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[1] Most tsunami models apply dislocation models that assume uniform slip over the
entire fault plane, followed by standard analytical models based on Volterra’s theory of
elastic dislocations for the seabed deformation. In contrast, we quantify tsunami runup
variability for an earthquake with fixed magnitude but with heterogeneous rupture
distribution assuming plane wave propagation (i.e., an infinitely long rupture). A simple
stochastic analysis of 500 slip realizations illustrates the expected variability in coseismic
slip along a fault plane and the subsequent runup that occurs along a coastline in the near
field. Because of the need for systematically analyzing different fault geometries, grid
resolutions, and hydrodynamic models, several hundred thousand model runs are required.
Thus, simple but efficient linear models for the tsunami generation, propagation, and runup
estimation are used. The mean value and variability of the maximum runup is identified for
a given coastal slope configuration and is analyzed for different dip angles. On the basis of
the ensemble runs, nonhydrostatic effects are discussed with respect to their impact on
generation, nearshore propagation, and runup. We conclude that for the geometry and
magnitude investigated, nonhydrostatic effects reduce the variability of the runup; that is,
hydrostatic models will produce an artificially high variability.
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1. Introduction

[2] This study is motivated by the need for a quantification
of expected variability in runup for a subduction earthquake
of given magnitude and mean slip. Tsunami runup predic-
tion has for a long time been based on homogeneous slip
distributions of rupture on the fault. Using empirical rela-
tionships relating earthquake slip to its magnitude [Wells and
Coppersmith, 1994; Henry and Das, 2001; Blaser et al.,
2010; Leonard, 2010], one can therefore simply compute
the profile of the initial waveform. Modern teleseismic and
geodetic inversion techniques however, have shown that the
assumption of a uniform slip over the entire rupture plane is
invalid. Although several studies have addressed tsunami
generation by heterogeneous slip with a relatively complex
rupture pattern, it is often in the context of hindcasting past
events [e.g., Wang and Liu, 2006; Løvholt et al., 2006]. In
the present paper, we analyze how heterogeneous coseismic
slip affects the initial water surface elevation and conse-
quently the tsunami runup on the coast for a high number of
stochastic slip realizations, thereby addressing also the
runup uncertainty. The number of studies including this

effect is limited [e.g., Geist, 2002; McCloskey et al., 2007,
2008], but conclusive on the fact that the common deter-
ministic practice understates the complexity of the problem.
Papers addressing the variations of mean quantities such as
the slip and fault dimensions based on magnitude scaling
relations [e.g., Bolshakova and Nosov, 2011; Blaser et al.,
2011] also emphasize the importance of stochastic runup.
Herein we choose to only concentrate on slip variations in
the dip direction. The available studies in literature addres-
sing tsunamis due to random slip earthquakes are so far
limited to the nearshore wave height, thus not attempting the
explicit calculation of the runup. This paper quantifies the
runup for an ensemble of plane waves generated by earth-
quakes with different realizations of heterogeneous slip.
Because of the need for systematically analyzing different
geometries, grid resolutions, and hydrodynamic models,
several hundred thousand model runs are required. Thus,
simple but efficient linear models for the tsunami generation,
propagation, and runup estimation are employed, and an
idealized bathymetry is applied. For the same reason, we
limit the analysis to plane wave runup; it is stressed that this
study is focusing on the theoretical and fundamental aspects
of the tsunami generation and runup rather than attempting a
description of any historical event. Opposed to previous
studies, the present paper includes an elaborate analysis of
dispersive effects originating from short-wave components
introduced by the slip heterogeneity. Geist and Dmowska
[1999] indicate that tsunami water levels associated with
slip variations in strike direction are greater than those due to
corresponding variations in dip direction. This exemplifies
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that additional factors adding to the variability is neglected in
this study. Such factors may include the slip variation and
rupture speed in the strike direction, bathymetry and topog-
raphy effects, tidal variations, and finally two-dimensional
wave phenomena such as refraction, reflection, focusing, and
edge wave evolution.

