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Abstract

Within this study different biochars (BC) with wiglevarying characteristics have been tested as
materials for the adsorption of hexachlorocyclomexs (HCH) isomerso( B, y andd) from water.
Three BCs produced from digestate (700 °C), greesdhdomato waste (550 °C) and durian shell
(400 °C) were tested. The BCs demonstrated varbjsico-chemical characteristics, especially with
respect to surface area, with E€lirface area ranging from 5.4 to 328.6 git and iron content
ranging from 0.0733 to 11.17 g kglsotherm tests were carried out to understan@hviriechanisms
drive HCH uptake to BC, to assess whether stereoishey affects adsorption and to assess whether
competitive sorption occurs. Log-Kalues ranged from 3.7 to 5.8 (ug'kdug LN)™ for the various
isomers on the three biochars. No competitiongti-fé < 0.0001) was observed betweerg-, y- and
0-HCH. Freundlich adsorption constantsesfy- andd-HCH followed the order: BC digestate > BC
greenhouse tomato waste > BC durian shell, in ashtito B-HCH which followed the order: BC

durian shell > BC greenhouse tomato waste > BCsthge. In addition to stereochemistry, sorption
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coefficients were affected most strongly by BC acef area and iron content, in addition to specific
HCH BC matrix interactions. In this study the ireontent of a carbonaceous material has been

investigated, for the first time, as a factor tte affect the sorption of HCHs.

1. Introduction

Hexachlorocyclohexanes (HCH) are halogenated congsalassified as persistent organic pollutants
(POPY and are of worldwide concern due to toxic effebisy can exert on the ecosysfeffhere are
four HCH isomersp-, B-, y- and 8-HCH, with different stereochemisfryFig. S1 in supporting
information (SI)), and as a result they partitiostviieen environmental compartments in different
mannerd HCHs are persistent in water and also have afesigence time in séif. For example the
half-life of a-HCH is around 3 months in soil (20 °C) and 120-88¢s in water (at 20 °C, 7 < pH <
8.21)°

HCHs have been used globally as insecticides frea’t*®’ most commonly being sold in technical
grade (mixture of isomers) or as lindageHCH), the only isomer with insecticidal properfiésThe
production of lindane is very inefficient and geates 8 to 12 tons of residues per ton of linflane
Over the period in which lindane was used, an &e@ 4-7 million tons of wastes and residues
(mainly a-HCH and B-HCH) were produced and this has resulted in widkssp ecosystem
contaminatiofi*®® The presence of HCH-isomers in the environmemresents a global problem and

strategies to remediate contaminated sites areréousred.

Sorbent amendment is one relatively novel remettiasitrategy that allows metal§ and organic
contaminants™ to be sequestered and rendered immdbiler uptake in biota or transport to
groundwater. Carbonaceous materials are often fasetlis purpose and they are amended in small
doses to contaminated soils and sedinféhts® Biochar (BC) is a carbonaceous material obtamed
the pyrolysis of plant and animal based biomasminxygen free or oxygen limited environmeft:

BC is potentially a key technology for combatingrate change as it is one of few Negative Emission
Technologies (NETY. Co-benefits of BC amendment include pollutant ssioin mitigation, soil
quality improvement, waste management and energgugtiot???® BC has similar physico-
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chemical properties to activated carbon, the mosbrnoonly used carbonaceous material for the
environmental application of organic pollutant immization, but it can be produced at much lower
cost. BC surface area (SA), porosity and surfacaraheristics usually depend on the biomass
feedstock, the pyrolysis method, time and tempeg&ttl. However, these parameters can be designed
in order to obtain a material with desired chanasties which often entails a high SA and high
porosity™*°. The amendment of BC to waltel**?® soif*?! and sedimefit for the remediation of

metals and organic contaminants has been demathtrat

The remediation of HCH contaminated soil is mogemfaccomplished via selective, reductive
dechlorination and/or bioremediation. Zero valewni(ZVI) is commonly used for the selective,
reductive dechlorination of HCH, and the kinetiosl &xtent of degradation seem to be affected by the
axial/lequatorial position of the chlorifésIn addition, it is well known that several miciab
strains/consortia, such &seudomonas andFlavobacterium, are able to degrade HCEsThe white-

