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Abstract: The addition of biochar to soils can improve soil fertility and increase agricultural
productivity. We carried out a field experiment in which biochar produced from Gliricidia sepium
(Jacq.) Kunth ex Walp. was added to low-fertility Brazilian planosol and tested to increase the yield
of maize (Zea mays) and snap beans (Phaseolus vulgaris L.) in sequential, organic cultivation. Biochar
was applied at a 15 t/ha rate, combined or not with Azospirillum Brasiliense inoculation and organic
fertilizer (Bokashi). The application of biochar resulted in an increase in soil pH and of the content of
macronutrients such as phosphorus and potassium. Contrary to evidence from elsewhere, biochar
had a limited effect on increasing maize yield. In the case of beans, when combined with fertilizer,
biochar increased the production of beans pods and biomass, but the significant increase was observed
only for inoculation. Beans are the principal component of Brazilian diet and increasing productivity
of beans is of upmost importance for the poorest in Brazil, and in other tropical countries.

Keywords: biochar; maize and beans; smallholder farming; productivity; Brazil

1. Introduction

Agriculture contributes to food security, job creation and economic growth, yet it can also
lead to loss and degradation of natural ecosystems [1,2]. Around the world, smallholder farmers
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produce 80% of world food [3]. In Brazil, smallholder agriculture occupies approximately 80 million
hectares [4] providing on average 40% of the total Brazilian agricultural production [3]. It also employs
approximately 13 million people, corresponding to 79% of Brazil’s agricultural workers [5].

Biochar emerged as a potential tool to improve soil conditions and to increase crop productivity,
principally for smallholder farmers [6]. Biochar is a solid material that remains following the pyrolysis
(decomposition at elevated temperature of organic residues in the absence or with limited access of
oxygen; [7]. Biochar can increase crop productivity, diminishing farmers’ dependence on external
inputs such as lime [8–14].

Biochar can improve soil physical structure and aggregation, resulting in both better retention
of moisture in sandy soils [15,16] and improved drainage in clay soils [17,18]. Biochar can increase
soil pH [19], soil cation exchange capacity (CEC, [20,21]), sequester pollutants [22,23], and increased
carbon storage in soil [24], which may contribute to the mitigation of greenhouse gas emissions [13,25].
Recent literature has also demonstrated that when biochar is mixed with manure, enriched with urine,
or co-composted, effect on yield can be even greater [26]. The amendment of biochar to soil can also
result in positive microbial effects [27] whereby the biochar may provide a conducive environment for
microorganisms. The effect of biochar depends on soil properties, crop type, the rate of biochar applied
and biochar properties [11,24,28–30]. In addition, local edapho-climatic conditions are fundamental
for benefiting from biochar [24].

Biochar research on sequential cropping systems of maize and beans in Brazil is scarce [31].
Maize is the most cultivated and consumed crop in Brazil [32] with a projected increase in production
by 24% in ten years (from 2016/2017) [33]. Beans form the basic diet, being of utmost importance
for food safety and nutrition in Brazil [34]. For smallholder farming, even though of low efficiency,
both maize and beans are the principal food produced and consumed in Brazil [4]. Between 1996 and
2006, smallholder participation contributed to the increase in the gross value production of maize and
beans, from 49 to 52% and 67 to 77%, respectively [5].

Because of the importance of maize and beans for nutrition, especially for the poorest on the
planet, it is crucial to search for methods to increase productivity while minimizing the impact on the
environment. The scarcity of biochar studies focused on maize and beans in the Brazilian context and
the potential benefits for smallholder farming and a global society led to the research presented in this
paper. In the context of organic agriculture and smallholder farming, biochar can bring significant
benefits [35,36], especially given that in Brazil organic agriculture increased at the rate of 15 to 20% per
year between 1995 and 2005 (while other food sectors simultaneously grew only from 4 to 5%; [37]).
Worldwide similar trend has been observed [38].

In this study, biochar derived from Gliricidia sepium (Jacq.) Kunth ex Walp. was applied to a
Brazilian planosol in combination with organic fertilizer and microbial inoculants, and the effect
on yield of sequential maize and garden bean cropping was measured. Our hypothesis was that all
amendments improve plant productivity but to different extents. The present study is one of the few
studies to investigate the amendment of biochar combinations on sequential cropping of vital crops
under controlled field conditions.