2. Elastic Seabed Response to a Subduction
Earthquake

2.1. Seabed Response to Coseismic Slip

[3] Okada [1985] derived analytical expressions for the
surface displacement due to an inclined fault in a half-space
for finite rectangular sources. These expressions have been
broadly used to model ground surface deformations associ-
ated with earthquakes. In this study, we concentrate on
interplate subduction events which are the most common
source for large tsunamis observed around the world. We
therefore limit our analysis to vertical displacement of the
seabed due to pure dip slip on a reverse fault. U is taken as
the movement of the hanging wall side block relative to the
footwall side block (Figure 1). Considering pure dip slip
only, we set strike and tensile components to zero. At the

seabed, the vertical permanent deformation uz due to a dis-
location along a surface in an isotropic elastic medium is
given by Okada [1985, equation 26].
[4] In order to compute the vertical displacement due to a

fault rupture with nonuniform slip distribution, we imple-
ment the Okada [1985] analytical solution for n equal ele-
ments with width W/n along the two-dimensional (2D) fault.
We calculate and sum the local vertical displacements due to
constant slip on each element, allowing for heterogeneous
slip by varying U piecewise from segment to segment.
[5] The earthquake rupture process has for long been

considered to follow a self-similar scaling relationship, since
the stress drop has been observed to be independent of
magnitude [Aki, 1967]. Earthquake self-similarity means that
small earthquakes are not physically different from large
earthquakes. Indeed, recent inversions of rupture mechanism
have provided increasingly detailed slip distributions. Mai
and Beroza [2000, 2002] analyzed published slip maps for
different earthquakes to model mechanics of the rupture
process. They derived a series of laws accounting for spatial
complexity of earthquake slip along a fault plane. The
authors proposed that the slip distribution follows an auto-
correlation function only depending on the distance between

Figure 1. (a) Geometry of the source in the analytical model. The surface displacement due to a rectan-
gular reverse fault in a half-space is computed using the work of Okada [1985]. The y axis is taken to be
parallel to the strike direction of the fault. The x axis is taken to be perpendicular to the strike direction of
the fault, pointing horizontally in the downdip direction. The z axis corresponds to the vertical direction
pointing upward from the seabed; d is the dip angle of the fault plane, and hm is its shallowest depth below
the seabed. W is the width of the fault (downdip dimension). (b) Geometry of the bathymetry used in the
tsunami simulations. The small bottom section with the gentlest slope closest to the shoreline is not shown
in this figure because of the scale.
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two points on the fault plane and a downdip correlation
length a. The correlation length can be derived from fault
dimensions using a � 1 + W/3 where W is width (downdip
dimension) of the fault in km. Among the possible auto-
correlation functions, we chose to implement the exponential
one that is characterized in space by C(x) = e�x/a and in the
Fourier domain by the power spectrum F(k) = 2a/(1 + a2k2),
where x is distance and k is wave number. The actual fluc-
tuation of the slip is added to the mean slip by a multipli-
cation of the spectral amplitude with a random phase term
ei8(k), subsequently transformed back to space using an
inverse Fourier transformation. The fluctuation of slip is then
scaled to 30% of the mean slip value of 5 m. The procedures
for computing the distributed slip stochastically is adopted
from Roth and Korn [1993].
[6] For this study, the fault width is set to 75 km, which

leads to a correlation length a of 26 km. To be able to ana-
lyze the results stochastically, we generate 500 random
slip distributions following the exponential autocorrelation
function. For each rupture simulation, the slip value varies in
the downdip direction and is tapered at the upper and lower
edges of the fault. Examples of several randomly generated
slip distributions are given in Figure 2.

2.2. Geometry and Seabed Displacements

[7] To design realistic trench topography, we use the
continental slope along the Sumatra trench as a suitable

example. An average slope is computed along a section
perpendicular to the subduction trench: 1:30 for Sumatra,
with a nearshore slope of 1:39.5 at water depths less than
100 m. Outside of the trench, a constant ocean depth of
4000 m is assumed. The topography is shown in Figure 1.
Naturally, the bathymetric profile affects the runup; a mild
slope generally provides a larger amount of amplification
than a steeper slope. Varying the slope of the bathymetric
profile is beyond the scope of this paper.
[8] The fault segments are divided into n = 746 parts over

the fault plane. Each of the 500 slip distributions is applied
to the rectangular fault plane located along the plate inter-
face. As we limit the study to plane wave propagation, we
extract the solution in x-z space at the center of the fault
plane. The dip angle d is changed from 10� to 70�, and the
depth of the upper edge hm varies from 100 m to 30 km
below the seabed. The shallowest depth of hm = 100 m
represents a rupture extending to the surface. However, it is
necessary to place the fault at a certain depth to avoid
mathematical singularities. In this particular case, the slip
profile was not tapered at the upper edge of the fault. The
results of the simulations for a limited number of realizations
are plotted in Figure 3.
[9] The displacement due to a shallow dipping dip-slip

event is very different from a steep fault event, which cor-
responds to the standard theory. For dip angles <30�, the
initial seabed waveform is composed of a surface elevation

