffery, S., Verheijen, F.G.A., van der Velde, M. and Bastos, A.C., 2011. A quantitative review
28	546	of the effects of biochar application to soils on crop productivity using meta-analysis.
29	547	Agriculture Ecosystems & Environment, 144(1): 175-187.
30	548	Jha, P., Biswas, A.K., Lakaria, B.L. and Rao, A.S., 2010. Biochar in agriculture - prospects and
31	549	related implications. Current Science, 99(9): 1218-1225.
32	550	Kinraide, T.B., 2003. Toxicity factors in acidic forest soils: attempts to evaluate separately the
33	551	toxic effects of excessive Al(3+) and H(+) and insufficient Ca(2+) and Mg(2+) upon root
34 35	552	elongation. Eur. J. Soil Sci., 54(2): 323-333.
36	553	Laird, D.A., Fleming, P., Davis, D.D., Horton, R., Wang, B.Q. and Karlen, D.L., 2010. Impact of
37	554	biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma,
38	555	158(3-4): 443-449.
39	556	Lehmann, J., 2007. A handful of carbon. Nature, 447(7141): 143-144.
40	557	Lehmann, J., da Silva, J.P., Steiner, C., Nehls, T., Zech, W. and Glaser, B., 2003. Nutrient
41	558	availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central
42	559	Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249(2): 343-357.
43	560	Martinsen, V., J. Mulder, V. Shitumbanuma, et al. 2014. Farmer-led maize biochar trials:
44	561	Effect on crop yield and soil nutrients under conservation farming. Journal of Plant
45 46	562	Nutrition and Soil Science. 177(5): 681-695.
46 47	563	Mc Lean, E.O., 1965. Aluminium. In: C.A.Black (Editor), Methods of soil analysis: Part 2.
48	564	Chemical and Microbiological Properties. American Society of Agronomy, Inc. Publisher,
49	565	Madison, Wisconsin, USA, pp. 978-998.
50	566	McBride, MB., 1994. Environmental chemistry of soils. Oxford University Press.
51	567	Mukherjee, A., Zimmerman, A.R. and Harris, W., 2011. Surface chemistry variations among a
52	568	series of laboratory-produced biochars. Geoderma, 163(3-4): 247-255.
53	569	Mulder, J., Vanbreemen, N. and EIJCK, H.C., 1989. Depletion of Soil Aluminum by Acid
54	570	Deposition and Implications for Acid Neutralization. Nature, 337(6204): 247-249.
55		
56 57		
57 58		22
58 59		
00		

2		
3	571	Nelson, D.W. and Sommers, L.E., 1982. Total Carbon, Organic Carbon and Organic Matter.
4	572	In: A.L.Page, R.H.Miller, and D.R.Keeney (Editors), Methods of soil analysis Part 2
5	573	Agronomy 9. American Society of Agronomy, Madison, Wisconsin, USA, pp. 539-579.
6	574	Neves, E.G., Petersen, J.B., Bartone, R.N. and da Silva, C.A., 2003. Historical and Socio-
7	575	cultural Origins of Amazonian Dark Earth. In: J.Lehmann, D.C.Kern, B.Glaser, and
8	576	W.I.Woods (Editors), Amazonian Dark Earths. Kluwer Academic Publishers, pp. 29-50.
9	577	Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Development Core Team, 2011. nlme:
10	578	Linear and Nonlinear Mixed Effects Models. R package version 3.1-102.
11 12	579	Pinheiro, J.C. and Bates, D.M., 2000. Mixed-effects models in S and S-PLUS. Springer, New
12	580	York.
14	581	R Development Core Team, 2011. R: A language and environment for statistical computing.
15	582	R Foundation for Statistical Computing, Vienna, Austria.
16	583	Rhine, E.D., Sims, G.K., Mulvaney, R.L. and Pratt, E.J., 1998. Improving the Berthelot reaction
17	584	for determining ammonium in soil extracts and water RID A-2500-2008. Soil Sci Soc Am
18	585	J, 62(2): 473-480.
19		
20	586	Rutherford, D.W., Wershaw, R.L. and Cox, L.G., 2005. Changes in composition and porosity
21	587	occuring during the thermal degradation of wood and wood components. In: U.S.
22	588	Geological Survey, pp. 1-88.
23	589	Rutherford, D.W., Wershaw, R.L., Rostad, C.E. and Kelly, C.N., 2012. Effect of formation
24	590	conditions on biochars: Compositional and structural properties of cellulose, lignin, and
25	591	pine biochars. Biomass and Bioenergy, 46(0): 693-701.
26 27	592	Schimmelpfennig, S., C. Müller, L. Grünhage, et al. 2014. Biochar, hydrochar and
28	593	uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas
29	594	emissions and plant growth. Agriculture, Ecosystems & Environment 191:39-52.
30	595	Schollenberger, C.J. and Simon, R.H., 1945. Determination of Exchange Capacity and
31	596	Exchangeable Bases in Soil - Ammonium Acetate Method. Soil Sci., 59(1): 13-24.
32	597	Soil Survey Staff, 1999. Soil taxonomy: A basic system of soil classification for making and
33	598	interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S.
34	599	Department of Agriculture Handbook 436.
35	600	Spokas, K.A., Cantrell, K.B., Novak, J.M., Archer, D.W., Ippolito, J.A., Collins, H.P.,
36	601	Boateng, A.A., Lima, I.M., Lamb, M.C., McAloon, A.J., Lentz, R.D. and Nichols, K.A., 2012.
37	602	Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. J. Environ.
38	603	Qual., 41(4): 973-989.
39	604	Steiner, C., Teixeira, W., Lehmann, J., Nehls, T., de Macêdo, J., Blum, W. and Zech, W.,
40	605	2007. Long term effects of manure, charcoal and mineral fertilization on crop production
41	606	and fertility on a highly weathered Central Amazonian upland soil. In: Springer
42 43	607	Netherlands, pp. 275-290.
43	608	Streubel, J.D., Collins, H.P., Garcia-Perez, M., Tarara, J., Granatstein, D. and Kruger, C.E., 2011.
45		
46	609	Influence of Contrasting Biochar Types on Five Soils at Increasing Rates of Application.
47	610	Soil Sci Soc Am J, 75(4): 1402-1413.
48	611	Suuster, E., Ritz, C., Roostalu, H., Reintam, E., Kolli, R. and Astover, A., 2011. Soil bulk density
49	612	pedotransfer functions of the humus horizon in arable soils. Geoderma, 163(1-2): 74-82.
50	613	Thomsen, I.K., Hansen, J.F., Kjellerup, V. and Christensen, B.T., 1993. Effects of Cropping
51	614	System and Rates of Nitrogen in Animal Slurry and Mineral Fertilizer on Nitrate Leaching
52	615	from A Sandy Loam. Soil Use Manage., 9(2): 53-58.
53	616	Uexküll,H.R. and Mutert,E., 1995. Global extent, development and economic impact of acid
54	617	soils. Plant Soil, 171(1): 1-15.
55	618	Van Wambeke, A., 1992. Soils of the Tropics. McGraw-Hill, New York.
56		
57 59		23
58		_ 5

1		
2 3 4	619 620	Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, New York, NY.
5 6 7 8	621 622 623	Yamato, M., Okimori, Y., Wibowo, I.F., Anshori, S. and Ogawa, M., 2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr., 52(4): 489-
9 10 11 12 13	624 625 626 627 628	 495. Yuan,J.H. and Xu,R.K., 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manage., 27(1): 110-115. Yuan,J.H., Xu,R.K., Qian,W. and Wang,R.H., 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. Journal of Soils and Control o
14 15 16 17 18	629 630 631 632 633	 Sediments, 11(5): 741-750. Ziadi,N. and Sen Tran,T., 2007. Lime Requirement. In: M.R.Carter and E.G.Gregorich (Editors), Soil sampling and methods of analysis. CRC Press, Boca Raton, Fla., pp. 129-134.
19 20 21	634	
22 23 24		
25 26		
27 28 29		
30 31 32		
33 34		
35 36 37		
38 39		
40 41 42		
43 44 45		
46 47		
48 49 50		
51 52 53		
54 55		
56 57 58		24
59 60		
		http://mc.manuscriptcentral.com/sspn

Figure Legends

636	
637	Fig. 1 Map of soil sampling locations in Indonesia.
638	
639	Fig. 2 Estimated (curves) and observed (points) response in soil pH _(H2O) following the
640	addition of cacao shell <u>BC</u> (A. n = 186 for 0.1 to 30% BC), oil palm shell <u>BC</u> (B. n= 180 for
641	0.1 to 30% BC) and rice husk <u>BC</u> (C. $n= 186$ for 0.1 to 30% BC) in soils from 31 sites
642	across Indonesia (Table 1). The figure shows fitted curves (Table 3) for the mean response in
643	soil pH (bold curve; A : a = 4.73, b = 4.35 and c = 8.59; B : a = 4.73, b = 1.00 and c = 19.35;
644	C: $a = 4.73$, $b = 1.00$ and $c = 22.49$) superimposed on predictions of the response in soil pH
645	for each of the 31 sampling sites. Note: Y-axis scales differ between A-C. Oil palm shell was
646	missing for site 30. The relationship between the observed response in pH and CEC of the
647	BCs is given in Figure 3.
648	
648 649	Fig. 3 Relationship between estimated parameters <u>"c"</u> (parameter <u>"c"</u> estimates deriving from
	Fig. 3 Relationship between estimated parameters <u>"c"</u> (parameter <u>"c"</u> estimates deriving from nonlinear mixed model analysis; pH _(H2O) vs. BC addition) and cation exchange capacity (CEC,
649	
649 650	nonlinear mixed model analysis; $pH_{(H2O)}$ vs. BC addition) and cation exchange capacity (CEC,
649 650 651	nonlinear mixed model analysis; $pH_{(H2O)}$ vs. BC addition) and cation exchange capacity (CEC, $cmol_c/kg$) of soils before BC addition from 30 sites across Indonesia (Table 1). The
649 650 651 652	nonlinear mixed model analysis; $pH_{(H2O)}$ vs. BC addition) and cation exchange capacity (CEC, $cmol_c /kg$) of soils before BC addition from 30 sites across Indonesia (Table 1). The parsimonious model after removal of two large rate constants (site 9 and 12; grey dots) is
649650651652653	nonlinear mixed model analysis; $pH_{(H2O)}$ vs. BC addition) and cation exchange capacity (CEC, $cmol_c/kg$) of soils before BC addition from 30 sites across Indonesia (Table 1). The parsimonious model after removal of two large rate constants (site 9 and 12; grey dots) is shown). One sampling site (20) is omitted due to lack of CEC. Note: A decrease in the
 649 650 651 652 653 654 	nonlinear mixed model analysis; $pH_{(H2O)}$ vs. BC addition) and cation exchange capacity (CEC, $cmol_c/kg$) of soils before BC addition from 30 sites across Indonesia (Table 1). The parsimonious model after removal of two large rate constants (site 9 and 12; grey dots) is shown). One sampling site (20) is omitted due to lack of CEC. Note: A decrease in the
 649 650 651 652 653 654 655 	nonlinear mixed model analysis; $pH_{(H2O)}$ vs. BC addition) and cation exchange capacity (CEC, $cmol_c / kg$) of soils before BC addition from 30 sites across Indonesia (Table 1). The parsimonious model after removal of two large rate constants (site 9 and 12; grey dots) is shown). One sampling site (20) is omitted due to lack of CEC. Note: A decrease in the parameter "c" implies a greater change in soil pH in response to BC addition (cf. Fig. 2).
 649 650 651 652 653 654 655 656 	nonlinear mixed model analysis; pH _(H2O) vs. BC addition) and cation exchange capacity (CEC, cmol _c /kg) of soils before BC addition from 30 sites across Indonesia (Table 1). The parsimonious model after removal of two large rate constants (site 9 and 12; grey dots) is shown). One sampling site (20) is omitted due to lack of CEC. Note: A decrease in the parameter "c" implies a greater change in soil pH in response to BC addition (cf. Fig. 2). Fig. 4 Predicted response in soil CEC (cmol _c /kg) and of available Ca, Mg and K (cmol _c /kg)

