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Glacio-marine clay resistivity as a proxy for remoulded shear
strength: correlations and limitationsQ1
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Abstract: In geotechnical engineering in Norway, Sweden and Canada the presence of sensitive and/or quick clays poses a
major challenge. Formation of these clays involves the leaching of salt from the pore fluid. Thus it has been recognized that
electrical resistivity measurements could be useful in delineating leached and unleached clays. This paper seeks to assess the
applicability, repeatability and reliability of the various geophysical techniques in the study of sensitive clays. It also attempts to
understand the factors that control the measured resistivity and in particular to determine the limitations of directly obtaining the
remoulded shear strength from the resistivity measurements. It was found that borehole, surface and airborne resistivity
measurements are accurate and compatible. For the 30 Norwegian sites studied it was found that resistivity is primarily defined
by the porewater salt content, with minor additional influence by clay content and plasticity, and porosity. A relationship exists
between resistivity and remoulded shear strength but this is limited to material deeper than the dry crust and a surface
weathering zone of about 7.5 m thickness. High resistivity (>10 Ω m) may indicate quick or weathered clay but low resistivity
(<10 Ω m) conclusively points to stable, unleached clay.

Received 7 December 2016; revised 4 August 2017; accepted 12 October 2017

Sensitive glacio-marine clays, so called quick clays, are typically
found in Norway, Sweden and Canada (there often referred to as
Leda or Champlain Sea clays), and are characterized by a remoulded
undrained shear strength (cur) that is considerably lower than the
intact undisturbed shear strength (cu). In geotechnical engineering
the presence of sensitive clays poses a major challenge. The
landslide at Rissa in 1978 (Gregersen 1981) is perhaps the most
famous quick clay slide, as the sliding action was captured on
camera. More recently in Norway the slides at Tosbotn in April
2016 and Sørum in November (Fig. 1), are devastating reminders of
the potential threats related to such soils. The Tosbotn slide carried
away three houses and cut the only road connecting Brønnøysund
(population c. 5000) with the mainland, forcing all traffic onto
ferries. At Sørum three forestry workers were killed by the slide,
which encapsulated an area of 270 m × 420 m and had a runout
distance of some 1 km. For the geotechnical engineer in a
construction project, or during regional or local hazard assessment,
it is hence important to determine if there is sensitive clay present
and, if there is, to determine the extent of the deposit.

The Scandinavian post-glacial marine clays were deposited in a
marine environment during and after the last ice age some 10
000 years ago, entrapping porewater of high salt content in the
voids. Leaching of the porewater by meteoric groundwater flow has
diluted the porewater salinity in some clays.Without its salt, the clay
structure can easily collapse and the clay becomes quick. According
to the Norwegian definition quick clay is one in which cur is less
than 0.5 kPa (NGF 2011). The most reliable method to confirm
quick clay is sampling and index testing in the laboratory to measure
cur and sensitivity (St = cu/cur). However, these tests are costly for
systematic quick clay hazard zonation.

The electric resistivity method goes back as far as the early 20th
century and was primarily developed to distinguish oil-bearing from

water-bearing layers (Archie 1942). In general, resistivity (the ability
to conduct electrical current Q2) of soils and rocks is a function of
porosity, the ion content or salinity of the porewater, clay content, and
the presence of charged minerals such as graphite and some sulphides
(see, e.g. Rhoades et al. 1976; Palacky 1987). For clays in general,
and for leached clays in particular, it is mainly the salt content that
influences the resistivity (Shevnin et al. 2007). The resistivity is
normally higher in leached clay than in the intact marine clays. By
measuring the soil resistivity, one may hence be able to deduce the
potentially leached zones. Results from Canada, Sweden and Norway
clearly point towards a relationship between the geotechnical
sensitivity and the measured resistivity. Aylsworth & Hunter (2004)
showed the resistivity contrast between leached and saline Leda clay,
Dahlin et al. (2013) described comparable studies based on quick clay
in Sweden, and Rømoen et al. (2010) gave resistivity ranges for
various Norwegian soil types (and their significant overlap). Based on
a number of Norwegian sites, Solberg et al. (2012) suggested a
classification scheme (see Table 1), a simplified approach that may be
applied for a confined region with consistent sedimentation history.

With these principles in mind resistivity measurements have been
carried out, using several different techniques, in a significant
number of Norwegian marine clay sites over recent years. This
paper will review the methods used, assess whether repeatable and
reliable values of resistivity can be obtained, evaluate the scale
effects and zone of influence pertaining to each of the methods, and
determine the usefulness of the techniques in quick clay mapping
projects. This will be achieved by assembling data from 30 sites,
comparing the results from several methods and examining which
parameters control the measured resistivity.