Figure 2. Example of a subset of the variable slip distributions used in the simulations.
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flanked by a depression on its right. As a consequence,
coasts located along the volcanic arc in the dip direction of
the subduction zone (i.e., to the right of the x axis) will first
observe a sea withdrawal. For steep faults (with dip angles
>30�), the initial seabed waveform is composed of a
depression followed by an elevation. As a consequence,
coasts located along the volcanic arc in the dip direction of
the subduction zone (i.e., to the right on the x axis) will only
observe a small sea withdrawal, followed by a much larger
increase in water level. We observe that for a thrust earth-
quake, the maximum predicted elevation is always larger
than the maximum depression.
[10] In terms of runup estimation, we are interested in the

maximum value of the vertical displacement and the total
volume of water displaced. These two variables are analyzed
with respect to their coefficient of variation (standard devi-
ation s divided by the mean m). This coefficient displayed
larger values in the cases of shallow rupturing and shallow
dipping faults, whereas the imbedded faults and the faults
with larger dip resulted in less variation (for brevity, the
results are not displayed). A reduction of the coefficient of
variation with increasing fault depth hm was found, and is

interpreted as the depth acting as a low-pass filter on the
seabed response.

3. Tsunami Propagation and Runup Estimation

3.1. Methodology

3.1.1. Initial Conditions for Tsunami Simulations
[11] Most tsunami models encountered in literature copy

the seabed displacement directly from the seabed without
taking the hydrodynamic response that filter out short-wave
components at the seabed during tsunami generation into
account. This approach may introduce nonphysical short
wavelengths. To explore this issue, we therefore use both the
seabed copied to the surface as well as modified seabed
elevations as initial conditions in the subsequent tsunami
simulations. Thus, we label the simulations using the seabed
response directly as “copied,” whereas the initial condi-
tions modified due the hydrodynamic response are labeled
“filtered.” The methodology for quantifying the filtered
initial water level is based on full potential wave theory.
The method for filtering is derived from Pedersen [2001],
and is similar to the model of Kaijiura [1963] applying a

Figure 3. Permanent vertical displacement at the seabed due to thrust events with different fault geom-
etries as a function of the distance from the trench for a subset of the realizations. Different colors are
used for different fault depths hm. We investigate two types of slip distributions for the subsurface fault
(hm = 100 m): the slip values are tapered (red lines) or not (black lines) at the upper edge. We observe
a change in the wave polarity between dip angles shallower or steeper than 30�. For clarity, we only
present the two end-members of dip angles d. (left) Shallow dipping fault with d = 10�, (right) steep
fault d = 70�, (top) hm = 100 m, and (bottom) hm = 3, 10, 30 km.
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hyperbolic cosine filter. The seabed uplift is instantaneous,
and represented with piecewise constant values. The result-
ing initial water elevation represents the average elevation in
the interval centered at each node.
3.1.2. Wave Propagation and Quantification of Runup
in Large Ensembles
[12] Naturally, the crucial feature of a tsunami is its runup.

A variety of approaches for nonlinear shoreline tracking has
been attempted over the years; see for instance the review by
Pedersen [2008a]. Today runup models are included in state
of the art tsunami models based on the shallow water equa-
tions [Titov and Synolakis, 1995, 1998; Imamura, 1996;
LeVeque and George, 2008; Gayer et al., 2010], as well as
in widespread coastal engineering codes based on Boussi-
nesq type equations [e.g., Kennedy et al., 2000; Lynett et al.,
2002; Lynett, 2006; Son et al., 2011; Zhou et al., 2011]. Still,
in the present context where we need to perform several
hundred thousands of simulations in a controlled and com-
parable manner, a simpler computational strategy is crucial.
[13] A few analytical solutions for runup on an inclined