659	$exp^{(-x/c)}$ (eq. 1) based on restricted maximum likelihood estimates (Table 3) for the mean
660	response in CEC (n=101) and levels of cations (Ca; n=97 [§] , Mg; n=97 ^{§§} and K; n=90) to BC
661	addition. [§] One outlier excluded (site <u>18</u> , cacao shell-BC level 30%). ^{§§} One outlier excluded
662	(site <u>19</u> , oil palm shell-BC level 10%). Note: Y-axis scales differ between the plots.

Soil Science and Plant Nutrition

Table 1. Site ID, location, agricultural use (crop type), soil type (Soil Survey Staff, 1999), clay mineralogy, carbon (C) and nitrogen (N) content (in dry weight %), pH in H₂O and KCl (mean of 4 subsamples \pm SE) and CEC (cmol_c /kg; \pm SE for the sites 18,19,24,30,31) for 31 sampling sites across Indonesia. nd = not done.

Site ID	Site name	Coordi	inate	Agricultural use	S oil type	Clay	mineralogy	C (wt%)	N (wt%)	pH (H2O)	pH _(KCl)	CEC
						Dominant	Others			- · ·		(cmol _c /kg)
1	Babakan Dramaga Village. Bogor. W. Java	6.56363 S 1	06.72734 E	Maize and cassava	Typic Dystrudepts	Kaolinite	Halloysite	1.18	0.12	4.69 ± 0.07	3.79 ± 0.03	15.37
2	Portibi.Padang Lawas Utara. N. Sumatera	1.29492 N 9	99.68059 E	Palm oil	Hapludults	Kaolinite	Gibbsite	1.67	0.12	4.49 ± 0.06	3.77 ± 0.02	13.44
3	Portibi.Padang Lawas Utara. N. Sumatera	1.30941 N 9	99.67722 E	Palm oil	Hapludults	Kaolinite	Gibbsite	0.43	0.03	5.28 ± 0.06	3.91 ± 0.02	9.33
4	Portibi.Padang Lawas Utara. N. Sumatera	1.30362 N 9	99.68623 E	Palm oil	Hapludults	Kaolinite	Gibbsite	2.18	0.15	4.58 ± 0.06	3.85 ± 0.06	15.39
5	Portibi.Padang Lawas Utara. N. Sumatera	1.30194 N 9	99.67887 E	Palm oil	Hapludults	Kaolinite	Gibbsite	1.62	0.08	4.68 ± 0.05	3.99 ± 0.05	9.00
6	Portibi.Padang Lawas Utara. N. Sumatera	1.29922 N 9	99.67598 E	Palm oil	Hapludults	Kaolinite	Gibbsite	1.72	0.09	4.36 ± 0.02	3.90 ± 0.06	12.76
7	Portibi.Padang Lawas Utara. N. Sumatera	1.31621 N 9	99.67390 E	Palm oil	Hapludults	Kaolinite	Gibbsite	1.14	0.05	4.73 ± 0.06	3.95 ± 0.04	7.29
8	Portibi.Padang Lawas Utara. N. Sumatera	1.30428 N 9	99.67834 E	Palm oil	Hapludults	Kaolinite	Gibbsite	1.42	0.07	4.19 ± 0.07	3.81 ± 0.03	12.15
9	Portibi.Padang Lawas Utara. N. Sumatera	1.30124 N 9	99.67244 E	Palm oil	Hapludults	Kaolinite	Gibbsite	0.76	0.03	4.35 ± 0.01	3.60 ± 0.01	15.83
10	Portibi.Padang Lawas Utara. N. Sumatera	1.29720 N 9	99.69182 E	Palm oil	Hapludults	Kaolinite	Gibbsite	1.27	0.06	4.51 ± 0.01	3.87 ± 0.04	10.69
11	Portibi.Padang Lawas Utara. N. Sumatera	1.29735 N 9	99.67092 E	Palm oil	Hapludults	Kaolinite	Gibbsite	1.04	0.04	4.58 ± 0.04	3.81 ± 0.03	6.90
12	Portibi.Padang Lawas Utara. N. Sumatera	1.31126 N 9	99.67369 E	Palm oil	Hapludults	Kaolinite	Gibbsite	1.45	0.07	3.35 ± 0.04	3.10 ± 0.02	3.34
13	Riau	0.30383 N 1	00.91294 E	Maize, peanut and cassava	Hapludults	Kaolinite		0.97	< 0.02	5.61 ± 0.04	4.75 ± 0.03	2.51
14	Riau	1.09086 N 1	02.11622 E	M aize	Sulfaquents	Kaolinite	Vermiculite	1.03	0.03	5.12 ± 0.09	3.93 ± 0.03	5.83
15	Riau	1.08622 N 1	02.13917 E	Cassava	Sulfaquents	Kaolinite	Vermiculite	1.23	0.06	4.16 ± 0.03	3.81 ± 0.02	7.08
16	Jambi	3.51574 S 1	04.88022 E	Rubber area	Tropaquepts	Kaolinite	Goethite	0.88	0.04	4.11 ± 0.03	4.03 ± 0.04	7.15
17	Jambi	3.36217 S 1	04.83245 E	Rubber area	Tropaquepts	Kaolinite	Goethite	1.62	0.09	4.80 ± 0.06	3.81 ± 0.03	9.05
18	Riau	0.89505 N 1	12.55643 E	Annual crop	Typic Kanhapludults	Kaolinite		0.81	0.04	4.43 ± 0.02	3.90 ± 0.01	6.95 ± 0.03
19	Jambi	0.00015 N 1	12.54450 E	Oil palm area	Typic Kandiudults	Kaolinite		1.34	0.09	4.87 ± 0.10	4.23 ± 0.04	2.22 ± 0.09
20	Kayu Agung. Palembang	0.00015 N 1	12.54450 E	Maize	Typic Kandiudults	Kaolinite		1.54	0.11	5.41 ± 0.01	4.31 ± 0.01	nd
21	Kayu Agung. Palembang	0.90170 N 1	12.54189 E	Maize	Typic Dystrudepts	Kaolinite		1.53	0.11	4.66 ± 0.07	3.78 ± 0.03	11.88
22	Tamanbogo. East Lampung	0.89570 N 1	12.55680 E	Maize, paddy and cassava	Typic Kanhapludults	Kaolinite	Goethite	0.90	0.05	4.44 ± 0.08	3.88 ± 0.03	4.97
23	W. Kalimantan	0.30769 N 1	00.90822 E	Scrubland	Hapludults	Kaolinite	Gibbsite	6.01	0.40	5.20 ± 0.07	4.28 ± 0.03	3.51
24	W. Kalimantan	0.89580 N 1	12.55636 E	Annual crop	Typic Kanhapludults	Kaolinite		0.81	< 0.02	4.79 ± 0.11	3.82 ± 0.01	6.15 ± 0.25
25	W.t Kalimantan	0.31728 N 1	00.90089 E	Rubber area	Hapludults	Kaolinite	Gibbsite	8.91	0.37	4.32 ± 0.08	3.93 ± 0.08	7.52
26	E. kalimantan	5.01128 S 1	05.49458 E	Vegetable area	Kanhapludults	Kaolinite		3.06	0.28	5.18 ± 0.16	3.91 ± 0.03	10.04
27	E. kalimantan	0.41894 N 1	01.45967 E	Maize and vegetable area	Humitropepts	Kaolinite		1.94	0.21	5.19 ± 0.16	3.86 ± 0.04	10.73
28	E. kalimantan	1.01956 N 1	02.13917 E	Vegetable area	Sulfaquents	Kaolinite	Illite, vermiculite	1.84	0.14	4.57 ± 0.04	3.78 ± 0.03	12.28
29	E. Kalimantan	0.89520 N 1	12.55636 E	Maize, peanut and vegetables	Typic Kanhapludults	Kaolinite		0.98	0.07	4.39 ± 0.01	3.85 ± 0.01	3.41
30	E. Kalimantan	0.89535 N 1	12.55646 E	Vegetable area	Typic Kanhapludults	Kaolinite		0.82	< 0.02	5.05 ± 0.11	4.43 ± 0.01	10.03 ± 0.02
31	E. Kalimantan	0.89501 N 1	12.55652 E	Cassava, pineapple and king grass	Typic Kanhapludults	Kaolinite		0.52	0.05	4.70 ± 0.17	4.19 ± 0.01	1.61 ± 0.01

Table 2. Selected attributes of biochars produced from cacao shell, oil palm shell and rice husk.