First, some characteristics of a typical Norwegian quick clay site
will be presented, followed by a short discussion on the
geochemistry of quick clay.
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Example of typical Norwegian quick clay site

The Tiller quick clay research site, located just south of Trondheim,
has been used by researchers at the Geotechnical Division of the
Norwegian University of Science and Technology (NTNU,
formerly NTH) for research purposes for many years. Full details
of the geotechnical properties of the Tiller site have been given by
Gylland et al. (2013). For the site, averagewater content (w) is about
36%, unit weight (γ) is 18.7 kN m−3 and clay content is some 36%,
and these parameters remain reasonably constant with depth
(Fig. 2). On average, the plasticity index (Ip) is about 5%
(Table 3 Q3), and is perhaps a little lower in the quick clay zone.
Details of the measured St, cur and salt content values are also given
in Figure 2. It can be seen that the site comprises c. 8 m of low-
sensitivity clay over quick clay. Despite the clear distinction
between the low-sensitivity clay and quick clay at about 8 m depth,
the salt content of the pore fluid remains more or less constant
throughout the profile, with an average value of about 1 g l−1.
Considering that the material was deposited in marine conditions, it
is clear that the material has been leached throughout the profile.
This finding, which is common for many Norwegian sites, poses a
significant challenge in using resistivity to distinguish between non-
quick clays that have been ‘over-leached’ and those that have been
leached and are also quick, as both have a similar resistivity. This is
generally a shallow phenomenon and further examples (e.g. Fig. 3)

Table 1. Classification of Norwegian marine clays according to resistivity
value (Solberg et al. 2012)

Material Resistivity range (Ω m)

Unleached marine clay 1 – 10
Leached, possibly quick clay 10 – 80/100
Dry crust clay, slide deposits, coarser material
such as sand and gravel, and bedrock

>100

Fig. 1.Q31 Recent 2016 landslides in quick clay. (a) Tosbotn slide, April
2016, showing damaged houses and the blocked regional road in the
background (photograph: Ole-Christian Olsen, Norwegian Broadcasting
Corporation/NRK; Brønnøy skred_Tosbotn_Ole-Christian Olsen_NRK.
jpg). (b) Sørum slide, November
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2016

Fig. 2 Tiller site: (a) sensitivity; (b) remoulded shear strength; (c) salt content; (d) resistivity.
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show the clearly lower resistivity of deeper, unleached clay units.
Some further explanation of the nature of leached yet non-quick
clays is given in the following.

Geochemistry of marine clays

The salt content in the depositional environment for the
Scandinavian clays may have been in the range 30 – 35 g l−1 and
was highly dominated by sodium (Na+) and chloride (Cl−) (see, e.g.
Moum et al. 1971; Appelo & Postma 2005; Mitchell & Soga 2005).
Na+ is the abundant ion both in the porewater and in the adsorbed
positions on the mineral surface in clays sedimented in the glacio-
marine environment. This high salt content suppresses the diffuse
double-layer surrounding the clay minerals, resulting in low
repulsive forces and a stable structure.

Following isostatic uplift groundwater can migrate through the
clay deposits, diluting and changing the ion composition in the
porewater. Flowing groundwater is often dominated by divalent
ions such as magnesium (Mg2+) and calcium (Ca2+), both of which
are preferred over Na+ by the mineral surface (Mitchell & Soga
2005). AsMg2+ and Ca2+ are absorbed onto the mineral surface Na+

is released into the pore fluid. The salt content is now reduced and
thus the thickness of the diffuse double-layer increases, which in
turn leads to a rise in the repulsive forces between the clay particles
(see, e.g. Penner 1965; van Olphen 1977; Torrance 1983). The
material now has a low cur, a high St, is easier to remould and may
even be quick.

Leaching is a continuing process; more and more divalent ions
enter the clay–water system and thus the concentration of Na+ in the
porewater is further depleted. These divalent cations have a greater
impact on the double-layer thickness than the monovalent cations at
the same concentration (see, e.g. Helle et al. 2017a, 2017b). The salt
content is still low but the divalent ions suppress the diffuse double-
layer and the repulsive forces now decrease, thus gradually again
increasing cur and reducing St. It is also for this reason that the

geotechnical properties of quick clays can be improved by treatment
with potassium chloride (KCl). K+ is preferred over Na+ by the
mineral surface and thus has a greater effect in suppressing the
diffuse double-layer and reducing the repulsive forces. Eggestad &
Sem (1976) and Helle et al. (2015, 2016) have shown how
introducing KCl by salt wells improved the characteristics of quick
clays at the Ulvensplitten and Dragvoll sites in Norway.