plane have been obtained by applying the hodograph trans-
formation to the nonlinear shallow water equations, as first
published by Carrier and Greenspan [1958] and later
employed in a series of articles. However, the hodograph
transformation essentially links the nonlinear problem to its
linear counterpart, a wave equation with variable coeffi-
cients that still must be solved. This is generally obtained
through the application of a Hankel transform, which put
restrictions on the shape of the incident wave to obtain an
explicit transformed waveshape. With a few notable excep-
tions, such as the asymptotic formula for solitary wave
runup published by Synolakis [1987], the inverse transfor-
mation requires numerical integration. For our randomly
generated initial conditions this kind of procedure is
unsuitable. Fortunately, the analysis of runup based on the
hodograph technique has also provided general and useful
insight in the relation between linear and nonlinear shallow
water solutions for runup. Provided that the incident wave is
well described by linear theory, maximum runup and with-
drawal are the same for the linear and the nonlinear
description. On the other hand, the shoreline motion between
these extreme values does depend on the nonlinearity. This
is discussed by, for instance, Synolakis [1987] and, more
elaborately, by Didenkulova [2009]. In the latter reference it
is also demonstrated that other properties, e.g., the breaking
limit, may be obtained from linear solutions. Breaking is
here defined as a singularity in the hodograph transformation
corresponding to a vanishing Jacobian determinant at the
shoreline, implying that the surface elevation is becoming
multivalued as a function of the horizontal coordinate. When
the breaking criterion is expressed in terms of the vertical
acceleration of the shoreline it reads [Didenkulova, 2009]

g ¼ 1

a2gð Þ
∂2h
∂2t

¼ � 1

agð Þ
∂u
∂t

> 1;

where a is the slope of the beach and the shoreline is to the
left of the fluid. Implicit in the use of this criterion is the
assumption that a bore will persist whenever breaking does
occur. Hence, an incident wave that will produce breaking
anywhere will also yield breaking at the shoreline. This is
definitely the case within nonlinear shallow water theory. In

view of the geometry, which is two-dimensional and com-
prises a monotonous slope, this assumption is reasonable
also from a physical point of view.
[14] As will be shown subsequently, dispersion may have

a noticeable effect on the runup height. However, dispersion
will be most important in the deep water part of the propa-
gation [see Pedersen, 2008a] and we assume that the wave
motion close to the shoreline is hydrostatic. Then, provided
the dispersive deep water region and the nonlinear shallow
water region do not overlap nonlinear, extreme shoreline
excursions may again be obtained by linear theory. This is
demonstrated by Pedersen [2008b] (benchmark 1). For
waves that come close to breaking in finite depth dispersive
effects may become important again, because of the steep
wavefront, and lead to the evolution of undular bores that are
sometimes observed for tsunamis [e.g., Glimsdal et al.,
2006; Grue et al., 2008; Madsen et al., 2008]. Undular
bores are nonlinear and dispersive wave forms that are out-
side the framework of our modeling strategy that may be
regarded as a combination of linear dispersive equations
with nonlinear shallow water equations. Further, in the
present investigation we are primarily concerned with non-
breaking runup heights or the occurrence of breaking of
such. The first is presumably not affected by undular bores,
while the breaking limits may be slightly modified, only, by
dispersive effects at the shoreline.
[15] In the present article the topography is not represented

by a single inclined plane, but by a broken plane joined to a
deep sea region of constant depth. Still, as long as nonlinear
effects are important only on the innermost slope leading to
the shoreline, while dispersive effects then have become
very small because of shoaling, both the breaking criterion
and the linear values for the maximum runup will be valid.
Again, it is emphasized that the general shoreline motion
between the extreme values is not reproduced by linear
theory, even though it can be derived from the linear time
story of the shoreline [Didenkulova, 2009]. In the present
filtered simulations, g is in most cases less than unity during
first runup (see Figure 4), implying validity of the employed
linear theory. On the other hand, it should be noted that
nonphysical breaking is frequent in the copied model runs
for small dip angles and shallow rupture.
[16] In view of the discussion above we employ linear