	Pyrolysis time	С	Ν	BET	pН	pН	С	EC^1	С	EC^2	CEC ³	C	a K	Mg	Na	Ash^4	ANC
Biochar type	(h)	(%)	(%)	$(m^2 g^{-1})$	(H_2O)	(1M KCl)			(cmol	c/kg)			(cmo	olc/kg)		%	(cmolc/kg)
Cacao shell	3.5	69.59	1.37	29	10.5	10.0	197	± 1.2	37	± 2.4	30 ± 3	6 37	.1 126.	8 32.8	0.3	18.9	217
Oil palm shell	1	61.49	1.73	<1	6.7	5.7	35	± 5.2	20	± 2.1	11 ± 3	6 9	0 6.5	7.4	0.2	10.5	36
Rice husk	3.5	41.24	1.00	51	7.3	6.1	20	± 4.3	26	± 4.8	7 ± 0	1 3	2 9.5	3.6	0.2	51.0	45

¹CEC measured as the sum of base cations and exchangeable acidity in NH₄Ac-extracts (n=3, SE shown).

²CEC measured as the amount of extractable NH_4 after saturation with NH_4Ac and subsequent extraction with 1M KCl (n=3, SE shown).

³CEC measured after saturation with 1M KCl and subsequent extraction with 0.5M NaNO3 (n=2, SE shown) (Mukherjee et al. 2011).

⁴Large sample of approximately 100 mg.

Soil Science and Plant Nutrition

Table 3. Estimated fixed-effects parameters for the model $y = a + b *(1-exp^{(-x/c)})$ (eq. 1) based on restricted maximum likelihood estimates from nonlinear mixed effects-models for the response in CEC, Ca, Mg and K (cmol_c/kg) to BC addition (%). The table shows biochar specific estimates (cacao shell, oil palm shell and rice husk) for the parameters a, b, and c ± SE. For each model capital letters for the parameters b and c indicate differences between the BC types. Different letters indicate difference in parameter estimate at a level of significance <0.05. Number of observations (n) for each model is shown.

Model	Biochar	Pa	rameter estimate	es (± SE)	
		а	b	с	
	Cacao shell		$4.35^{\text{A}} \pm 0.09$	$8.59^{\text{A}} \pm 0.64$	
$pH_{(H2O)} \sim BC\%$, n= 674 [§]	Oil palm shell	4.73 ± 0.09	$1.00^{B} \pm 0.10^{B}$	$19.35^{B} \pm 1.85$	
	Rice husk		1.00 ± 0.10	$22.49^{\text{C}} \pm 2.08$	
	Cacao shell			$3.94^{\text{A}} \pm 0.94$	
CEC ~ BC%, n= 101 ^{§§}	Oil palm shell	5.62 ± 1.47	2.51 ± 0.43	5.54 ± 0.54	
	Rice husk			$11.77 \text{ B} \pm 3.13$	
	Cacao shell		$5.63^{A} \pm 0.37$		
Ca ~ BC%, n= 97	Oil palm shell	0.50 ± 0.12	$1.29^{B} \pm 0.15$	$11.45^{B} \pm 2.90$	
	Rice husk		1.29 2 0.13	$62.93 ^{\rm C} \pm 22.97$	
	Cacao shell		$5.79^{\text{A}} \pm 0.51$		
Mg~BC%, n= 97	Oil palm shell	0.19 ± 0.03	$1.82^{\text{B}} \pm 0.50^{\text{B}}$	$21.58^{B} \pm 11.28$	
	Rice husk			$50.71^{\circ} \pm 20.38$	
	Cacao shell		$31.32^{\text{A}} \pm 4.25$		
K ~ BC%, n= 90	Oil palm shell	0.05 ± 0.03		$31.94 \pm 13/.34$	
	Rice husk		$3.94^{\circ} \pm 7.30$		

[§]n=552 for 0.1-30% BC addition (Oil palm shell not analysed at site 30) + 122 0% BC addition (1 missing value at site 20 and 30); Table S2. ^{§§}n=83 for 0.1-30% BC addition (Oil palm shell not analysed at site 30 and 1 missing value at site 24) + 18 0% BC addition (1 missing value at site 30 and 31); Table S2.

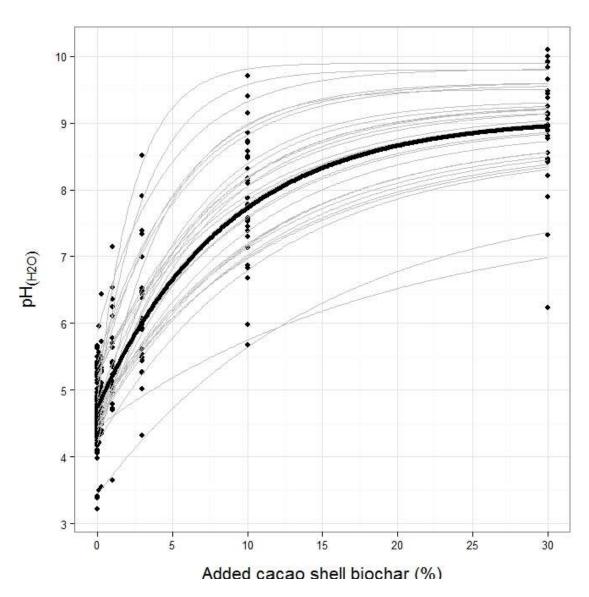


Fig. 2 A.

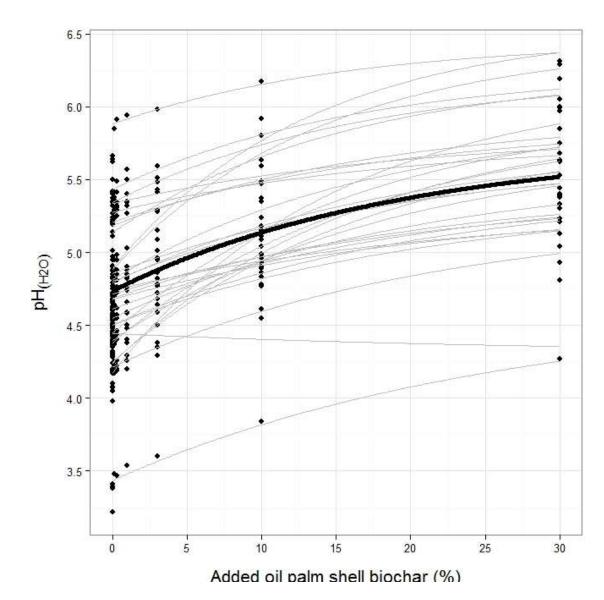


Fig. 2 B.

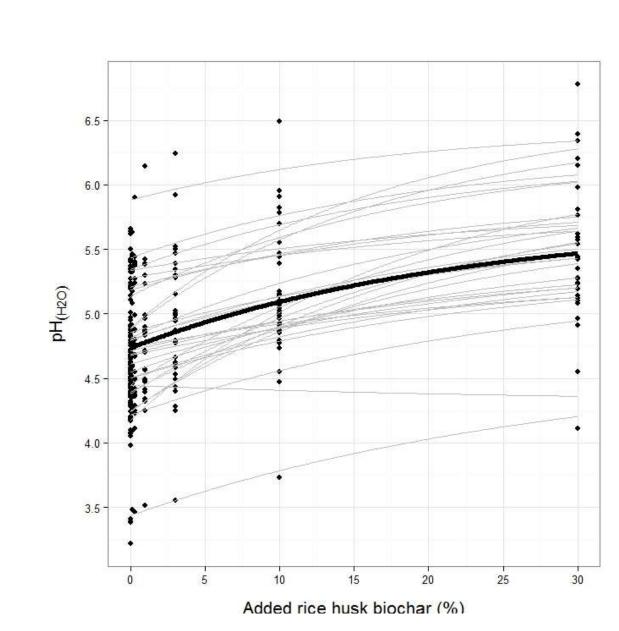
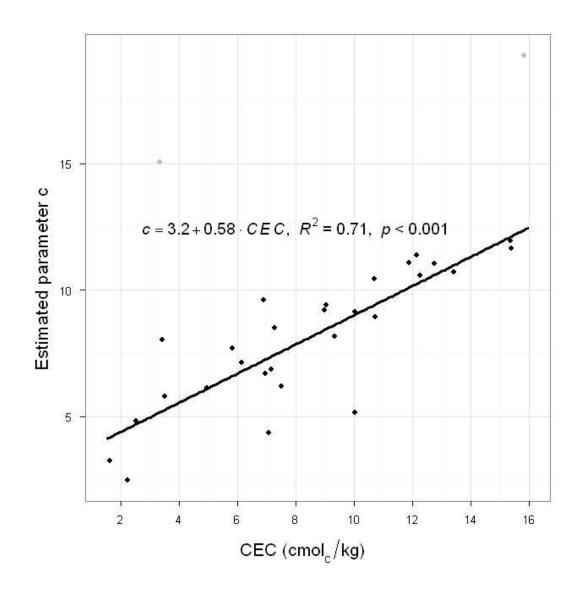



Fig. 2 C.

http://mc.manuscriptcentral.com/sspn

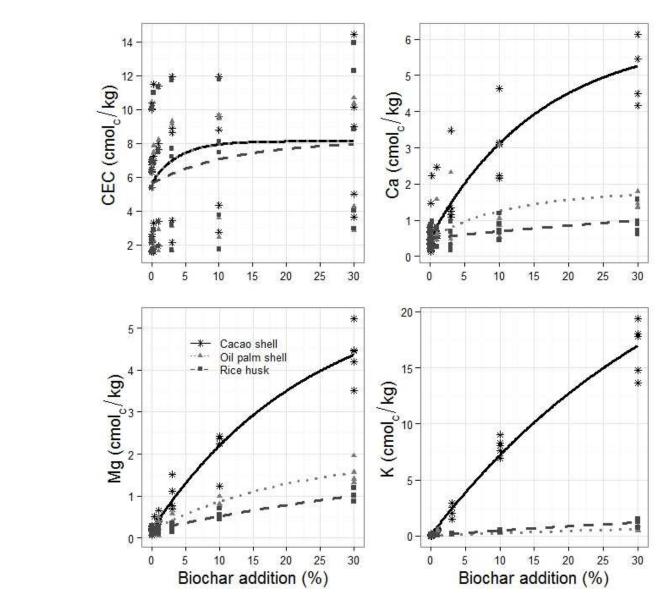
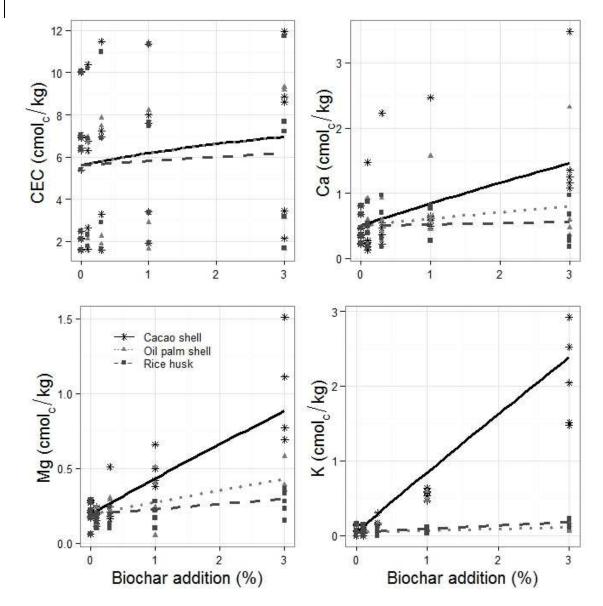


Fig. 4.