Helle et al. (2017a) suggested that the clay behaviour changes
from quick to non-quick at the threshold value of 20% of the ratio of
the sum of K+, Mg2+ and Ca2+ to the major cations. An example of
this idea applied to the Tinghuset site in Drammen, Norway (Moum
et al. 1971, 1972) is shown in Figure 3. At this site two boreholes
25 m apart showed distinctly different conditions. BH1 had a 3 m
zone of quick clay, whereas BH2 had a 10 m quick clay zone
(Fig. 3a). However, both had leached clay with very low salt content
throughout the sequence (Fig. 3b). The ratio of the sum of K+, Mg2+

and Ca2+ to that of the major cations, that is, (K+ + Mg2+ + Ca2+)/
(Na+ + K+ + Mg2+ + Ca2+), is 20% or less over the quick clay
zone in both boreholes (Fig. 3c). An understanding of the
geochemistry of marine clays is clearly a key to identifying quick
clay zones.

Study sites

A summary of the sites studied as part of this work is given in Tables
2 and 3. The reader is referred to the references given in Table 2 for
further details of the sites. The sites are distributed over Norway’s
most populated, quick clay prone areas in South East and Central
Norway (Fig. 4). The sites 1–11 in SE Norway are located in the
counties Østfold, Akershus, Buskerud, Vestfold and Telemark, and
the Central Norwegian sites, 12–30, are in Trondheim, Sør
Trøndelag and Nor Trøndelag. Some soil properties at the study
sites are summarized in Table 3. In general, the sites are all
underlain by soft or medium stiff lightly overconsolidated slightly
silty clays. The range of the measured soil properties is relatively

Fig. 3. Tinghuset site, Drammen: (a) St; (b) salt content; (c) ion content of porewater (Moum et al. 1971, 1972).

Resistivity and remoulded clay shear strength
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narrow, with w and γ values being typically in the ranges 30 – 45%
(mean about 33%) and 1.8 – 2.0 Mg m−3 respectively. Clay content
is relatively high, being typically 30 – 45% (mean at 35%), and Ip is
more or less always less than 20% and frequently less than 10%. St
values vary widely.

Resistivity techniques

A detailed description of the techniques used in this study to
measure resistivity in geotechnical boreholes, from the surface and
from the air, has been given by Pfaffhuber et al. (2016) and these
techniques are briefly summarized as follows.

Resistivity cone testing (RCPTU)

The sounding equipment used for RCPTU consists of an ordinary
piezocone (CPTU) probe and a resistivity module mounted behind
the probe. Scandinavian manufacturers of RCPTU equipment have
chosen to equip their resistivity probes with four ring-electrodes.
The two outer electrodes transmit electric current into the soil,
whereas the two inner electrodes measure the difference in potential.
The electrodes need to be in contact with the soil volume where the
measurements take place. The module is powered by batteries, and it
can read, store and transmit measured data acoustically through the
rods or via an electric cable to a receiver on the surface. The
measured data can also be stored on a digital memory-card mounted

in the probe. The resistivity depth profile is limited only by the
maximum borehole penetration depth (of the order of 50 – 70 m).
Themodule needs to be regularly calibrated in brine solutions of salt
and water to ensure correct readings.

Electrical resistivity tomography (ERT)

ERT is a geophysical ground imaging method in which DC
electrical current is injected into the ground via short steel electrodes
installed 10 – 20 cm into the ground. By measuring the differences
in electric potential at the ground surface, a measure of the soil
resistance is obtained for all electrode locations or a combination of
electrode pairs. Typically electrode spacing varies between 2 and
4 m for high-resolution surveys that are needed for quick clay
investigations. The measuring profiles are organized in one or more
straight lines. Use was made of both the Wenner and Gradient array
systems. The Gradient array uses a large number of potential
electrode combinations scanning across the electrode layout and can
yield up to seven times more data than the Wenner array in a shorter
time, and thus can be useful for examining lateral changes in
resistivity (Dahlin & Zhou 2006). Present-day equipment can
measure potentials on several parallel channels and the total time
required for measurements in a profile is under 1 h. The
investigation depth is defined by the maximum distance between
the current and potential electrodes, and the resolution is defined by
the electrode spacing. Generally the investigation depth will be 10 –
20% of the profile length, depending on the resistivity distribution
in the soil. By processing the data and running an inversion
algorithm, a 2D or 3D or even 4D resistivity model of the ground
can be obtained. The software RES2DINV was used to invert all of
the ERT data acquired in this study. Details of the processing
method have been given by Loke & Barker (1996) and Loke (2016).
Usually resistivity is gradually increased or decreased laterally and
in depth until the model fits the data, leading to a smooth resistivity
model. There exists no unique resistivity model for an ERT
measurement, and use of different calculation models can illustrate
the uncertainty (Bazin & Pfaffhuber 2013).