2. Methods

2.1. Study Area

To evaluate biochar and other soil amendments on maize and snap beans yields, we conducted
a field experiment between March 2015 and April 2016 at the Integrated Agroecology Production
Experimental Station (also known as “Fazendinha Agroecológica Km 47” in Portuguese), Seropédica
municipality, Rio de Janeiro state, latitude 22◦ 45′ S, longitude 43◦ 41′ W at altitude between 30
and 70 m a.s.l. [39] (Figure 1; Supplementary Material). A sequential cultivation of maize (Zea mays)
variety Caatingueiro in the first cropping cycle and snap beans (Phaseolus vulgaris) cv. Alessa in the
second cropping cycle was carried out. The climatic conditions in the region, according to Köppen’s
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classification, are tropical Aw; hot and wet with rain in the summer [40] and drought during tropical
winter. Following the FAO (1998) taxonomy [41], the soils in the region were classified as planosols [39,42],
and are often degraded with low fertility.
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Figure 1. Area where the experiment was carried out (Rio de Janeiro state) (A); biochar production area
with different types of ovens located at Embrapa Agrobiology Experimental Station (B); brick oven
used for production of biochar used in this study (C); biomass (Gliricidia sepium (Jacq.) Kunth ex Walp.)
used for biochar production (D).

2.2. Experimental Design

The experiment followed a factorial scheme using a randomized block design with 24 plots
(3.0× 3.5 m) where three factors were evaluated, each in the presence or absence of biochar, inoculation
and fertilization with organic fertilizer [43]. The organic fertilizer consists of compost produced from
wheat bran, castor bean cake (Ricinus communis L.) and effective microorganisms that consist of
beneficial and naturally-occurring mixed cultures of microorganisms, applied as inoculants, to improve
soil quality and yield [44]. This resulted in eight treatments tested in triplicate, hereafter referred to
as B—biochar; BI—biochar + inoculation; BF—biochar + fertilization; BIF—biochar + inoculation +
fertilization; I—inoculation; F—fertilization; IF—inoculation + fertilization; C—control (without any
amendment).

Prior to planting, the experimental area was ploughed by harrowing and furrowing. Bokashi
was applied at 200 g/m (equivalent to 113 kg/ha of N), a standard dose used in organic agriculture
in Brazil [45]. This fertilizer was added only during the cultivation of maize in order to investigate
its lasting effects during the second cropping for garden beans. Inoculation was carried out at a
rate of 50 g of inoculum for each 10 kg of seeds. A 10% sucrose solution was used as adherent.
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Maize seeds were inoculated with Azospirillum brasilense (strain sp. 245) and beans seeds co-inoculated
with Rhizobium tropici (strain CIAT 899) and A. brasilense (sp. 245) prior to planting. Inoculum of each
bacterium was produced with turf and contained 108 colony-forming unit/g. Sixty kg of P2O5/ha was
applied to the entire experimental area following [46].

2.3. Biochar

The feedstock used to produce biochar consisted of branches and pruned logs of Gliricidia sepium
(Jacq.) Kunth ex Walp. of Fabacea family (Figure 1). Gliricidia is often used for nitrogen fixation in
organic agriculture [47–49]. Below-ground parts of Gliricidia are considered most useful as they fix
nitrogen, while the above-ground parts may rapidly shadow plants [48–51]. Gliricidia spreads rapidly
in our experimental area as it does in the region and enters adjacent native forest. In Brazil, Gliricidia is
often considered as an invasive species.

Biochar was produced in a traditional brick oven with the height of 1 m, and the base of the
stove was a square 1 × 1 m (Figure 1; [52]). The temperature during pyrolysis varied between 350 and
450 ◦C, and 35 kg of biochar was produced, on average, per 72 h pyrolysis cycle (approximately 30%
yield based on amount of biomass used). Biochar was added to the soil once, in the beginning of the
experiment when maize was sowed, at a dose of 15 t/ha per experimental plot. At that time, 15 t/ha
was considered the most optimal dose given that higher doses were shown environmentally and
economically inefficient while lower doses are not always effective [53,54]. Biochar had carbon content
of 60% and a nitrogen content of 1%. Total hydrogen content was 2.5% and the biochar had H/C
ratio of 0.5. The total cation exchange capacity (CEC), measured in 1 M NH4NO3, was 83 cmol/kg
(unwashed sample). In addition, biochar was characterized for dry matter content (99%), pH in
water (8.6), total N (1%), Al (0.03 cmol/kg), Ca (44 cmol/kg), K (24 cmol/kg), Mg (12.5 cmol/kg),
Na (2.5 cmol/kg) and H+ (0 cmol/kg). A detailed description of the methods used for our biochar
analysis can be found in [12].