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

Supporting information

Figure S1. Locally constructed unit for biochar production.



Page 37 of 53

Soil Science and Plant Nutrition

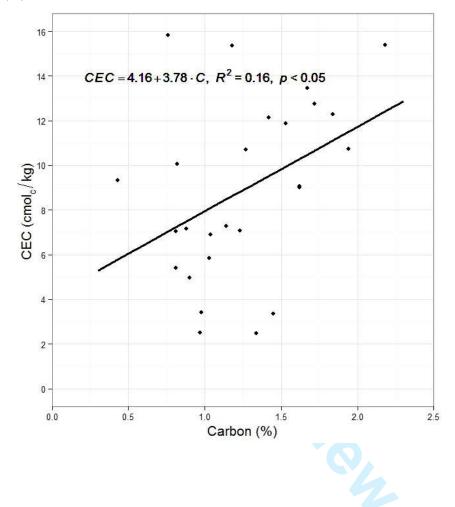

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

Figure S2. Predicted response in soil CEC (cmol_c/kg) and of available Ca, Mg and K (cmol_c/kg) to added cacao shell BC, oil palm shell BC and rice husk BC in soils from 5 sites (site 18, 19, 24, 30, 31; Table 1) across Indonesia. The fitted curves derive from the model $y = a + b * (1-exp^{(-x/c)})$ (eq. 1) based on restricted maximum likelihood estimates (Table 3) for the mean response in CEC and levels of cations (Ca, Mg and K) for 0-30% BC. Note: Predicted responses are presented for 0-3% only. For the full dataset, see Figure 4.

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

Figure S3. Relationship between CEC ($cmol_c kg^{-1} soil$) and the content of organic carbon (%) from 26 sites across Indonesia.

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

Table S1. Selected attributes of biochars produced of cacao shell, oil palm shell and rice husk at pyrolysis times of 1, 2 and 3.5 hours. The pyrolysis times used for the different biochars are highlighted (bold).

	Pyrolysis time	BC yield	Ash	Water	Total N	Total P	Total K	Total Ca	Total Mg
Biochar type	(h)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Cacao shell (raw)	0	-	-	-	1.8	0.40	0.50	-	-
Cacao shell	1	18.7	27.9	18	1.1	0.40	1.10	1.29	0.85
Cacao shell	2	18	28.8	20	1.0	0.40	1.20	1.44	0.98
Cacao shell	3.5	22	27.4	12	1.4	0.36	1.25	1.30	0.86
Oil palm shell (raw)	0	-	-	-	1.1	0.10	<0.1	-	-
Oil palm shell	1	53.5	26.1	5	1.7	0.25	<0.1	0.67	0.31
Oil palm shell	2	45.6	40.9	3	1.3	0.40	<0.1	1.00	0.55
Oil palm shell	3.5	48.6	26.4	6	1.0	0.25	<0.1	0.66	0.31
Rice husk (raw)	0	-	-	-	0.8	0.15	<0.1	-	-
Rice husk	1	23.3	53.4	2	0.6	0.17	<0.1	0.31	0.13
Rice husk	2	23.3	47.0	3	0.6	0.10	<0.1	0.13	0.07
Rice husk	3.5	30.4	48.9	3	1.0	0.21	<0.1	0.21	0.13

Table S2. Measured soil attributes in soils from 31 sites across Indonesia (Table 1) with and
without addition of biochar (BC).

Site ID	BC type	BC addition	рН _(Н2О)	рН _(КСІ)	Са	Mg	κ	Na	CEC	Al ³⁺	H⁺	С	Ν	CN
		(%)						cmol _c /kg	soil			(%)	(%)	
1		0	4.9	3.7					15.37			1.18	0.12	9.8
1	Rice husk	0	4.65	3.82										
1	Rice husk	0.1	4.69	3.83										
1	Rice husk	0.3	4.74	3.81										
1	Rice husk	1	4.71	3.82										
1	Rice husk	3	4.96	3.85										
1	Rice husk	10	4.91	3.89										
	Rice husk	30	5.27	4.04										
	Oil palm shell	0		3.83										
	Oil palm shell	0.1	4.8	3.84										
	Oil palm shell	0.3		3.83										
	Oil palm shell	1	4.82	3.81										
	Oil palm shell	3	4.77	3.86										
	Oil palm shell	10		3.91										
	Oil palm shell	30	5.04	4.07										
	Cacao shell	0		3.82										
	Cacao shell	0.1	4.86	3.85										
	Cacao shell Cacao shell	0.3 1	4.96 4.96	3.87 3.96										
1		3	5.61	4.39										
1		10	7.39	6.48										
1	Cacao shell	30		7.74										
2		0		3.71					13.44			1 67	0.12	13 9
	Rice husk	0	4.51	3.8									0=	
	Rice husk	0.1	4.78	3.82										
	Rice husk	0.3		3.83										
2	Rice husk	1	4.85	3.82										
2	Rice husk	3	5.02	3.82										
2	Rice husk	10	4.96	3.87										
2	Rice husk	30	5.08	3.94										
2	Oil palm shell	0	4.61	3.8										
2	Oil palm shell	0.1	4.73	3.81										
2	Oil palm shell	0.3	4.76	3.81										
	Oil palm shell	1	4.74	3.85										
	Oil palm shell	3	4.82	3.86										
	Oil palm shell	10		3.93										
	Oil palm shell	30		4.17										
	Cacao shell	0	4.54	3.78										
	Cacao shell	0.1	4.81	3.83										
	Cacao shell Cacao shell	0.3 1	4.86 5.03	3.86 3.92										
	Cacao shell	3		4.12										
2		10		6.39										
	Cacao shell	30		7.79										
3		0		3.86					9.33			0.43	0.03	13.9
	Rice husk	0		3.91					0.00			0.40	0.00	10.0
	Rice husk	0.1	5.32	3.9										
	Rice husk	0.3		3.91										
	Rice husk	1	5.3	3.95										
	Rice husk	3	5.34	3.97										
	Rice husk	10		3.97										
	Rice husk	30		4.05										
3	Oil palm shell	0	5.27	3.91										
3	Oil palm shell	0.1		3.94										
	Oil palm shell	0.3												

Soil Science and Plant Nutrition

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

Site ID		BC addition	рН _(Н2О)	рН _(КСІ)	Ca	Mg	Κ		la	CEC	Al ³⁺	H⁺	С	N	CN
		(%)						cmo	l _c /kg	soil			(%)	(%)	
	Oil palm shell	1		3.94											
	Oil palm shell	3		3.93											
3	· ·	10		3.97											
3	Oil palm shell	30		4.13											
3	Cacao shell	0	5.37	3.95											
3	Cacao shell	0.1	5.27	3.95											
3	Cacao shell	0.3	5.27	3.98											
3	Cacao shell	1	5.35	4.08											
3	Cacao shell	3		4.37											
3		10		7.61											
3	Cacao shell	30		8.55											
4		0		3.68						15.39			2.18	3 0.1	5 14.
4	Rice husk	0	4.6	3.9											
4	Rice husk	0.1	4.59	3.93											
4		0.3		3.94											
4	Rice husk	1	4.7	3.95											
4	Rice husk	3	4.79	3.98											
	Rice husk	10		3.96											
4	Rice husk	30	5.08	3.99											
4	Oil palm shell	0	4.63	3.91											
4	Oil palm shell	0.1	4.7	3.94											
4	Oil palm shell	0.3	4.73	3.93											
4	Oil palm shell	1	4.76	3.94											
4	Oil palm shell	3		3.96											
4	Oil palm shell	10		4.02											
4	Oil palm shell	30	5.23	4.19											
4	Cacao shell	0	4.68	3.92											
4	Cacao shell	0.1	4.81	3.93											
4	Cacao shell	0.3	4.88	3.97											
4	Cacao shell	1	5.13	4.04											
4	Cacao shell	3		4.2											
4	Cacao shell	10		5.75											
4	Cacao shell	30	8.44	7.55											
5		0	4.54	3.85						9			1.6	2 0.0	8 19
5	Rice husk	0	4.72	4.01											
5	Rice husk	0.1	4.77	4.08											
5	Rice husk	0.3	4.76	4.1											
5	Rice husk	1	4.86	4.1											
5	Rice husk	3	5	4.12											
5	Rice husk	10	5.15	4.14											
5	Rice husk	30	5.24	4.15											
5	Oil palm shell	0	4.7	4											
5	Oil palm shell	0.1	4.82	4.08											
5	Oil palm shell	0.3	4.85	4.08											
5	Oil palm shell	1	4.88	4.11											
5	Oil palm shell	3	5.01	4.14											
5	Oil palm shell	10	5.18	4.27											
5	Oil palm shell	30	5.62	4.76											
5	Cacao shell	0	4.77	4.08											
5	Cacao shell	0.1	4.92	4.09											
5	Cacao shell	0.3	5.04	4.14											
	Cacao shell	1	5.41	4.26											
	Cacao shell	3		4.68											
5		10		6.69											
5		30													
-		0								12.76	I			2 0.0	9 20