Airborne electromagnetics (AEM)

AEM measurements are used to map the electrical resistivity of the
ground in a larger area. The sensor (antenna) of the AEM equipment
is operated at a height of about 30 m above the ground surface, and
is usually lifted by a helicopter. Modern airborne systems have
sufficient resolution to allow use in geotechnical applications.
Different AEM systems are available, some adapted to the need for
large penetration depths for mineral exploration, others for more
shallow applications in hydrogeology and geotechnical engineer-
ing. All systems have in common that a magnetic field generated by
the antenna induces current in the ground, which propagates
downward and outwards. The rate of change in the electromagnetic
field produced by these currents is recorded by a secondary coil. By
inversion of the measured data points, the resistivity distribution in
the ground can be modelled. Interpretation of AEM resistivity data
with regard to sediment properties has so far been done manually
and is an advanced task. The possible investigation depth may vary
from 50 m to about 500 m, depending on the geology and type of
soil in the area, the AEM system and the influence of noise from
surrounding infrastructure.

Laboratory resistivity measurements

Both horizontal and vertical (relative to the direction of sampling)
laboratory resistivity can be measured by cutting the samples into
cubes of c. 4 cm side and measuring the resistance between two
copper plates. Measurements are usually taken using a sinusoidal

Fig. 4. Map showing location of study sites in Norway. (Jean-SebQ32 .)
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Fig. 5. Resistivity measurements for sites in Trondheim area: (a) Dragvoll; (b) Nidarvoll; (c) Klett South; (d) Klett North.
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current at a frequency of 1 kHz. Single-axis sample resistivity
measurements are typically done in a test tube containing a similar
setup to those for RCPTU or ERT measurements with two current
and two potential electrodes. Alternatively, triaxial or odometer
cells can be modified to measure resistivity using metallic discs as
electrodes (Gribben et al. 2016). These configurations allow the
sample to be reinstated to its original state and also a more stable
electrode–soil contact than the free-air test described above.
Laboratory tests should be undertaken shortly after sampling as
chemical reactions within the samples can have an effect on the
measured resistivity.

Scale differences

Laboratory measurements are arguably the most accurate data as
long as one bears in mind that the sample quality determines the
applicability of the resistivity readings. RCPTU readings are small-
scale compared with ERTor AEM readings. No inversion is required
during the data acquisition and therefore the measurement resolution
is constant throughout the RCPTU profile. However, RCPTU probes
require regular calibration. Proximity to bedrock or other resistive
bodies off-line can bias the ERT and AEM soundings. When
comparing resistivity measurements, it is important to be aware that
these are influenced by a soil volume involving some centimetres
(laboratory) to some tens of centimetres for RCPTU, some metres to
tens of metres for ERT, and finally some tens of metres to some
hundreds of metres for AEM. Bearing all these factors in mind, all
three methods derive consistent and overlapping information (see
Figs 2, 3, 5 and 6, and Pfaffhuber et al. 2016).

Geotechnical soil sampling and testing

In Norway standard site investigation procedure is to recover
continuous piston samples of unconsolidated overburden material

and to subsequently subject each of the samples to routine index
testing as well as more advanced strength and compression tests if
these are required. In most of the sites studied here the sampling
technique involved use of the NGI 54 mm sampler (Andresen &
Kolstad 1979), working either as a thin-walled steel piston sampler
or as a composite piston sampler using plastic inner tubes. Index
testing normally comprises determination of water content, bulk
density, sensitivity using the Swedish fall cone and unconfined
compression testing on all recovered piston samples. A limited
number of plasticity, particle density, grain size, salt content and
organic content determinations are also usually made. Specifically,
salt content is determined by expelling porewater in a centrifuge and
using a correlation between measured electrical conductivity
(inverse of resistivity) and salinity. Clay (particles less than
0.002 mm in size) and silt (particles between 0.002 and 0.06 mm
in size) are determined using either a hydrometer or the falling drop
method (Moum 1965). Fall cone testing makes use of the Swedish
fall cone. In Norway fall cone data are interpreted according to
NS8015 (Norwegian Standardisation System 1988), which is
largely based on the Swedish Geotechnical Institute (1946)
calibration with some local modifications and additions.