numerical models for the runup. We then solve the linear
shallow water (LSW) equations, the linearized Boussinesq
equations on standard form [Peregrine, 1967] and the line-
arized Nwogu formulation [Nwogu, 1993] that has better
dispersion properties than the standard Boussinesq equa-
tions. To this end we employ a simple finite difference
method with a staggered grid in space and time and centered
differences. Further details on the method is found in work
by Løvholt and Pedersen [2008], with the differential
equations given in their equations 1–2 and Table 1, while the
discretizations are defined in their equations 5–7 and
Table 2. The extension to nonuniform grids is obtained
simply by invoking the local grid increments in the discrete
equations. Since the methods are linear, no tracing of the
shoreline is needed. However, it is important that a velocity
node is located at the shoreline, in which case no onshore
extrapolation or fictitious nodes are needed. The runup
performance of this method, for the LSW and standard
Boussinesq equations, has been tested by Pedersen [2008b]
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and compared to fully nonlinear, Lagrangian models
(NLSW, Boussinesq, full potential theory) with an accurate
shoreline representation. For a benchmark test (numbered 1)
it was found that the linear model reproduced the nonlinear
maximum runup value very closely also for the Boussinesq
equations, in accordance with the above discussion.
3.1.3. Grid Effects
[17] A variable grid is employed where the maximum grid

increment at depths of 4000 m is Dxmax. Subsequently, the
local Courant number is kept nearly constant at 0.9 until a
given minimum water depth, Hmin where a minimum spatial
grid increment is employed,Dxmin. For water depths smaller
than the threshold depth Hmin, the grid increment remains
equal to Dxmin.
[18] For each hydrodynamic model (LSW, standard linear

dispersive, and linearized Nwogu; both copied and filtered
initial elevation) and for each realization, minimum depth,
and dip angle, simulations are conducted for three different
grid resolutions, employing 500, 1000, and 2000 grid points.
The finest resolution then corresponds toDxmax = 160 m and
Dxmin = 5 m. The convergence is evaluated on the ensemble
level by computing the percentage error for mean values and
standard deviations between the two finest resolutions. It is
computed for each hydrodynamic model and parameter
combination of d and hm. The largest relative error for the
computed runup comparing the different grid resolutions is
found for the LSW model with the copied initial conditions
and a minimum fault depth of 100 m, ranging from 2.3% (for
a 10�dip angle) to 3.1% (for a 70�dip angle) for the mean
and 4.7% to 8.5% for the standard deviation. For the
imbedded faults, and for all other combinations of initial
conditions and models, errors were below 0.3% both for

the mean and the standard deviation, decreasing with
increasing hm.

3.2. Examples of Results From Single Realizations

[19] Figure 5 shows the initial water surface computed for
10� and 40� dip angles using the same slip realization at
three different minimum depths hm. For the case of shallow
rupture, the difference between the filtered and copied initial
conditions is distinct. For the 10� dip angle, short wave-
length seabed undulations are clearly filtered on seabed
response. In case of the 40� dip angle, the filtering results in
a reduction in the peak of the initial water level and a gentler
slope for the steep gradient located above the upper fault
edge. However, the effect of filtering is small for the
imbedded faults, and in the case of hm = 30 km, the differ-
ence is barely visible.
[20] Figure 6 shows the simulated runup for the LSW

model, using the water levels displayed in Figure 5 as initial
conditions. As shown, the effect of filtering is most distinct
for the shallow rupture. For hm = 100 m, the difference
between the two solutions (copied and filtered) is relatively
limited during the first wave cycle. During the second wave
cycle however, the corresponding solutions are distinctly
different, and it is shown that the simulation using the copied
initial condition overestimates the runup by about a factor 2
for the 10� case. The drawdown obtained for shallow rupture
using the copied initial conditions largely exceeds the solu-
tion using the filtered initial condition. In fact, for most
simulations breaking occurs during the drawdown after the
first positive peak. This also holds for the dispersive simu-
lations, see below for a discussion. Hence, the solution at
later times may no longer be valid. For this reason, we

Figure 4. Breaking factor g for all simulations on the shallow rupture geometry (hm = 100 m) computed
using the fluid acceleration at the shoreline. Crosses show the breaking factor for simulations using the
seabed displacements as initial conditions, and circles show the breaking factor for simulations using
the smoothed initial conditions. (top) Results for 10� dip and (bottom) results for 40� dip. (left) Results
for the LSW simulations and (right) results for the dispersive (Nwogu) simulations.
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restricted subsequent analyses and statistics on the maxi-
mum runup to the first positive peak. We will claim that it
still represents the maximum runup reasonably well, as the
maximum runup arises within the first positive wave in most
dispersive simulations. Given the small difference in initial
conditions this relatively large overestimation in runup
caused by the nonphysical short wavelengths may seem
surprising. Nevertheless, this example demonstrates that
even relatively small deviations due to artificial short
wavelengths may contribute considerably to the runup or
drawdown using a hydrostatic model.