2.4. Vegetative Cycles

Two sequential cropping cycles were carried out. Maize (Caatingueiro) was planted in March 2015
in rows with line spacing of 1 m. Plants were thinned to a number of six plants per meter. Cobs were
harvested 90 days after planting (June 2015) from an area of 2 m2 (12 plants). The aerial biomass of
maize (shoot biomass) was sampled from an area of 1 m2 (six plants).

Following maize harvesting, beans (Alessa) were planted in June 2015, on the same plots of
maize, using a minimum tillage method with line spacing of 0.5 m. Plants sown in plots previously
inoculated with A. brasilense were co-inoculated with the same A. brasilense strain (sp. 245) and with
Rhizobium tropici CIAT 899. Rhizobium inoculant is recommended in Brazil for cultivation of common
beans [55]. Plants were thinned to eight bean plants per meter. Beans were harvested 60 days after
planting in a 1 m2 area within each experimental parcel. During bean flowering, five plants were
harvested in order to determine the mass and number of nodules. In order to control Empoasca kremeri
pest, Nim oil spray (Azadirachta indica A. Juss) was applied weekly (1.5% solution) during the infestation
period. It is common to use extracts from the Nim plant as an insecticide (permitted in Brazil also in
organic agriculture) that reduces dependence on synthetic insecticides and diminishes crop production
costs [56].

2.5. Soil and Plant Analyses

Soil was sampled with auger at the depth of 10 cm from all experimental plots (composite sample
from each of 24 parcels), before and after biochar application, inoculum and/or fertilizer application,
and following maize and beans harvest. Soil samples were homogenized and sieved through 2 mm,
and analyzed for pH (in water), pf curve (%) at 15,000 and 100 hPa, moisture (%), organic matter (%),
total C (g/kg), total N (g/kg), total K (mg/dm3), total P (mg/dm3), total Mg (cmol/dm3) and CEC
(potential and effective; cmol/dm3). The potential CEC was measured as the sum of the base cations
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Ca2+, Mg2+, Na+ and K+ in addition to Al3+ and H+ (cmol/kg). The effective CEC was defined as the
sum of base cations, in addition to Al3+ (determined using a 1 mol/L KCl solution). PF curves were
calculated in Richards pressure chamber. Potassium and phosphorus were analyzed using a Mehlich
1 extractor (0.05 mol/L HCl and 0.0125 mol/L H2SO4) while total Mg was measured using a 1 mol/L
KCl solution. Nitrogen was determined using the Kjedahl method. For the measurement of organic
matter (OM) content, Na2Cr2O7 + H2SO4 10 N oxidation was used. C content was determined as
C = OM/1.724 and subsequently the C/N ratio was calculated.

For maize, the following variables were measured: wet and dry above-ground biomass,
wet weight of cobs with straw, wet and dry weight of cobs without straw, mass of 100 grains, and cob
length and diameter. For beans, the parameters that were determined were: wet and dry weight of pod
production and above ground biomass, and number of nodules. Mass of pods has direct relation with
beans productivity as it is the main product that will be marketed and is the most important variable in
this study. The mass of the pods was collected in an area of 1 m2 in each of the plots and subsequently
converted to productivity change per hectare. Above ground biomass is also an important indicator
as it provides cover material often used in organic agriculture. It was also collected from an area of
1 m2 in each of the plots and converted to mass per hectare. The nodules were collected from five
bean plants (root), in each of the plots, at the time of full bloom (most active period for nodules).
The nodules were counted and weighed. It is also a common variable used for bean-productivity
descriptions [57–60]. Results for dry weight are presented in the main paper.

2.6. Statistics

All soil and yield data were converted to normalize residuals (logarithmic transformation) and
analysed with repeated Anova and Tukey’s average test with a 95% confidence interval using the
R Software.