ite ID		BC addition	рН _(Н2О)	рН _(КСІ)	Са	Mg	κ	Na		CEC	Al ³⁺	H⁺	С	Ν	CN
		(%)						cmol _c	/kg	soil	<u> </u>	<u> </u>	(%)	(%)	<u> </u>
	Rice husk	0	4.39	3.96											
	Rice husk	0.1	4.35	3.95											
	Rice husk	0.3	4.36	3.96											
	Rice husk	1	4.41	3.95											
	Rice husk	3	4.49	3.97											
	Rice husk	10	4.73	3.98											
6	Rice husk	30		4											
6	Oil palm shell	0	4.36	3.94											
6		0.1	4.42	3.95											
6	Oil palm shell	0.3	4.81	3.96											
6		1	4.83	3.95											
6	Oil palm shell	3	4.86	3.99											
6	Oil palm shell	10	4.89	4.02											
6	Oil palm shell	30	5.33	4.16											
	Cacao shell	0	4.38	3.96											
6		0.1	4.52	3.97											
6	Cacao shell	0.3	4.84	3.99											
6		1	5.21	4.06											
6	Cacao shell	3	5.26	4.21											
6		10	6.87	5.48											
	Cacao shell	30	8.41	7.8											
7		0	4.55	3.84						7.29			1.14	4 0.0	5 21
	Rice husk	0	4.79	3.98											
	Rice husk	0.1	4.79	3.99											
	Rice husk	0.3	4.8	3.99											
	Rice husk	1	4.87	3.98											
7		3	4.96	3.99											
	Rice husk	10	5.14	4.03											
7	Rice husk	30	5.43	4.02											
	Oil palm shell	0	4.77	3.98											
7	Oil palm shell	0.1	4.76	3.99											
7	Oil palm shell	0.3	4.81	3.98											
7	Oil palm shell	1	4.85	4.01											
7	Oil palm shell	3	4.95	4.01											
7	Oil palm shell	10	5.11	4.09											
7		30	5.63	4.5											
7	Cacao shell	0	4.82	3.98											
7	Cacao shell	0.1	4.93	3.99											
7	Cacao shell	0.3	5.06	4.04											
7	Cacao shell	1	5.4	4.16											
7	Cacao shell	3	5.92	4.42											
7	Cacao shell	10	7.78	6.74											
7	Cacao shell	30	9.06	7.99											
8		0	3.98	3.72						12.15			1.4	2 0.0	7
8	Rice husk	0	4.29	3.84											
8	Rice husk	0.1	4.28	3.83											
8	Rice husk	0.3	4.29	3.82											
8	Rice husk	1	4.32	3.85											
8	Rice husk	3	4.25	3.84											
8	Rice husk	10	4.55	3.86											
8	Rice husk	30	4.91	4.05											
8	Oil palm shell	0	4.2	3.82											
	Oil palm shell	0.1	4.17	3.82											
	Oil palm shell	0.3	4.19	3.83											
	Oil palm shell	1	4.2	3.83											
	Oil palm shell									1					

Page 43 of 53

Soil Science and Plant Nutrition

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

Site ID		BC addition	рН _(Н2О)	рН _(КСІ)	Са	Mg	ĸ			CEC	Al ³⁺	H⁺	C	N	CN
		(%)						cmo	l _c /kg	soil			(%)	(%)	
8	Oil palm shell	10													
8	Oil palm shell	30	4.93	4.01											
8		0	4.3	3.84											
8		0.1	4.32	3.84											
8		0.3	4.35												
8		1	4.7	3.91											
8		3	5.27	4.07											
8		10	6.68	5.45											
8	Cacao shell	30	8.45	7.5											
9		0	4.32	3.58						15.83			0.76	6 0.0	3 25
9		0	4.36	3.61											
9		0.1	4.35	3.68											
9		0.3	4.37	3.68											
	Rice husk	1	4.39	3.69											
	Rice husk	3	4.4	3.67											
9		10	4.47	3.71											
9	Rice husk	30	4.55	3.74											
9	Oil palm shell	0	4.37	3.61											
9	Oil palm shell	0.1	4.37	3.67											
9	Oil palm shell	0.3	4.4	3.69											
9	Oil palm shell	1	4.4	3.68											
9	Oil palm shell	3	4.5												
9	Oil palm shell	10	4.61	3.72											
9	Oil palm shell	30	4.81	3.84											
9		0	4.36	3.61											
9	Cacao shell	0.1	4.5	3.68											
9	Cacao shell	0.3	4.57	3.72											
9	Cacao shell	1	4.72	3.75											
9	Cacao shell	3	5.02	3.88											
9	Cacao shell	10	5.98	4.39											
9	Cacao shell	30	6.23	5.24											
10		0	4.49	3.76						10.69			1.2	7 0.0	5 20
10	Rice husk	0	4.5	3.91											
10	Rice husk	0.1	4.51	3.89											
10	Rice husk	0.3	4.49	3.92											
10	Rice husk	1	4.57	3.88											
10	Rice husk	3	4.62	3.9											
10	Rice husk	10	4.77	3.93											
10	Rice husk	30	5.1	3.92											
10	Oil palm shell	0	4.51	3.9											
10	Oil palm shell	0.1	4.55	3.88											
10	Oil palm shell	0.3	4.55	3.9											
10	Oil palm shell	1	4.59	3.9											
10	Oil palm shell	3	4.64	3.91											
	Oil palm shell	10	4.78	3.96									1		
	Oil palm shell	30		4.2											
	Cacao shell	0	4.53												
	Cacao shell	0.1	4.61	3.89											
	Cacao shell	0.3													
	Cacao shell	1	4.79										1		
	Cacao shell	3													
	Cacao shell	10													
	Cacao shell	30		7.7									1		
10		0								6.9			10	4 0.0 ⁴	1 22
										0.9			1.04	+ 0.04	+ 23
	Rice husk	0	4.54												
11	Rice husk	0.1	4.55	3.85	1					1	I		1		

ite ID		BC addition	рН _(Н2О)	рН _(КСІ)	Са	Mg	κ	Na	CEC	Al ³⁺	H⁺	С	N	CN
		(%)						cmol _c /k	g soil			(%)	(%)	
11	Rice husk	0.3	4.55	3.84										
11	Rice husk	1	4.56											
11	Rice husk	3	4.61	3.83										
11	Rice husk	10	4.86	3.86										
11	Rice husk	30	5.12	3.9										
11	Oil palm shell	0	4.55	3.84										
	Oil palm shell	0.1	4.54											
	Oil palm shell	0.3	4.57											
	Oil palm shell	1	4.58											
	Oil palm shell	3	4.68											
	Oil palm shell	10	5.04											
	Oil palm shell	30	5.13											
	Cacao shell	0	4.54	3.84										
	Cacao shell	0.1	4.49											
	Cacao shell	0.3	4.43											
	Cacao shell	1	5.23											
	Cacao shell	3	5.54											
11		10	7.45											
	Cacao shell	30	8.88											
12		0	3.22						3.34	ŀ		1.4	5 0.0	7 19
	Rice husk	0	3.38											
	Rice husk	0.1	3.48											
12	Rice husk	0.3	3.46											
12	Rice husk	1	3.51	3.26										
12	Rice husk	3	3.55	3.26										
12	Rice husk	10	3.73	3.36										
12	Rice husk	30	4.11	3.52										
12	Oil palm shell	0	3.39	3.12										
12	Oil palm shell	0.1	3.48	3.24										
12	Oil palm shell	0.3	3.47	3.24										
	Oil palm shell	1	3.54											
	Oil palm shell	3	3.6											
	Oil palm shell	10	3.84											
	Oil palm shell	30	4.27	3.66										
	Cacao shell	0	3.41											
	Cacao shell	0.1	3.49											
	Cacao shell	0.3												
	Cacao shell	1	3.65											
	Cacao shell	3	4.32											
			5.67											
	Cacao shell Cacao shell	10												
		30	7.32						0.54			0.07	7 0 0	- 4
13		0	5.66						2.51			0.9	7 0.02	2 40
	Rice husk	0	5.5											
	Rice husk	0.1	5.63											
	Rice husk	0.3	5.9											
	Rice husk	1	6.14											
	Rice husk	3	6.24											
	Rice husk	10	6.49											
	Rice husk	30	6.78											
	Oil palm shell	0	5.62											
	Oil palm shell	0.1	5.85	4.73										
	Oil palm shell	0.3								1				
	Oil palm shell	1	5.94											
	Oil palm shell	3	5.98											
	Oil palm shell	10												
	Oil palm shell									1				
10		50	0.23	1 0.0	I				I	1		1		

Page 45 of 53

Soil Science and Plant Nutrition

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

		BC addition	рН _(Н2О)	рН _(КСІ)	Са	Mg	ĸ	Na	CEC	Al ³⁺	H⁺	С	Ν	CN
		(%)					С	mol _c /kg	soil			(%)	(%)	
13	Cacao shell	0	5.64	4.78										
13	Cacao shell	0.1	5.96	4.85										
13	Cacao shell	0.3	6.43	5.11										
13	Cacao shell	1	7.15	5.86										
13	Cacao shell	3	7.9	6.89										
	Cacao shell	10	8.73	8.03										
	Cacao shell	30	9.44	8.72										
14		0	4.85	3.84					5.83			1.03	0.03	3 33.4
	Rice husk	0	5.2	3.96										
	Rice husk	0.1	5.21	3.98										
	Rice husk	0.3	5.24	3.98										
	Rice husk	1	5.23	3.99										
	Rice husk	3	5.28	4.01										
	Rice husk	10	5.47	4.05										
	Rice husk	30	5.59	4.18										
	Oil palm shell	0	5.21	3.96										
	Oil palm shell	0.1	5.24	3.96										
	Oil palm shell	0.3	5.29	3.98										
	Oil palm shell	1	5.27	3.97										
	Oil palm shell	3	5.28	4.01										
	Oil palm shell	10	5.37	4.13										
	Oil palm shell	30	5.75	4.7										
	Cacao shell	0	5.22	3.97										
	Cacao shell	0.1	5.25	3.97										
	Cacao shell	0.3	5.46	4.03										
	Cacao shell	1	5.78	4.19										
	Cacao shell	3	6.46	4.85										
	Cacao shell	10	8.17	7.2										
	Cacao shell	30	9.38	8.33					7.00			1.00		
15		0	4.07	3.77					7.08			1.23	0.06	5 20.9
	Rice husk	0	4.18	3.83										
	Rice husk	0.1	4.24	3.84										
	Rice husk	0.3	4.23	3.84										
	Rice husk	1	4.34	3.85										
	Rice husk	3	4.43	3.91										
	Rice husk	10	5.04	4										
	Rice husk	30 0	5.54 4.17	4.4 3.81										
	Oil palm shell	0.1	4.17	3.81										
	Oil palm shell			3.84 3.83										
	Oil palm shell Oil palm shell	0.3 1	4.22 4.29	3.83 3.84										
	Oil paim shell	3	4.29	3.84 3.92										
		10	4.35 5.15	4.14										
	Oil palm shell Oil palm shell	30	5.85	4.14										
	Cacao shell	0	5.65 4.2	4.00 3.84										
	Cacao shell	0.1	4.2	3.84										
	Cacao shell	0.1	4.22	3.95										
	Cacao shell	0.3	4.49 5.35	4.22										
	Cacao shell	3	6.99	5.61										
	Cacao shell	10	8.85	8.1										
	Cacao shell	30	9.66	8.33										
15		0	9.00 4.19	3.92					7.15			0.89	0.04	1 25
	Rice husk	0	4.19	4.08					1 1.15			0.00	0.04	τ <u>2</u> 0
	Rice husk	-	4.05	4.08										
	Rice husk	0.1 0.3	4.09	4.07										
	Rice husk	0.3	4.11											
10				4 1 5					1					