3.3. Effects of Fault Parameters on the Maximum
Runup

[21] We investigate the maximum runup for both the LSW
and dispersive tsunami simulations for all shallow rupturing
geometries and all realizations with respect to the fault
parameters. Both copied and filtered initial conditions are
used. We notice that comparing the higher-order dispersive
model of Nwogu [1993] with a standard dispersive model

resulted only in negligible deviations. The effect of higher-
order dispersion will hence not be addressed further.
[22] Figure 7 shows examples of the distributions of the

simulated maximum runup with Poissonian and lognormal
fits, established using built-in fitting functions in Matlab.
The distributions are associated with a distinct skewness,
enabling maximum runups markedly larger than the mean of
the ensemble. The widest distributions are found for the
LSW model with copied initial condition and a shallow
rupture. The randomness of the runup is however clearly
reduced by introducing dispersion, as the dispersive simu-
lations show no extreme values such as the ones from the
LSW model shown in Figures 7a and 7d. This is due to
filtering of high-frequency components in the dispersive
simulations during the arrival of the leading at the coast-
line. Submerging the fault to larger depths also reduces
variability; moreover, the skewness of the maximum runup
distribution is much less pronounced for imbedded faults.
[23] The mean value, standard deviations, and coefficient

of variation of the maximum runup were computed for
the different parameter and model combinations for the

Figure 5. Comparison of the initial water surface obtained by copying the seabed displacement without
filtering (solid curves) and with filtering (dashed curves) for six different realizations. Results for (top)
hm = 100 m, (middle) hm = 10 km, and (bottom) hm = 30 km. (left) Fault plane dip angle of 10�;
(right) fault plane dip angle of 40�.
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500 realizations. This statistic is presented below. To obtain
a measure of the accuracy of the Monte Carlo simulation,
we also computed the corresponding statistics for half sub-
sets of the realizations. Deviations in the mean, the standard
deviation and the coefficient of variation were typically
found in the range of 1 to 5% comparing the sets with 250
and 500 realizations. Trends in these statistical outputs as
functions of the different model parameters discussed below
were not changed because of the finite number of realiza-
tions. It was therefore concluded that the 500 realizations
were sufficient for this study, although a larger number of
realizations would increase the accuracy. However, it is

noted that a similar number of realizations would be
needed for generalization into two horizontal dimensions,
which would enable the need for quite large computational
resources.
[24] Figures 8a and 8b show mean value and standard

deviation of the maximum runup as a function of the dip
angle for the LSW and the dispersive model, respectively.
For the LSW model, the effect of filtering the initial water
level on the mean increases as a function of the dip. For the
dispersive model, the effect of filtering is still clear, but more
moderate and only pronounced for dip angles exceeding 40�.
Comparing Figures 8a and 8b we note that the standard

Figure 6. Simulated shoreline evolution as a function of time using the initial conditions shown in
Figure 5. Simulations with initial water surface obtained by copying the seabed displacement without fil-
tering (solid curves) and with filtering (dashed curves). Results for (top) hm = 100 m, (middle) hm = 10 km,
and (bottom) hm = 30 km. (left) Fault plane dip angle of 10�; (right) fault plane dip angle of 40�.

Figure 7. Distributions of maximum runup and fitted probability density functions. (a) LSW model with copied initial con-
ditions for dip angle of 10� and a minimum depth of 100 m. (b) Nwogu model with filtered initial conditions for a dip angle
of 10� and a minimum depth of 100 m. (c) LSW model with copied initial conditions for dip angle of 10� and a minimum
depth of 30 km. (d) LSW model with copied initial conditions for dip angle of 40� and a minimum depth of 100 m.
(e) Nwogu model with filtered initial conditions for a dip angle of 40� and a minimum depth of 100 m. (f) Nwogu
model with copied initial conditions for dip angle of 40� and a minimum depth of 30 km.