2.7. Biochar Production Costs

In addition to soil and yield analyses, we calculated the time needed to equalize the investment
in ovens (payback). The effect of economies of scale was evaluated considering the marginal cost of
constructing additional ovens and labour efficiency, according to the economic principles of fixed
costs and variable costs [61]. To measure the marginal cost in the construction of ovens, protective
equipment (gloves, boots, masks, etc.) and basic tools (chain saw, spade, etc.) that may be used in
constructing one or “n” ovens, was considered by calculating the investment over a greater amount
of total biochar production. Biochar-production costs were based on real costs of skilled personnel
employed throughout the project. To determine labour efficiency, the amount of ovens that one person
can feed with biomass per day was considered.

3. Results and Discussion

3.1. Biomass Yields for Maize (Zea mays) VAR. Caatingueiro

Figure 2 shows the corresponding dry weight for the above ground biomass, dry weight for the
maize cob without straw, the grains, the length and the diameter of maize. The discussion given below
is focused on Figure 2, while corresponding figures and statistics related to the wet weight data are
shown in Figure S1 in the supplementary materials. Tables S1 and S2 provide the statistical analyses
carried out on the data set for the ANOVA analysis of the effects of treatment, and the Tukey-test
analysis of the effect of treatment on the mass of 100 grains of maize.
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Figure 2. Results of dry weight of above ground biomass, dry weight of cobs without straw, mass of
100 grains, length and diameter of maize, Caatingueiro. Treatments are as follows: C—Control,
BI—Biochar + Inoculant, B—Biochar, BF—Biochar + Fertilizer, BIF—Biochar + Inoculant + Fertilizer,
I—Inoculant, F—Fertilizer, IF—Inoculant + Fertilizer. The data and standard deviation are based on the
average of three replicate measurements. Symbol * indicates statistically significant difference (<0.05)
between treatment C and F for the grains.

The effect of treatment had a limited effect on the parameters determined in our study. Only the
mass of 100 maize grains demonstrated statistically significant treatment effect in case of fertilizer as
compared to control (p < 0.05). Contrary to literature [9,11,62], we observed that biochar, fertilizer and
inoculum, or a combination of these treatments had little effect on maize characteristics, such as dry
weight of the above-ground biomass, the maize cob length and the maize-cob diameter. Notably, the dry
weight of maize cobs without straw was higher for treatments with combined factors as compared to
biochar alone. Consequently, there was a greater above-ground biomass accumulation (dry weight)
when biochar and fertilizer were combined, corroborating observations of other authors [11,31,62].
When the fertilizer was present, there was a greater mass of 100 grains than in the inoculated treatments.
Yet, in the treatment with fertilizer and inoculant less grain mass was observed than in the treatment
with inoculant only. In this combination, the application of fertilizer may have inhibited the action of
nitrogen-fixing bacteria. According to [63], when nitrogen is present in the soil heterotrophic bacteria
compete with the diazotrophic bacteria for the same compounds, which can cause loss in the diversity
of the population of nitrogen-fixing bacteria.

Even though previous studies show a positive effect of amendments (including biochar) on
maize productivity in limited-quality soils [9,12], we did not observe this effect in our experiments.
On the other hand, similar results were observed in temperate climates where high doses of biochar
(50 t/ha) did not lead to significant increase in maize productivity over long term [64]. Other research
shows [26,65] that the effect of biochar on crop productivity is a function of a range of factors such as the
type of biochar and the amount of biochar added to the soil, where biochar is being applied and how
much additional nutrient is added. For instance, it is shown [26] that low-dosage cow-urine–biochar
application to root zone in a fertile silt loam soil in Nepal resulted in a more than 300% increase
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in pumpkin yield as compared to treatment with urine only. When urine–biochar treatment was
compared with a treatment of biochar only, an 85% increase in pumpkin yield was observed [26],
which was explained by interaction urine with the biochar whereby urine without biochar might have
leached out [66,67]. Similarly, [66] demonstrates that adding co-composted biochar (at 2% dosage) to
sandy-poor soil promotes biochar’s positive effects on Chenopodium quinoa yield (by 305%) by nitrate
capture and delivery. Authors also observed that treatments with biochar only decreased yield by 60%
when compared to control [66].

In our study, we tested pure biochar as, at the time of designing the study (2013–2014), there was
not much evidence on the effect of pure biochar added at smaller quantities to Brazilian soils in the
context of organic maize production and the evidence of nutrient-enriched biochar in the context of
consecutive cropping in Brazil was scarce. It has also been reported that the biochar effect may be
more prominent after a longer time because the CEC of biochar may increase over time [20]. We also
acknowledge that other factors may have influenced our experiment such as largely uncontrolled in
field conditions biases from the sun and shading patterns or other environmental factors.