rot fungusBjerkandera adusta degraded of 95% ofHCH in a soil slurry/. Penicillium griseofulvum,
isolated from soil, effectively degrad@eHCH (starting concentration 1 mg'Lin nutrient stressed
conditions to a residual concentration between BHh6 58.2% depending on the sucrose (carbon
source) concentration in the medium (from 5 to D%¢. Currently there is only one study that has
investigated the use of BC to biotically remedibi@H polluted soil. Gregory et &l.added willow
(Salix sp.) BC (pyrolysis at 350 and 550°C) to soil at dosagk30 and 60 t ha They reported a 10-
and 4- fold reduction in soil concentrationeefandy-HCH, for both temperatures and dosages over a
six month trial. The reduction was associated withincrease of soil dehydrogenase activity, which
has been related to microbial activity, indeed thee of BC can increase the growth of
Chryseobacterium, Flavobacterium, Dyadobacter amsgudomonadaceae, which are common
hydrocarbon bioremediatdrs

A few other studies have reported the use of aetilvacarbon amendment, either alone or in
combination with ZVI as a sorbent that can potdigtiassist in the abiotic removal of HCHs from
water"*® The ZVI, provides a media for degradation of HCkbile the activated carbon provides

sorption sites for the degradation products.
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In the present study three different reference’8€svere tested as sorbent materials for the abiotic
removal of HCHs' isomers from agqueous solutionsniojtipoint sorption isotherms. The goals of the
study were to investigate i) whether BC can be wsed sorbent for HCH removal, ii) whether the
stereochemistry of the HCH isomers has any effecidasorption onto the BC surface, and iii) which
mechanisms drive adsorption. The BCs tested hadvaiable physico-chemical characteristics, with
respect to iron content, SA and the relationship wstudied between these properties and sorption
strength. This study adds to the limited knowletiggg exists related to the use of BC as a sorbent

material for HCHs, and the way in which BC physivemical properties affect HCH sorption.

2. Materials and methods

2.1. Materials and Chemicals

Single compound spikes afHCH, B-HCH, y-HCH, and3-HCH were purchased from Sigma Aldrich.
Spiking solutions were prepared in methanol (Me@t)000 mg [*. The surrogate standaseHCH-

ds, was used to check compound recovery and wasdemesi acceptable if it was between 70 % and
130 %; data with recovery outside this range wgted. The average recovery of all data was 90%.
3,3,4,4-Tetrachlorobiphenyl (PCB77) from Sigma Aldrich wesed as internal standard and added to
GCMS vials prior to analysis. In all experimentsjllidore water was used from a DirectQ
Millipore system (18.22 cm*, 25 °C). Sodium azide (0.1 g) was added to themlaatch tests in
order to avoid HCH degradation during the experitwemnd before analysis. Polyethylene (PE) was
used as a passive sampler in order to determineoaguconcentrations of HCH isomers; other
information about the passive samplers can be foari2. PE plastic sheets (26n thick, 0.30 +
0.01 g) were purchased from VWR International I{tceicestershire, UK). PE was precleaned with

hexane, methanol and pure water, as described leydtial *’.

Three different BCs (powder) produced from diges{@00°C, highest heating temperature (HHT)),
tomato waste (550°C, HHT) and durian shell (400ME{T) were used. The BCs have been
extensively characterized and can be consideradfasence materi#ls The BCs are referred to as

follows: BC 10 from digestate, BC 18 from tomatostega BC 19 from durian shell, using the same
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acronyms as Singh et @l.Biochars were chosen based on their differensigbghemical properties,
such as pyrolysis temperature, feedstock, ironemuntsurface area, etc in order to assess which
parameter affected sorption of HCHs to the largegiree. pH was not considered a parameter that
would affect sorption. All physicochemical charardtics of the BCs are given in Table 1 and further

information about the materials can be found inliteeaturé® and in Sl.

2.2. Sorption isotherms

Batch tests (triplicates) were carried out in amgjess vials to which 40 mL of deionised water, a
given HCH concentration spike, 0.05 g of BC, 0.16fdPE and 0.1 g of sodium azide were added.
Single- and multicomponent adsorption tests wenmgezhout in order to investigate the uptake ofheac

single isomer and to assess if any competition medibetween the isomers.