LØVHOLT ET AL.: STOCHASTIC TSUNAMI RUNUP C03047C03047

8 of 17



Figure 7
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Figure 7. (continued)
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Figure 8. Mean value of maximum runup including standard deviation as a function of dip angle for (a)
the LSW model and for (b) the dispersive model; (c) coefficient of variation as a function of dip angle.
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Figure 9. Mean value of maximum runup including standard deviation as function of the minimum fault
depth for (a) the LSWmodel and for (b) the dispersive model; (c) coefficient of variation as function of the
minimum fault depth.
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deviation of the maximum runup is smaller for the dispersive
model. The coefficient of variation is visualized in Figure 8c
for the different combinations of initial conditions and
models, showing clearly that filtering the initial water level
reduces the variation of runup due to heterogeneous slip. It
also shows that dispersion during propagation reduces the
coefficient of variation. For the most general solution (fil-
tered initial water level and usage of dispersive model), the
coefficient of variation is decreasing as a function of the dip
angle, i.e., the standard deviation is 22% of the mean for the
10� dip angle, compared to 16% for 70�.
[25] Figures 9a and 9b show mean value and standard

deviation of the maximum runup as a function of the mini-
mum fault depth for LSW and dispersive model, respec-
tively. For shallow dip angles, the mean value first increases
from hm = 100 m to hm = 3 km. A likely reason for this is the
accumulation of localized strain close to the uppermost part

of the imbedded faults leading to increased seabed elevation
close to the fault tip. This effect is most pronounced for
dispersive simulations. For larger values of the minimum
fault depth, the maximum runup decreases as expected.
Figure 9c depicts the coefficient of variation, showing that
the variability of the maximum runup decreases as a function
of increasing minimum fault depth. This is interpreted as an
effect of the imbedded faults acting as a low-pass filter on
the surface displacement.

3.4. Maximum Runup Correlation With Seabed
Response

[26] The different slip realizations result in a range of
initial seabed responses. We investigate to which extent the
simulated maximum runup was governed by the character-
istics of the seabed displacements, by investigating different
parameters.

Figure 10. Maximum runup as a function of weighted displaced water volume for different minimum
fault depths and dip angles. (a) Minimum fault depth of 100 m and 10� dip angle, (b) minimum fault depth
of 30 km and 10� dip angle, (c) minimum fault depth of 100 m and 40� dip angle, and (d) minimum fault
depth of 30 km and 40� dip angle.
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[27] The first parameter is the integrated absolute seabed
displacement times the 1/4 power of the absolute water
depth H normalized by the maximum water depth H0 =
4500 m, denoted weighted displaced water volume Vw

below, i.e.,

Vw ¼
Z

uz Hð Þj j⋅ H=H0ð Þ1=4dx:

[28] The idea behind scaling with the water depth is to
take into account the potential for amplification due to
shoaling following Green’s law, i.e., that wave components
generated at larger depth amplify more. The maximum
runup as a function of weighted displaced water volume is
shown in Figure 10. For the shallow rupture (hm = 100 m),
the correlation is almost zero for the LSW model with
copied initial water level, whereas somewhat more distinct
for the dispersive simulations. For the imbedded faults, the
correlation is improved, and a very good correspondence

with little variability is found when combined with the
steepest dipping faults, as exemplified for hm = 30 km in
Figure 10.
[29] A second set of parameters comprises the maximum

vertical seabed elevation, the maximum seabed depression,
and the peak-to-peak vertical distance between these two
quantities (mimicking roughly the maximum initial wave
height). Of all these, the latter provides the best correlation.
Figure 11 shows the maximum runup for all realizations as a
function of the maximum peak-to-peak vertical seabed dis-
tance. Compared to the weighted volume, improved corre-
lation is observed, also regarding the surface rupturing faults
(hm = 100 m). A possible explanation for the increased
correlation for the peak-to-peak displacement compared to
the weighted volume is that fluctuations in the surface ele-
vation that contribute to the volume contribute less to the
maximum runup. The peak-to-peak seabed displacement is
therefore a better measure of the tsunamigenic potential than

Figure 10. (continued)
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the weighted volume, particularly for shallow dip when
displaced seabed fluctuations are prominent.