3.2. Biomass Yields for Snap Bean (Phaseolus Vulgaris) cv. Alessa

Figure 3 shows dry weight of pod production, dry above ground biomass and the number of
nodules. Table S3 shows the one-way ANOVA analysis and Table S4 the results of the Tukey-test
analysis. The discussion below is focused on the dry weight data and the number of nodules, whilst
analysis related to the wet weights can be found in the SI (Figure S2).
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Figure 3. Nodules, dry weight above ground biomass and dry weight of pod production of common
beans, cultivar Alessa. C—Control, BI -Biochar + Inoculant, B—Biochar, BF—Biochar + Fertilizer,
BIF—Biochar + Inoculant + Fertilizer, I—Inoculant, F—Fertilizer, IF—Inoculant + Fertilizer. The data
and standard deviation are based on the average of three replicate measurements.

Inoculation with A. brasilense and R. tropici increased dry weight of pod production to the greatest
extent (p < 0.05) (nearly doubled; Figure 3). Similar differences were observed for the dry weight of the
above ground biomass. The effectiveness of biochar increased when it was added in combination with
fertilizer and inoculum, supporting previously published studies [8,12,68]. The number of nodules
differed significantly between treatments. Biochar alone, biochar plus fertilizer and fertilizer alone
reduced the number of nodules when compared to the control treatment (p < 0.005), while other
biochar combinations (BI and BIF) had a positive effect. This could also be explained by statistically
significant increase in effective CEC of soil in the plots with biochar, inoculant and fertilizer over the
duration of experiment (Figure 4).
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Nitrogen is extremely important for bean production [69] and biological fixation is the main
source of nitrogen for this plant. It is likely that the inoculant Rhizobium tropici stimulated nodules
development when biological nitrogen fixation processes occured [55,70]. The soil C/N ratio was
higher in the beans cycle than the maize cycle, supporting this observation (p < 0.0001; Figure S6).
In addition, Azospirillum is known to help plants in conditions of drought [55,71,72]. Thus, the addition
of both inoculants promotes plant growth and stimulates the mechanisms of resistance to diseases
and environmental stress. The negative impact, as compared with inoculant only, observed following
the amendment of fertilizer and biochar may be explained by bacterium immobilization (via binding
to biochar) or a toxic effect (of either the biochar or fertilizer on the microbial community) [73,74].
Other studies have indicated that the liming effect of biochar can contribute negatively to N fixation,
which could explain the results observed here for the biochar treatments [27]. In addition, some volatile
compounds derived from biochar can also contribute to a reduced microbial activity in soil,
thus resulting in a high C/N ratio [75]. On the other hand, a positive effect of biochar on biological
nitrogen fixation in common beans has been reported [76]. This is an interesting aspect of our research
that needs to be further explored.

3.3. Change of Soil Properties over the Two Cropping Seasons

The results of changes in soil chemical attributes following the amendments for time points at 0,
120 days and 180 days are shown in the supporting information (Table S6—composite sample from
the entire experimental area and Figures S3–S11 while Tables S7–S8 provide the details of statistical
analyses). Throughout the analysis of soil data we assumed a constant bulk density. The soil pH varied
both with treatment and with time. The highest pH values were observed in treatments that received
biochar (BI, B, BF, BIF). Soil pH increased to 5.9 following the biochar amendment and was statistically
higher as compared to the control treatment that had a pH of 4.8 (p < 0.001). Of the biochar treatments,
treatment with biochar only (B) showed the highest pH value, which increased from 5.1 on day 0 to
6.1 after 120 days. However, after 180 days the pH on the plot with biochar decreased to pH of 5.3.
This is not an uncommon phenomenon following the amendment of biochar to soil and may suggest
the need for alkaline biochar re-application if pH is a limiting factor for a certain plant growth. Biochar
is usually alkaline (pH for biochar used in our study was 8.6) and thus it is expected to increase the pH
of an acidic soil [77]. Over time leaching of the alkaline components of the biochar takes place as water
percolates the soil [78], therefore the pH can decrease. Contrary to the increase in pH after 120 days in
the parcels with biochar amendment, the addition of fertilizer and the inoculant-fertilizer combination
resulted in a decrease of soil pH over time.