		BC addition	рН _(Н2О)	рН _(КСІ)	Ca	Mg	к	Na	CEC	Al ³⁺	H⁺	с	N	CN
		(%)	1 (1120)	1 (1001)				ol _c /kg				(%)	(%)	
16	Rice husk	3	4.78	4.05								. ,	. ,	
	Rice husk	10	5	4.15										
	Rice husk	30	5.44	4.46										
	Oil palm shell	0	4.08	4.05										
	Oil palm shell	0.1	4.17	4.03										
	Oil palm shell	0.3	4.26	4.03										
	Oil palm shell	1	4.38	4.04										
	Oil palm shell	3	4.72	4.07										
	Oil palm shell	10	4.93	4.22										
	Oil palm shell	30	5.62	4.86										
16	Cacao shell	0	4.1	4.08										
16	Cacao shell	0.1	4.2	4.07										
16	Cacao shell	0.3	4.48	4.1										
16	Cacao shell	1	5.03	4.27										
16	Cacao shell	3	6.44	5.28										
16	Cacao shell	10	7.76	7.1										
16	Cacao shell	30	8.9	8.02										
17		0	4.61	3.72					9.05			1.62	0.09	17.6
17	Rice husk	0	4.87	3.82										
17	Rice husk	0.1	4.88	3.83										
17	Rice husk	0.3	4.87	3.82										
17	Rice husk	1	4.85	3.84										
17	Rice husk	3	4.94	3.85										
17	Rice husk	10	5.1	3.95										
17	Rice husk	30	5.42	4.08										
17	Oil palm shell	0	4.85	3.8										
17	Oil palm shell	0.1	4.88	3.82										
17	Oil palm shell	0.3	4.88	3.82	•									
17	Oil palm shell	1	4.9	3.83										
17	Oil palm shell	3	4.96	3.88										
17	Oil palm shell	10	5.09	3.97										
17	Oil palm shell	30	5.53	4.73										
17	Cacao shell	0	4.87	3.89										
17	Cacao shell	0.1	5.03	3.88										
17	Cacao shell	0.3	5.03	3.87										
17	Cacao shell	1	5.35	4.03										
17	Cacao shell	3	6.07	4.52										
17	Cacao shell	10	7.52	6.64										
17	Cacao shell	30	8.8	7.84										
18	L	0	4.48	3.86					7.04		_	0.81	0.04	20.8
	Rice husk	0	4.42	3.92	0.81		0.07	0.07	6.93		0.24			
	Rice husk	0.1	4.46	3.92	0.87	0.2	0.1	0.05	6.89	3.78	0.34			
	Rice husk	0.3	4.42	3.91	0.97		0.1	0.05	6.89	3.81	0.16			
	Rice husk	1	4.41	3.91	0.81	0.28	0.1	0.02	7.47	4.02				
	Rice husk	3	4.53	3.93			0.23	0.07	7.22		0.32			
	Rice husk	10				0.7	0.54	0.14			0.17			
	Rice husk	30					1.48	0.16		0.67				
	Oil palm shell	0	4.43	3.92	0.8			0.07	6.94	4.11	0.23			
	Oil palm shell	0.1	4.38	3.91	0.92		0.1	0.07	6.93		0.24			
	Oil palm shell	0.3	4.46	3.91	0.92		0.13	0.07	7.47	3.21	0.28			
	Oil palm shell	1	4.5	3.92	1.57		0.07		7.51	3.53	0.24			
	Oil palm shell	3	4.68				0.18	0.1	9.3		0.24			
	Oil palm shell	10		4.03	3.08		0.37		9.65		0.21			
	Oil palm shell	30			1.37		0.88	0.12		0.31	0.25			
	Cacao shell	0	4.4	3.91	0.8		0.06	0.06		4.1	0.23			
18	Cacao shell	0.1	4.42	3.92	1.47	0.2	0.13	0.05	6.3	3.49	0.32			

Soil Science and Plant Nutrition

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

BC addition pH _(H20) pH _(KC1) Ca Mg 18 Cacao shell 0.3 4.66 3.95 2.23 0.51 18 Cacao shell 1 4.97 4.05 2.47 0.66 18 Cacao shell 3 5.9 4.7 3.48 1.51 18 Cacao shell 10 8.31 7.24 4.64 2.37 18 Cacao shell 30 9.91 8.96 0.59 4.46 19 0 4.58 4.1 1	0.64 0.05 2.52 0.1 7.62 0.14 19.38 0.3 0.15 0.05 0.15 0.1 0.12 0.05	bil 3.63 6.97 3.63 7.99 2.05 8.62 0 8.81 0 8.99 0 2.48 2.14 2.32 1.01	0.16 0.02 0.02 0	(%)	(%)	
18Cacao shell14.974.052.470.6618Cacao shell35.94.73.481.5118Cacao shell108.317.244.642.3718Cacao shell309.918.960.594.461904.584.11919Rice husk0.15.084.310.530.1419Rice husk0.15.084.310.530.1419Rice husk0.34.994.330.70.13	0.64 0.05 2.52 0.1 7.62 0.14 19.38 0.3 0.15 0.05 0.15 0.1 0.12 0.05	7.99 2.05 8.62 0 8.81 0 8.99 0 2.48 2.14	0.16 0.02 0.02 0			
18 Cacao shell 3 5.9 4.7 3.48 1.51 18 Cacao shell 10 8.31 7.24 4.64 2.37 18 Cacao shell 30 9.91 8.96 0.59 4.46 19 0 4.58 4.1 10 10 10 10 19 Rice husk 0 4.97 4.27 0.47 0.22 19 Rice husk 0.1 5.08 4.31 0.53 0.14 19 Rice husk 0.3 4.99 4.33 0.7 0.13	2.52 0.1 7.62 0.14 19.38 0.3 0.15 0.05 0.15 0.1 0.12 0.05	8.62 0 8.81 0 8.99 0 2.48 2.14 1.18	0.02 0.02 0			
18 Cacao shell 10 8.31 7.24 4.64 2.37 18 Cacao shell 30 9.91 8.96 0.59 4.46 19 0 4.58 4.1 0 4.64 0.22 19 Rice husk 0 4.97 4.27 0.47 0.22 19 Rice husk 0.1 5.08 4.31 0.53 0.14 19 Rice husk 0.3 4.99 4.33 0.7 0.13	7.62 0.14 19.38 0.3 0.15 0.05 0.15 0.1 0.12 0.05	8.81 0 8.99 0 2.48 2.14 1.18	0.02 0			
18 Cacao shell 30 9.91 8.96 0.59 4.46 19 0 4.58 4.1 - <t< td=""><td>19.38 0.3 0.15 0.05 0.15 0.1 0.12 0.05</td><td>8.99 C 2.48 2.14 1.18</td><td>0</td><td></td><td></td><td></td></t<>	19.38 0.3 0.15 0.05 0.15 0.1 0.12 0.05	8.99 C 2.48 2.14 1.18	0			
19 0 4.58 4.1 19 Rice husk 0 4.97 4.27 0.47 0.22 19 Rice husk 0.1 5.08 4.31 0.53 0.14 19 Rice husk 0.3 4.99 4.33 0.7 0.13	0.15 0.05 0.15 0.1 0.12 0.05	2.48 2.14 1.18				
19 Rice husk 0 4.97 4.27 0.47 0.22 19 Rice husk 0.1 5.08 4.31 0.53 0.14 19 Rice husk 0.3 4.99 4.33 0.7 0.13	0.15 0.05 0.15 0.1 0.12 0.05	2.14 1.18	0.0			
19Rice husk0.15.084.310.530.1419Rice husk0.34.994.330.70.13	0.15 0.1 0.12 0.05		~ ~ ~	1.34	0.09	14.3
19 Rice husk 0.3 4.99 4.33 0.7 0.13	0.12 0.05	2.32 1.01				
19 Rice nusk 1 4.99 4.33 0.77 0.17		2.9 0.57				
		3.37 0.86 3.19 0.52				
19 Rice husk 3 5.15 4.33 0.68 0.33 19 Rice husk 10 5.82 4.64 0.89 0.51		3.19 0.52 3.77 0				
19 Rice husk 30 6.39 5.21 0.61 1.01		4.01 C				
19 Oil palm shell 0 4.95 4.25 0.46 0.21		2.13 1.17				
19 Oil palm shell 0.1 4.95 4.26 0.59 0.13		2.10 1.17				
19 Oil palm shell 0.3 4.98 4.27 0.59 0.2		2.25 1.35				
19 Oil palm shell 1 5.03 4.38 0.45 0.05		2.91 0.5				
19 Oil palm shell 3 5.15 4.46 0.47 0.36		3.12 0.24				
19 Oil palm shell 10 5.8 4.8 0.53 3.54		3.59 0				
19 Oil palm shell 30 6.31 5.36 1.46 1.32		4.25 0				
19 Cacao shell 0 4.97 4.29 0.46 0.22	0.14 0.05	2.12 1.16	0.2			
19 Cacao shell 0.1 5 4.32 0.25 0.11	0.08 0.03	2.65 0.84	0.17			
19 Cacao shell 0.3 5.1 4.41 0.47 0.16	0.15 0.05	3.28 0.51	0.16			
19 Cacao shell 1 6.54 5.24 0.65 0.38	0.47 0.11	3.39 0	0.06			
19 Cacao shell 3 8.51 7.17 1.25 0.69		3.46 0				
19 Cacao shell 10 9.71 8.89 2.16 1.24		4.33 0				
19 Cacao shell 30 10.1 9.45 5.45 3.51	14.76 0.28	5.01 C	0			
				1.54	0.11	13.7
20 Rice husk 0 5.41 4.32						
20 Rice husk 0.1 5.45 4.33						
20 Rice husk 0.3 5.44 4.36 20 Rice husk 1 5.42 4.42						
20 Rice husk 3 5.5 4.4						
20 Rice husk 10 5.91 4.89						
20 Rice husk 30 6.34 5.25						
20 Oil palm shell 0 5.4 4.32						
20 Oil palm shell 0.1 5.41 4.28						
20 Oil palm shell 0.3 5.49 4.32						
20 Oil palm shell 1 5.57 4.48						
20 Oil palm shell 3 5.59 4.92						
20 Oil palm shell 10 5.63 5.18						
20 Oil palm shell 30 5.97 5.34						
20 Cacao shell 0 5.42 4.3						
20 Cacao shell 0.1 5.48 4.47						
20 Cacao shell 0.3 5.5 4.73						
20 Cacao shell 1 6.36 5.62						
20 Cacao shell 3 7.33 6.78						
20 Cacao shell 10 8.7 8.05						
20 Cacao shell 30 9.48 8.82		11 00		1 50	0.44	
21 0 4.45 3.7 21 Rice husk 0 4.75 3.81		11.88		1.53	0.11	14
21 Rice husk 0 4.75 3.81 21 Rice husk 0.1 4.76 3.81						
21 Rice husk 0.3 4.74 3.79						
21 Rice husk 0.3 4.74 3.79 21 Rice husk 1 4.83 3.82						
21 Rice husk 3 4.87 3.86						
21 Rice husk 10 4.98 3.85						
	I	I		I		