Resistivity results

Comparison of results, Central Norway

Some resistivity results for the Tiller site are shown in Figure 2d and
data for four other sites in Central Norway are shown in Figure 5.
Resistivity data were measured using either ERT or RCPTU
techniques as well as by both methods at some sites. Despite being
in layers of sensitivity varying from low sensitivity (St < 8) to quick,
many of the data fall in the range 10 –100 Ω m, corresponding to
leached clay according to Solberg et al. (2012). Resistivity clearly
decreases with depth for three of the five sites, with only the

Fig. 6. Resistivity measurements for sites in South East Norway: (a) Kløfta BH 2284; (b) Smørgrav; (c) Vålen.
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Dragvoll data showing a distinct increase with depth. Data from the
two resistivity probes, those of Multiconsult and NTNU, give the
same result. Two sets of ERT measurements were made at Dragvoll
at different times and these give very similar output. For Klett South
ERT data were selected from two resistivity models and both give
similar results. ERT and RCPTU data compare very well, showing
very similar values and the same pattern with depth. The fit between
the two sets of data is excellent for the Dragvoll and Klett North
sites, but is not as good for Tiller, as the ERT line was located some
20 m from the RCPTU probes, or for the Nidarvoll site, as these
ERT data were not acquired with the necessary resolution.

Comparison of results, South East Norway

Similar data for three sites in South East Norway are shown in
Figure 6. Figure 6a compares resistivity values obtained by AEM
with those obtained by ERT for the E16 site near Kløfta. Some
further similar examples for this site have been given by Pfaffhuber
et al. (2016) and Anschütz et al. (2017). ERT and AEM models
were shown to agree well both in the values of the resistivity
measured and in the pattern of the resistivity profile with depth.
Vertical variation in the resistivity distribution appears to be
overestimated in the AEMmethod compared with the ERT method.
This is a result or bias of the inversion algorithm used. Solberg et al.
(2016) made similar findings for a quick clay area at Esp near
Trondheim.

RCPTU, ERT and laboratory resistivity measurements for the
Smørgrav and Vålen sites are shown in Figure 6b and c respectively.
The laboratory measurements were carried out using the ‘free air’
method described above. These two sites are distinctly different,
with that at Smørgrav having a layer of quick clay between two
layers of low- to medium-sensitive clay and Vålen having low- to
medium-sensitive clay only, with no quick clay present. All three
techniques give similar values, with a difference no bigger than
5 Ωm, and show the same trend with depth. The laboratory
measurements also show that the clays at both sites show some
anisotropy of resistivity, with the horizontal values being slightly
lower than the vertical ones. Smørgrav is possibly the only siteQ4
investigated to date where the low-sensitivity layer underlying the
quick clay is thick enough that the resistivity measurements can
be interpreted as a representative stable value for unleached,
saline clay.

Summary of all RCPTU data

A summary of all the measured resistivity values is given in Table 3.
Quick clay data from both regions are characterized by the following
consistent key features.

(1) Changes in resistivity are generally gradual with depth; no
sharp interfaces are evident in any of the methods used. This
corresponds to observed gradual changes in soil salinity.

(2) Data points with relatively high resistivity (typical for quick
clay) but low sensitivity appear generally in shallow layers as quick
clay overburden.

(3) Of the 30 sites studied, 24 show a decrease in resistivity with
depth, suggesting that many of the sites have been leached or
weathered near the surface.

(4) Resistivity estimates based on the various geophysical
methods are generally consistent within their respective resolution
limits.

(5) The definition of quick or non-quick clay is based on one to
two geotechnical parameters (cur and St). Based on resistivity alone,
no such definition can be made given all the uncertainties and
equivalences mentioned above. ‘High’ resistivity may indicate
quick clay but also ‘over-leached’ clay. On the other hand, ‘low’

resistivity very probably indicates unleached, non-sensitive clay
(see, e.g. Fig. 2).

Further to these rather qualitative conclusions, the question remains
as to whether any quantitative relationships may be established. The
following investigates this matter in detail.

Link with geotechnical parameters

Theoretical and empirical models

The electrical conductivity or resistivity of sediments and rocks is
primarily governed by the conductivity of the pore space, as most
matrix minerals are highly resistive, with the exception of some ore
minerals. Studies aiming at developing petrophysical models that
relate resistivity to porosity and salinity date back to the early 20th
century. In fact, resistivity sounding and logging was one of the first
geophysical methods applied in hydrocarbon exploration and was
used to test whether sandstone formations were saturated with brine
or oil. The most famous and still most commonly used model, that
of Archie (1942), was developed for this application and is based on
empirical factors from laboratory tests on sandstone cores that relate
bulk conductivity to the liquid phase assuming a non-conductive
matrix.