The highest soil N and P contents were observed during the first maize cropping cycle.
The application of biochar had no effect on the contents of N and P, most likely because part of



Sustainability 2018, 10, 578 9 of 15

the N contained in the feedstock is lost in the pyrolysis process [74,79] and because available P
depends on the type of biomass feedstock used for the biochar production [80]. The treatments with
biochar were characterized by larger K content (p < 0.0001), supporting the notion that biochar is
rich in K [12]. The content of Mg increased mostly in the case of combined treatments BFI and BF
(p < 0.005). Soil organic matter content increased significantly with the duration of the experiments but
did not differ between the treatments (Figure S7). The soil moisture values were lower after 120 days
(p < 0.0001), which can be explained by the weather conditions.

There were statistically significant differences between treatments for the effective CEC (p < 0.05).
The effective CEC for the soil alone was 2.17 cmol/kg on day 0, 1.76 cmol/ kg after 120 days and
1.74 cmol/kg after 180 days, while for the biochar treatment was 1.78 cmol/kg on day 0, 2.22 cmol/kg
after 120 days and 2.06 cmol/kg after 180 days. The effective CEC was the highest for the BIF treatment.
This could be attributed to a combination of high availability of cations in exchangeable form in this
treatment, possibly related to the presence of biochar [25]. The potential CEC was the highest after
120 days and decreased after beans harvest after 180 days. The decrease with time may be related to
a decrease in soil pH and to biochar properties [25,81]. We also observed no statistically significant
differences between treatments and potential CEC.

3.4. Biochar-production Costs

Marginal costs of biochar production decrease with an increasing number of ovens used to
produce biochar, demonstrating gains in economies of scale (Figure 5). This gain is associated with the
use of labour, since the brick ovens allow one person to manage up to four production units. Due the
intensity of labour use, biochar production costs are lower for smallholder agriculture, reducing costs
from BRL 1.5/kg to BRL 0.40/kg for small-holder agricultural production (Figure 6) (where BRL
1 equals USD 0.32, on the 20th of September 2017). This cost reduction (economy of scale) in the
case of small-holder agriculture did not consider the opportunity costs of labour, and the timber for
charcoal is collected inside the farm of smallholders. When in-house labour is used, the reduction in
cost can reach 54%. According to census (IBGE, 2006), there were 321 properties with small-holder
agriculture in the Seropédica municipality, each of which had an average area of 16 h per property.
The estimated area (hectares) that a family of four people can attend and use for the production
of biochar over the course of one year is up to 18% of the average area considered as smallholder
agriculture in the municipality of Seropédica. It is important to emphasize that in many regions in
Brazil, small-holder farmers have difficulty accessing the input markets, due to high costs, low scale
for purchase, and poor infrastructure.
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Figure 5. Relation between the number of brick ovens producing biochar simultaneously and costs per
kilogram of biochar produced (in Brazilian Real per kilogram where BRL 1 equals approximately USD
0.32) in these ovens.
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4. Conclusions

Adding biochar to Brazilian soil showed a range of positive effects on soil quality such as
diminishing acidity and improving nutrient content. This effect was not, however, directly associated
with plant productivity improvement. Notwithstanding several studies reporting that in tropical
weathered soil the addition of biochar in combination with fertilizer significantly improved maize
production (e.g., [8]) our study shows a limited effect of biochar on maize yields. For beans, amending
the soil with inoculant alone produced the best effect likely due to Rhizobium and Azospirillum contained
in the inoculant that facilitate N intake and plant growth, and reduces plant stress to external factors
(such as drought that happened during our experiment). In the case of beans, we observed a positive
effect of biochar (in combination with inoculant and fertilizer) on pods and biomass production.
Beans form a principal component of the basic Brazilian diet, and techniques focused on improving its
production have far reaching consequences.

Our results also show that the brick ovens commonly used in rural tropical areas provide the
scale gains and lower costs of biochar production; and, using family labour, biochar production costs
can decrease by 54%. In this way, biochar could be a viable alternative for small-holder farmers
who seek to reduce reliance on external inputs or have limited input market access in regions with
poor infrastructure, whilst still maintaining crop yields. On the other hand, the addition of inoculum,
even though most promising given field trials, may be difficult to apply by the farmers in practice due
to costs and preparation method. Future research could look into the socio-economic aspects of all
treatments examined here and extend into study of biochar in longer trials as well as with multiple
additions of biochar.
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