		BC addition	рН _(Н2О)	рН _(КСІ)	Ca	Mg	κ	Na	CEC	Al ³⁺	H⁺	с	N	CN
		(%)						cmol _c /kg	soil			(%)	(%)	
21	Rice husk	30	5.14	3.96										
21	Oil palm shell	0	4.71	3.81										
	Oil palm shell	0.1	4.74	3.8										
21	Oil palm shell	0.3	4.76	3.8										
	Oil palm shell	1	4.78	3.81										
21	Oil palm shell	3	4.78	3.87										
21	Oil palm shell	10	4.96	3.98										
21 21	Oil palm shell Cacao shell	30 0	5.39 4.72	4.35 3.8										
	Cacao shell	0.1	4.72	3.81										
21	Cacao shell	0.3	4.82	3.84										
		1	5.13	3.93										
21	Cacao shell	3	5.49	4.1										
21	Cacao shell	10	7.14	6.2										
21	Cacao shell	30	8.46	7.66										
22		0	4.66	3.8					4.97			0.9	0.0	5 19.6
22	Rice husk	0	4.36	3.92										
	Rice husk	0.1	4.36	3.88								1		
	Rice husk	0.3	4.39	3.88										
	Rice husk	1	4.47	3.9										
	Rice husk	3	4.66	3.95										
	Rice husk	10	5.07	4.09										
	Rice husk	30	5.81	4.62										
	Oil palm shell	0	4.35	3.91										
22	Oil palm shell	0.1 0.3	4.42 4.44	3.87 3.86										
	Oil palm shell Oil palm shell	0.3	4.44	3.80										
	Oil palm shell	3	4.72	4.01										
	Oil palm shell	10	5.24	4.25										
	Oil palm shell	30	5.99	5.41										
	Cacao shell	0	4.37	3.9										
22	Cacao shell	0.1	4.51	3.91										
22	Cacao shell	0.3	4.66	3.98										
22	Cacao shell	1	5.35	4.29										
22	Cacao shell	3	6.48	5.74										
22	Cacao shell	10	8.13	7.68										
22	Cacao shell	30	9.15	8.53										
23		0	5.01	4.18					3.51			6.01	0.4	4 14.9
	Rice husk	0	5.24	4.31								1		
	Rice husk	0.1	5.46	4.29								1		
	Rice husk Rice husk	0.3 1	5.4 5.39	4.28 4.3								1		
	Rice husk	3	5.59	4.34										
	Rice husk	10	5.78	4.34								1		
	Rice husk	30	6.15	4.81								1		
	Oil palm shell	0	5.21	4.31								1		
	Oil palm shell	0.1	5.38	4.27								1		
	Oil palm shell	0.3	5.32	4.29								1		
	Oil palm shell	1	5.34	4.31								1		
	Oil palm shell	3	5.43	4.33								1		
23	Oil palm shell	10		4.54								1		
	Oil palm shell	30		5								1		
	Cacao shell	0	5.35	4.31								1		
	Cacao shell	0.1										1		
	Cacao shell	0.3		4.36								1		
23	Cacao shell	1	6.24	4.65	l				I	l		1		

Soil Science and Plant Nutrition

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

		BC addition	рН _(Н2О)	рН _(КСІ)	Ca	Mg		Na	CEC	Al ³⁺	H⁺	с	Ν	CN	
		(%)					cm	ol _c /kg	soil			(%)	(%)		
	Cacao shell	3	7.39	5.95											
23	Cacao shell	10	8.48	7.55											
23	Cacao shell	30	9.48	8.62											
24	Dia a harala	0	4.46	3.85	0.05	0.40	0.07	0.07	5.4	5.05	0.50	0.81	0.02	42.3	
	Rice husk	0	4.9	3.81	0.35	0.18		0.07	6.43	5.35	0.53				
	Rice husk	0.1	4.91	3.8	0.49	0.18	0.06	0.03		4.34	0.43				
	Rice husk Rice husk	0.3	4.88	3.81	0.31 0.27	0.1 0.17		0.05		4.32	0.45				
	Rice husk	1	4.96 4.99	3.8 3.81	0.27	0.17	0.06 0.11	0.13 0.08	7.65 7.68	4.01 3.42	0.26 0.3				
	Rice husk	10	4.99	3.81	0.18	0.23	0.11	2.97	7.00	3.42	0.3				
	Rice husk	30	5.23	4.09	0.07	0.30	0.47	0.18	13.93	3.62	0.24				
	Oil palm shell	0	4.88	3.81	0.36	0.00	0.07	0.10	6.45	5.37	0.52				
	Oil palm shell	0.1	4.89	3.81	0.22	0.18	0.08	0.08	6.73	2.34	0.19				
	Oil palm shell	0.3	4.95	3.85	0.41	0.29	0.17			3.62	0.35				
	Oil palm shell	1	5.03	3.95		0.4	0.47	0.11	8.22	2.03	0.38				
	Oil palm shell	3	5.09	3.95	0.59	0.39	0.08	0.08	9.17	0.39	0.23				
	Oil palm shell	10	5.15	3.95	1.05	0.77	0.23	0.08	9.46	0.8	0.15				
24	Oil palm shell	30	5.39	4.23	1.8	1.56	0.53	0.1	10.68	0.85	0.23				
24	Cacao shell	0	4.91	3.82		0.17	0.07	0.07	6.33	5.32	0.53				
24	Cacao shell	0.1	4.92	3.83	0.27	0.24	0.08	0.08	6.74	4.51	0.16				
24	Cacao shell	0.3	4.95	3.84	0.54	0.18	0.17	0.03	7.25	3.71	0.32				
24	Cacao shell	1	5.22	3.94	0.58	0.5	0.59	0.08	7.62	2.41	0.2				
24	Cacao shell	3	5.98	4.64	1.35	1.11	1.51	0.21	8.87	0	0.04				
24	Cacao shell	10	8.5	7.58	3.1	2.25	6.94	0.26	9.61	0	0				
24	Cacao shell	30	9.83	9.05	4.5	4.2	17.78	0.36	10.14	0	0				
25		0	4.56	4.15					7.52			8.91	0.37	24.1	
	Rice husk	0	4.24	3.88											
	Rice husk	0.1	4.26	3.89											
	Rice husk	0.3	4.25	3.89											
	Rice husk	1	4.25	3.88											
	Rice husk	3	4.28	4.03											
	Rice husk	10	4.79	4.16											
	Rice husk	30	5.57	4.35											
	Oil palm shell Oil palm shell	0 0.1	4.2 4.22	3.8 3.88											
	Oil palm shell	0.3	4.22	3.84											
	Oil palm shell	0.3	4.26	3.9											
	Oil palm shell	3	4.38	4.12											
	Oil palm shell	10	4.98	4.27											
	Oil palm shell	30	6	4.69											
	Cacao shell	0	4.28	3.88											
	Cacao shell	0.1	4.36	3.94											
25	Cacao shell	0.3	4.4	4.04											
	Cacao shell	1	5.02	4.28											
25	Cacao shell	3	6.53	5.04											
	Cacao shell	10	8.09	6.8											
25	Cacao shell	30	8.94	7.89											
26		0	4.7	3.81					10.04			3.06	0.28	11	
	Rice husk	0	5.34												
	Rice husk	0.1	5.35	3.95											
	Rice husk	0.3		3.96											
	Rice husk	1	5.38												
	Rice husk	3	5.39	3.96											
	Rice husk	10	5.39												
	Rice husk	30													
26	Oil palm shell	0	5.32	3.92					1			1			

		BC addition	рН _(Н2О)	рН _(КСІ)	Са	Mg	κ	Na	CEC	Al ³⁺	H⁺	с	Ν	CN
		(%)						cmol _c /kg	j soil			(%)	(%)	
26	Oil palm shell	0.1	5.28											
	Oil palm shell	0.3	5.34	3.92										
	Oil palm shell	1	5.35											
	Oil palm shell	3	5.41	3.97										
	Oil palm shell	10	5.49											
	Oil palm shell	30 0	5.63											
	Cacao shell Cacao shell	0.1	5.35 5.4											
	Cacao shell	0.1	5.43	3.90										
	Cacao shell	1	5.64	4.17										
	Cacao shell	3	6.37	4.87										
	Cacao shell	10		7										
	Cacao shell	30	8.97	8.13										
27		0	4.7	3.74					10.73			1.94	0.2	1 9.1
27	Rice husk	0	5.35	3.9										
27	Rice husk	0.1	5.33	3.89										
27	Rice husk	0.3	5.38	3.91										
27	Rice husk	1	5.42	3.92										
	Rice husk	3	5.92											
	Rice husk	10	5.95											
	Rice husk	30												
	Oil palm shell	0	5.35											
	Oil palm shell	0.1	5.36											
27	Oil palm shell	0.3	5.41 5.5	3.91 3.92										
	Oil palm shell Oil palm shell	3	5.51	3.92										
	Oil palm shell	10	5.59											
	Oil palm shell	30												
	Cacao shell	0	5.35											
	Cacao shell	0.1	5.36											
	Cacao shell	0.3	5.4	· · · · · · · · · · · · · · · · · · ·										
27	Cacao shell	1	5.42											
27	Cacao shell	3	6.01	4.43										
27	Cacao shell	10	7.88											
	Cacao shell	30	9.12											
28		0	4.44						12.28			1.84	0.1	4 13.1
	Rice husk	0	4.62											
	Rice husk	0.1	4.69											
	Rice husk	0.3	4.67	3.82										
	Rice husk Rice husk	1	4.71 4.77	3.81 3.82										
	Rice husk	10		3.86										
	Rice husk	30	4.96											
	Oil palm shell	0	4.6											
	Oil palm shell	0.1	4.64	3.8										
	Oil palm shell	0.3	4.62											
	Oil palm shell	1	4.66											
28	Oil palm shell	3	4.72											
	Oil palm shell	10	4.9	3.97					1					
	Oil palm shell	30							1					
	Cacao shell	0							1					
	Cacao shell	0.1	4.72						1					
	Cacao shell	0.3							1					
	Cacao shell	1	4.97						1					
	Cacao shell	3	5.45						1					
28	Cacao shell	10	7.3	6.23	l				1	I				