4. Concluding Remarks

[30] The purpose of this study is to quantify the effects of
nonuniform coseismic slip in the dip direction on stochastic
tsunami runup variability. We investigate tsunami genera-
tion and maximum runup due to subduction earthquakes
with idealized geometries for a large number of numerical
simulations by exploring the dependence of predicted
tsunami heights on the heterogeneous coseismic slip distri-
bution and dispersion. The seabed configurations are repre-
sented by a piecewise linear profile, and wave propagation is
plane. The simplified geometry enables transparent results
when varying fault and hydrodynamic properties compared
to a more realistic topography. The dip angle varies from 10�
to 70� and the fault depth from 100 m to 30 km. A total of
500 rupture realizations are modeled in each case.
[31] Seabed displacements are computed using a general-

ization of the Okada [1985] model. The sea surface response
is either a direct copy of the seabed displacement, or

computed using the Green’s function approach by Pedersen
[2001]. A simple computational strategy using linear models
was employed because of the need of performing several
hundred thousand model runs. Correct values for maximum
runup of nonbreaking waves, and breaking limits, may then
be obtained as long as shoaling effects make dispersion very
weak before nonlinearity starts to matter. By analyzing the
breaking number given by Didenkulova [2009], we find that
for most cases and for the first wave cycle, breaking does not
occur for the current combination of fault, seabed, and slip
configuration for dispersive simulations. The results
obtained by dispersive wave models therefore resemble
closely a “realistic” runup distribution.
[32] The current paper supports the conclusion of earlier

studies on stochastic shoreline response due to earthquake
tsunamis, suggesting large possible runup variations even
for a given magnitude. Still, we find that there are various
factors related to the wave generation and propagation that
reduces the variability, and that not all of these factors are
commonly applied. The coefficient of variation of the runup
displays its largest values for shallow faults. Increasing fault
depth is found to reduce the observed variability (in terms

Figure 11. Maximum runup as function of peak-to-peak initial seabed displacement for different mini-
mum fault depths and dip angles. (a) Minimum fault depth of 100 m and 10� dip angle, (b) minimum fault
depth of 30 km and 10� dip angle, (c) minimum fault depth of 100 m and 40� dip angle, and (d) minimum
fault depth of 30 km and 40� dip angle.
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of the coefficient of variation) of the seabed response. Fre-
quency dispersion reduces the variability of the runup fur-
ther, first by filtering high-frequency seabed undulations
during tsunami generation, and second during the propaga-
tion phase. Shallow water models may therefore overesti-
mate the maximum runup and its variation because of
heterogeneity where such heterogeneities persist over a
longer distance in the strike direction. Wave breaking may
however reduce this variation to a certain extent. It is noted
that by tuning the grid resolution in a shallow water model,
numerical dispersion that mimics the dispersion curve may
be obtained at a given water depth [see, e.g., Shuto, 1991].
However, for the current geometry with a considerable depth
gradient; this strategy is not recommended.
[33] Furthermore, correlations between the maximum

runup with various sets of seabed displacement parameters
are sought. The best candidates found in this study are the
scaled seabed volume per unit length and the maximum
peak-to-peak vertical seabed displacement. For the deepest

faults (hm = 30 km), both parameters provide a strong cor-
relation with the runup. Generally, the steepest dipping
faults show better correlation than the shallow ones. For the
shallow dipping faults, the peak-to-peak seabed displace-
ment offers better correlation than the scaled seabed volume.
[34] The coefficient of variation varies between 16% and

22% for a surface rupturing earthquake in the configuration
studied here. These are substantial variations, and points to
the fact that stochastic effects should be taken into account
in tsunami hazard mapping. However, the present case
considers plane wave propagation and a uniform shoreline.
Factors such as wave breaking and three-dimensional effects
on the initial conditions and the shoreline configuration are
believed to reduce the variability further as demonstrated by
Geist [2002]. Hence, the current results should not be
interpreted in absolute terms. On the other hand, the results
highlight some fundamental effects that influence the vari-
ability of the maximum runup that previously have been
neglected.

Figure 11. (continued)
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