Materials that contain both sand and clay particles extend the
simple Archie model, as parts of the matrix also contribute to the
bulk conductivity. Numerous studies have attempted to describe,
discretize and model the very complex mechanisms that govern
electrical conductivity of clay–sand–brine mixtures. Quoting
Doveton (2001), none of these models are correct but some are
useful. Attempts have been made to extend Archie’s model to
account for clay particles in the pore space of sandstones (Doveton
2001). Most of these attempts are not useful for clay soils, as they
generally assume a small clay content that is limited to the sand
porosity. Glover et al. (2000) extended Archie’s formulation to a
two-phase conductivity model with both pore space and matrix
assumed to be conductors. Konishi (2015) suggested a three-phase
model consisting of porewater, porous clay and sand, in an attempt
to account for the capillary conductivity in the small clay pores.
Similar attempts have been made by soil scientists; for example, by
Rhoades et al. (1976), accounting for the liquid phase and clay
surface conductivity.

Probably the most relevant model for Norwegian clays has been
presented by Shevnin et al. (2007) and accounts for both ion
conductivity and electric-double-layer conductivity in the pores of
clay and sand, connected electrically both in parallel and in series.
The very complex pore conductivity model integrates capillary
conductivity depending on pore radii and variable double-layer
thickness. Two types of equations are used for clay contents higher
and lower than sand porosity, distinguishing sand–silt with clay
‘smeared out’ in the sand porosity and sandy clay with sand grains
‘floating’ in a clay matrix, respectively.

Salt content of the pore fluid

The relationship between resistivity and salt content (S) of the pore
fluid is shown in Figure 7a. This figure represents an extension of
that given by Long et al. (2012), with data for an extra nine sites
having been added here. As expected, the link between these two
parameters is strong. Resistivity decreases rapidly with increasing
salt content. The exponential trendline shows a relatively good
coefficient of correlation (R2) value of 0.81. Studying the
relationship on a linear scale may lead one to see large scatter in
the measured resistivity values for low salt content and almost
constant resistivity for high salinities. Use of double logarithmic
scales (Fig. 7b) clearly shows the direct correlation between salinity

Resistivity and remoulded clay shear strength
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and resistivity over several orders of magnitude, consistent with the
petrophysical models discussed above.

No significant change in correlation was observed when
resistivity was related to the salt concentration per unit volume of
soil (S′ expressed in mg kg−1 of soil; see Fig. 7c and d). Assuming
the density of water is 1000 kg m−3,

S0 ¼ S
w

1þ w
: (1)

One would expect a somewhat improved relationship here, as S′
accounts for the influence of porosity and water content. However,
the difference is only marginal owing to the limited range of water
content values measured, although a slightly higherR2 value of 0.83
is obtained.

Øveraas (2016) described a series of experiments in which water
with varying salt content was diffused through cylindrical samples of
Dragvoll clay from Trondheim. Resistivity values were measured via
electrodes protruding into the samples. Similarly, Gribben et al. (2016)

Fig. 7. Resistivity v. salt content (a) natural scale in g l−1; (b) log scale in g l−1; (c) natural scale in mg kg−1; (d) log scale in mg kg−1; (e) with data
grouped in water content ranges; (f ) with data grouped in clay content ranges. ; (c) and (d) Resagainstsaltinggperkg.grf; (e) and
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resagainstsaltloglogClayandWIntervals.grf.)
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described some similar laboratory experiments on Onsøy clay in
which the initial high salt content was gradually leached.
Relationships between resistivity and porewater salt content for
both of these trials are shown in the inset to Figure 7b and can be
seen to follow the same pattern with comparable numerical values to
those for the general body of Norwegian clays from this study.

An empirical relationship between porewater salt content and
electromagnetic conductivity (EM-39) has previously been devel-
oped for Canadian Champlain Sea sediments by Hyde & Hunter
(1998) and Calvert & Hyde (2002). Those researchers found that

S ¼ 0:4663þ 0:0002985C1:752 + 1:31 (2)

where C is the conductivity (in mS m−1).

If conductivity is converted to resistivity, this relationship shows
a very similar trend to that found here, with the relationship for the
Norwegian clays giving a higher resistivity for a given salt content
(see Fig. 7b).

Giao et al. (2003) also determined the relationship between
resistivity and salt content for Pusan clay from South Korea. Salt
content varied between 0.2 and 3.9 g l−1. A similar relationship to
that for the Norwegian clays was found but the trendline for the
Pusan data falls below that of Norwegian clays.