Soil Science and Plant Nutrition

		BC addition	рН _(Н2О)	рН _(КСІ)	Ca	Mg	к	Na	CEC	Al ³⁺	H⁺	с	Ν	CN
		(%)					cm	ol _c /kg	soil			(%)	(%)	
28	Cacao shell	30	8.55	7.59										
29		0	4.4	3.82					3.41			0.98	0.07	14.4
29	Rice husk	0	4.38	3.86										
29	Rice husk	0.1	4.38	3.89										
29	Rice husk	0.3	4.41	3.9										
29	Rice husk	1	4.48	3.9										
29	Rice husk	3	4.58	3.93										
29	Rice husk	10	5.02	4.03										
	Rice husk	30	5.35	4.37										
	Oil palm shell	0		3.85										
	Oil palm shell	0.1	4.39	3.87										
	Oil palm shell	0.3		3.89										
29		1	4.4	3.9										
	Oil palm shell	3	4.59	3.97										
	Oil palm shell	10		4.12										
	Oil palm shell	30		4.66										
	Cacao shell	0		3.87										
29		0.1	4.42	3.9										
	Cacao shell	0.3		4										
29		1	5.07	4.22										
	Cacao shell	3	6.02	5.12										
29 29		10 30		7.52 8.58										
29 30	Cacao shell	0		0.50 4.41					10.06			0 02	0.01	59.8
	Rice husk	0		4.41	0.67	0.06	0	0.05		0.16	0.12	0.02	0.01	59.0
	Rice husk	0.1	5.13	4.40	0.39	0.00	0	0.03		0.10	0.12			
	Rice husk	0.3	5.39	4.45	0.18	0.13	0.03	0.03		0.14	0.10			
	Rice husk	1	5.42	4.45	0.27	0.1	0.03	0.02		0.14	0.12			
	Rice husk	3	5.47	4.56	0.32	0.15	0.14			0.04	0.12			
	Rice husk	10		4.79	0.72	0.44	0.45	0.03		0.02	0.06			
	Rice husk	30		5.11	0.98	0.88	1.39	0.13		0	0.04			
	Cacao shell	0		4.43	0.68	0.06	0	0.05		0.14	0.11			
	Cacao shell	0.1		4.5	0.13	0.15	0	0.05		0.06	0.12			
	Cacao shell	0.3	5.33	4.7	0.36	0.21	0.17			0	0.02			
30	Cacao shell	1	5.7	5.45	0.63	0.42	0.58	0.1	11.37	0	0			
30	Cacao shell	3	6.99	6.69	1.16	0.77	2.04	0.13	11.95	0	0.02			
30	Cacao shell	10	9.15	8.29	3.14	2.24	9.01	0.23	11.96	0	0			
30	Cacao shell	30	9.92	9.19	6.13	5.22	18.03	0.31	14.43	0	0			
31		0	4.57	4.15								0.52	0.05	10.3
31	Rice husk	0	4.5	4.2	0.22	0.18	0	0.08	1.62	0.04	1.29			
31	Rice husk	0.1	4.6	4.2	0.18	0.1	0.03	0.03	1.77	0.06	1.68			
31	Rice husk	0.3	4.5	4.2	0.18	0.19	0	0.25	1.64	0.19	1.46			
31	Rice husk	1	4.9	4.2	0.76	0.22	0.06	0.1		0.11	1.68			
	Rice husk	3	5.3	4.3	0.27		0.14			0.21	1.73			
	Rice husk	10		4.4	0.45					0.08				
	Rice husk	30		4.8			1.26			0.05	0.96			
	Oil palm shell	0		4.2	0.23	0.17	0	0.08		0.04	1.28			
	Oil palm shell	0.1		4.3	0.41	0.24	0.06	0.03		0.17	1.55			
	Oil palm shell	0.3		4.3	0.27	0.3	0.17			0.14	1.2			
	Oil palm shell	1	5.4	4.7	0.63	0.51	0.59			0.04	1.42			
	Oil palm shell	3		4.3	0.36	0.35	0.06	0.05		0.18	1.33			
	Oil palm shell	10		4.5	0.85	0.81	0.25			0.16	1.1			
	Oil palm shell	30			1.35	1.4	0.53	0.1		0.08	1.18			
	Cacao shell	0		4.2	0.23	0.17	0	0.07		0.05	1.28			
	Cacao shell	0.1	4.9	4.3	0.18	0.19	0.03	0.05		0.15	1.32			
	Cacao shell	0.3		4.4	0.22		0.17			0.14	1.29			
	Cacao shell	1	6.1	4.7	0.49	0.5	0.53			0.02	1.51			
	Cacao shell	3		6.5	1.08	1.11		0.15		0	1.82			
	Cacao shell	10			2.24	2.42	8.09	0.23		0	1.11			
31	Cacao shell	30	10	9.3	4.17	4.47	13.65	0.37	3.64	0	1.18			

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

Table S3. Estimated fixed-effects parameters for the model $y = a + b * (1-exp^{(-BC\%/c)})$ (eq. 1) based on restricted maximum likelihood estimates from nonlinear mixed effects-models for the response in pH_(H2O), CEC, Ca, Mg and K (cmol_c/kg soil) to BC addition (%). The table shows biochar specific contrasts (cacao shell (CS), oil palm shell (OP) and rice husk (RH)) for the parameters a, b and c. p-values are based on likelihood ratio tests between selected models. p<0.05 indicates significant difference between two models. The selected model is indicated in bold and italic.

Soil Science and Plant Nutrition

Martinsen, V., Alling, V., Nurida, N.L., Mulder, J., Hale, S.E., Ritz, C., Rutherford D.W., Heikens, A., Breedveld, G.D. and Cornelissen, G., 2015 (Soil Science and Plant Nutrition): "pH effects of the addition of three biochars to acidic Indonesian mineral soils"

Model	Model nr.	Assumed structure	Pa	Test	p-valu		
			a	b			
		a: CS=OP=RH					
	1	b: CS≠OP≠RH					
		c: CS≠OP≠RH					
			CS/OP/RH:	CS:	CS:		
		a: CS=OP=RH	4.73 ± 0.085	4.35 ± 0.087			
				OP/RH:	OP:		
$pH_{(H2O)} \sim BC\%$, n= 674	2	b: CS ≠(OP=RH)		1.00 ± 0.095		Model 1 vs. 2	0
				1.00 ± 0.075	RH:		
		c: CS ≠OP ≠RH			22.49 ± 2.084		
	3	b: CS=OP=RH			22.47 ± 2.004	Model 2 vs. 3	< 0.0
	4	c: CS≠(OP=RH)				Model 2 vs. 4	0.0
	5	c: CS=OP=RH				Model 2 vs. 5	
	5	a: CS=OP=RH				Wibdel 2 vs. 5	~0.0
	1	b: CS≠OP≠RH					
	1	c: CS≠OP≠RH					
	2	b: CS=OP=RH				Model 1 vs. 2	0.4
	2	0. C3-OF-KI	CS/OP/RH:	CC/OD/DU	CC (O D	Widdel I vs. 2	0.4
CEC~BC%, n= 101				CS/OP/RH:	CS/OP:		
		a: CS=OP=RH	5.62 ± 1.470	2.51 ± 0.432	3.94 ± 0.940		0.2
	3				RH:	Model 3 vs. 2	0.3
		b: CS=OP=RH			11.77 ± 3.133		
		c: (CS=OP)≠RH					
		a: CS=OP=RH					
	1	b: CS≠OP≠RH					
		c: CS≠OP≠RH					
			CS/OP/RH:	CS:	CS:		
		a: CS=OP=RH	0.50 ± 0.121	5.63 ± 0.366			
Ca~BC%, n= 97	2	1 CG (0.0 DIA)		OP/RH:	OP:	Model 1 vs. 2	0.88
		b: CS ≠(OP=RH)		1.29 ± 0.151	11.45 ± 2.905		
					RH:		
		c: CS ≠OP ≠RH			62.93 ± 22.973		
	3	b: CS=OP=RH				Model 2 vs. 3	0.0
	4	c: CS≠(OP=RH)				Model 2 vs. 4	
	5	c: RH≠(OP=CS)				Model 2 vs. 5	0.0
		a: CS=OP=RH					
	1	b: CS≠OP≠RH					
		c: CS≠OP≠RH					
			CS/OP/RH:	CS:	CS:		
	2	a: CS=OP=RH	0.19 ± 0.028	5.79 ± 0.508	23.60 ± 3.674		
Mg \sim BC%, n= 97				OP/RH:	OP:	Model 1 vs. 2	0.847
		b: CS ≠(OP=RH)		1.82 ± 0.499	21.58 ± 11.284	!	
					RH:		
		$c: CS \neq OP \neq RH$			50.71 ± 20.377		
	3	b: CS=OP=RH				Model 2 vs. 3	< 0.0
	4	c: CS≠(OP=RH)				Model 2 vs. 4	<.0
	5	c: RH≠(OP=CS)				Model 2 vs. 5	< 0.0
		a: CS=OP=RH					ſ
	1	b: CS≠OP≠RH					
		c: CS≠OP≠RH					
			CS/OP/RH:	CS:	CS:		
		a: CS=OP=RH	0.05 ± 0.032	31.32 ± 4.253	38.67 ± 6.757		0.07
K ~ BC%, n= 90	2			ОР	OP/RH:	Model 1 vo 2	0.0
	4	b: $CS \neq OP \neq RH$		1.94 ± 3.565	85.94 ± 187.342	Model 1 vs. 2	
				RH:			
		c: CS ≠(OP=RH)		3.94 ± 7.298			
							<u> </u>
	3	b: CS≠(OP=RH)				Model 2 vs. 3	0.0