Porosity–water content

All of the soils studied here can be considered fully saturated. Also,
they have very similar specific gravity values in the range 2.6 – 2.75.

Fig. 7. Continued.

Fig. 8. Resistivity v. clay content: (a) all available data; (b) data with salt content less than 2 g l−1 only.
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Therefore any relationship between resistivity and water content will
be similar to that between resistivity and porosity. Here the range of
water content values is relatively narrow, being mostly between 25
and 45%. In Figure 7e resistivity is plotted against salt content, with
the data being subdivided into groups corresponding to different
water content ranges. No clear relationship can be observed, as the
salt content is the determining factor.

Clay content

The relationship between resistivity and clay content, for all the
available data, is shown in Figure 8a. Most of the samples lay
between 35 and 40% clay content. There is some relationship
between the two properties, with resistivity decreasing with
increasing clay content. This finding is as expected, as clay particles

facilitate surface conductance of electrical current. However, this
seems to have only a small influence. A change from 35 to 40% clay
content may change the resistivity by 10%, whereas a change from
2 to 7 g l−1 salt content may decrease resistivity by 50% (Fig. 7a and
b). Only at low salt content does the clay content play a more
dominant role. This is somewhat evident in Figure 8b, which
focuses only on the data where salt content is less than 2 g l−1. Only
at very low clay content (<20%) does resistivity drastically increase
towards values typical for silt–sand.

Some of the theoretical curves developed by Shevnin et al. (2007)
are superimposed on the data gathered for this project in Figure 7f.
Although the data presented here clearly mirror the theoretical
trend with respect to salinity, there is no clear dependence on clay
content. The Shevnin et al. (2007) relationships do not match
the measured data, probably owing to the fundamentally different

Fig. 9. Resistivity v. plasticity index: (a) all available data; (b) data with salt content less than 2 g l−1; (c) sites in the Central Norway area and in
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sand and clay porosities, both in the numerical values involved
and in the nature of the pore space in these two contrasting soil
types. However, they do illustrate the relatively minor influence of
clay content, within the range applicable here (30 – 50%), relative
to the dominant influence of salt content.

For clay content greater than sand porosity the Shevnin et al.
(2007) model can be simplified to

s ¼ sccCcFc (3)

with σ, σcc, Cc and Φc being the bulk conductivity, clay capillary
conductivity, clay content and clay porosity, respectively.

Using equation (3), attempts were made to normalize all
measured bulk resistivity to one common clay content (i.e. 35%,
which was the average clay content for the dataset) in an attempt to
remove the clay dependence from the data. In this way, samples with

clay content higher than 35% should have a reduced normalized
conductivity and vice versa. However, these normalized data did not
indicate a systematic change or improvement. This observation
needs to be seen in the context of the discussion on the usefulness of
such models, described above, when dealing with a variable, large
dataset rather than data from controlled laboratory studies. It should
be noted that, common for all of the models discussed above, at a
constant porosity and saturation, bulk conductivity correlates
linearly with the porewater conductivity, limited to a certain range
of porewater salinity.

Plasticity index

A similar pattern to that of clay content emerges in the plot of
resistivity against Ip in Figure 9a. Again, there is some trend of

Fig. 10. Resistivity v. remoulded shear
strength: (a) all data; (b) plotted with
respect to depth
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reducing resistivity owing to increasing Ip, which is arguably
stronger than that for clay content. However, Ip in sensitive clays
varies not only with the grain size and clay content of the soil but
also with the intensity of the leaching. For example, Bjerrum (1954)
showed that, for clay sites in the Oslo area, natural leaching of the
material by freshwater resulted in a drop in liquid limit (wL) from 45
to 25%, whereas the plastic limit (wP) shows amuch lower reduction
from about 20 to 17%. Similarly, Helle et al. (2016, 2017a) showed
that wL and wP of the clays at Dragvoll and Ulvensplitten both
increased by similar amounts to the Oslo clays when they were
treated with potassium chloride via salt wells. Hence the sensitive
clays may show a relatively lower Ip than similar non-sensitive clay,
thus making any correlation between resistivity and Ip more
complex.

Nonetheless for the data presented here, beyond an Ip value of
about 20%, corresponding to the upper limit of medium plasticity
(NGF 2011), the resistivity values are low and decrease from about
5 Ω m at an Ip of 20% to 1 Ω m at an Ip of 40%. All of the values
with Ip greater than 20% correspond to samples in which the salt
content exceeds 8 g l−1 (see also Fig. 7). For the medium- and low-
plasticity materials the resistivity values are generally higher but are
more scattered, probably for the reasons discussed above. In
Figure 9b those data with salt content less than 2 g l−1 only are
shown, and here the pattern of decreasing resistivity with increasing
Ip for the low- to medium-plasticity clays is somewhat clearer.

It is also important to study the possible influence of mineralogy
on the resistivity values, and in Figure 9c those data from the Central
Norway area and from South East Norway are plotted separately.
Although, in general, the data from South East Norway show higher
Ip values there is no clear pattern in the data. This finding is
consistent with that of Syversen (2013), who studied the mineralogy
and index properties of 102 samples of clays from all over Norway
and found the mineralogy to be relatively uniform with no clear
trends in the data.

Resistivity and remoulded shear strength

Norwegian marine clays are considered quick if cur is less than or
equal to 0.5 kPa and thus any possible relationship between cur and
resistivity is of significant interest. As seen in Figure 10a there is a
clear trend of decreasing resistivity with increasing cur, as would be
expected given that cur will decrease with increasing intensity of
leaching and thus decreased salinity. However, there is considerable
scatter in the data and there appears to be a patch of inconsistent data
that shows high resistivity and high cur. Based on resistivity
measurements only, these data would falsely be interpreted as quick
clay (false positives) even though they fall within the range 10 –
100 Ω m, often considered as typical for quick clay (Solberg et al.
2012). It should be noted, however, that no outliers are observed that
would lead to false negatives. In other words, low resistivity
(<10 Ω m) always relates to high remoulded shear strength
(>0.5 kPa).

In Figure 10b the same data are plotted with respect to depth
zones. It can be seen that many of the data in the outlier area
correspond to those shallower than 7.68 m; that is, data in the dry
crust or those corresponding to relatively deep weathering. This is
probably due to the long-term ion exchange pattern and
geochemistry of the material as discussed above. There are also
some further points in this outlier zone corresponding to silty
material.

Trends for deeper and non-silty material

The plots of resistivity v. plasticity index (Fig. 9a) and resistivity
v. remoulded shear strength (Fig. 10a) have been reproduced in
Figure 11 with all data from depths greater than 7.5 m and data for

the silty materials at Månejordet, Finneidfjord and Gullvika
removed. In this case the pattern of decreasing resistivity with
increasing plasticity index and cur is much clearer. Potential
correlations between resistivity and remoulded shear strength vary
significantly depending on whether shallow data are included or
not. Interestingly, weathering appears to have less effect on the
resistivity–plasticity correlation than on the resistivity–remoulded
shear strength, with shallow data agreeing with deeper data for the
former dataset.

Combining the data in Figure 11a and b it would seem that if the
resistivity is between 10 and 100 Ω m and Ip > 10%, then it is less
likely that the material is a sensitive or quick clay.

Summary and conclusions

The main objectives of this work were to study the reliability and
repeatability of the methods used to measure resistivity in
Norwegian marine clays, to examine the data obtained and to
assess their usefulness in characterizing the materials, particularly
for quick clays. It was also hoped to identify the material properties
that control the measured resistivity values. Of particular interest
was the study of materials that have been leached but are not quick.
The objectives were achieved by analysing data from 30 Norwegian
sites. The following features were found.

(1) Resistivity measurements are consistent whether acquired in
boreholes, on the surface or from the air within the scale overlap of

Fig. 11. Resistivity data from depths less than 7.5 m and silty data
removed v. (a) plasticity index and (b) remoulded shear
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the different methods. Sampling volumes range from hundreds of
square centimetres to hundreds of square metres.

(2) For Norwegian glacio-marine clay resistivity is primarily
defined by the porewater salt content–conductivity, with minor
additional influence by clay content and porosity as the latter two
vary insignificantly.

(3) Clay content influences resistivity only in low salt content
(<2 g l−1) samples.

(4) There is no geographical difference in the resistivity values,
which are similar and follow the same patterns throughout Norway.
This is consistent with the relatively uniform clay mineralogy
throughout the country.

(5) Indirectly, resistivity clearly correlates with remoulded shear
strength, the determining factor to identify quick clay, and the
plasticity index.

(6) The resistivity–cur correlation is limited to samples that are
deeper than the dry crust and deep weathering zone, found to be
around 7.5 m. In these shallower depths extended chemical
weathering re-stabilizes the leached clay, leading to potential false
negatives, where resistivity data alone may indicate quick clay.

(7) Whereas high resistivity (>10 Ω m) may indicate quick or
weathered clay, low resistivity (<10 Ω m) conclusively points to
stable, unleached clay in all studied samples.
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