The concentration of HCHs spiked to the water rdngetween 1 and 500 pg'lin the single
component tests and between 4 and 2000 fiignlthe multicomponent (isomers mixture) tests and
was considered representative of environmental itond. The amount of co-solvent was).125%

of the total water volume and co-solvent effectseneonsidered to be negligiBleBatch tests were
shaken for 28 days at 100 rpm on a horizontal sigakible at room temperature (25 °C) and this was
considered a sufficient time for the PE to reachildmium®. The PE was removed after 28 days,
extracted and analysed, as explained below, amdder to assess the water concentratiag).(C,

(ng LY of the selected contaminants, equation 1 was: used

C, = Cre eq (1

KPE—water

Where Ge (ug kg'PE) is the selected contaminant concentrationeénR, and Ke.yaer (U9 KG'PE)
(ng L'lwater)1 is the PE-water partitioning coefficient. Thed{aevalues were taken from Hale and

coworkeré’.
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The Freundlich isotherm (equation 2) was used tadehcsorption as has been carried out

preViOus|)}1~13,14,28,30,4o
Cgc = KgC"y o
Mot = Cgcmpe + Cy Vi, + Cpempg o

Where G is the HCH concentration in the BC expressed ikgigcalculated from the mass balance
in equation 3, K is the Freundlich adsorption constant (ug)k¢ug L™ n is the Freundlich
exponent (unitless), while Mis the initial spiked mass of HCHgd), msc is the mass of BC added
(kg), Vi is the volume of water used (L) andgns the mass of PE added (kg). Blank replicates
without HCH spikes, with and without BC, PE and evakespectively were also set up. No interfering

peaks were detected in any of the systems.

2.3 HCHs extraction and quantification

After the sorption tests the HCHs were extractedhfthe PE as described in literatdr& Briefly, PE
was rinsed until clean, gently dried with a papgrenand extracted with 20 mL of heptane/acetone
(80:20 v/v) for 4 days. The extract was reducetigisi vacuum-concentrator-centrifuge Christ RVC
2-25 and solvent switched to toluene. PCB77 wakespat 0.1 mg L to all GCMS vials before

carrying out analysis.

HCHs were analyzed using an Agilent TechnologieSO6Betwork GC system with a 5973 mass
selective detector (Agilent Technologies, USA) gsihe method described by Ceci ef alith a few

modifications; further details can be find in SlI.

2.4 Statistic analysis and principal componentysigl(PCA)
Linear regression analysis was carried out usirapf@Pad Prism 7 (©2017 GraphPad Software, Inc.).

The linear regression analysis allowed an investigaof whether i) the single isomer isotherms were
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the same as the multicomponent isotherms and djethwere statistically significant differences

between the sorption of the different HCH isomers.

Multivariate analysis of the variables reportedTiable 1 was carried out via principle component
analysis (PCA) using Sirius v. 8.1 1997-2009 by PR8rway to interpret the data. The PCA was
used as tool to transforms the (possibly) corrdlatriables into a (smaller) number of uncorrelated

variables called principal components.

3. Results and discussion

3.1 Single- and multicomponent isotherms

Single- and multicomponent equilibrium tests weseried out in order to i) investigate the sorption
mechanism of HCHs to these BCs and ii) assess yif smmption competition occurred. Single
component isotherms far, B-, y- andd-HCH for BC 10, 18 and 19 are shown in Fig. S2 inFy

la-c shows a selection of both the single and oantponent isotherms forHCH, 6-HCH anda-

HCH on BC 10, 18 and 19 respectively. The sorpismtherms for all of the other isomers and BC
combinations can be found in Fig. S3-5 in SI.

Statistical analysis (linear regression) showed it isotherms determined for the single compounds
and the mixture for the same isomer (single- andtiommponent), for all tested BCs were not
significantly different (P < 0.0001) from each athd@his finding suggests that there was no
competition between isomers for sorption sitesh@sé¢ BCs at the compound concentrations tested. A
complete lack of competition between such simiampounds is unlikely, the effect seen here is most
likely due to the low concentrations at which thedh tests were carried out, and the abundance of
available sorption sites at these low concentration

Variable results have been presented in the lilszatelated to competitive sorption of organic
compounds on BCs and other similar sorbents. Xind aoworker$ investigated competition
between s-triazine analogs, a substituted benzead and trichloroethene (TCE) (a dissimilar
compound) onto glassy and rubbery polymers, a rairsail, a peat soil and soil humic acid particles.
They observed no competition for the rubbery polyrassignificant competition between analogs for

8
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all other sorbents and weak/no competition betwsétazine and trichloroethene for all sorbents.
Zheng et af’ investigated the sorption of atrazine and simatifigsimilar compounds) on BC and
reported the occurrence of competition at solutecentrations up to 10 mg*L(up to 5 times higher
than those used here). The authors concluded titzediree and simazine may compete for the same
sorption sites on the BC surface. Schreiter andocksvs? investigated the sorption (single- and bi-
component) of TCE and tetrachloroethylene (PCEp dBCs (450 °C) produced from different
feedstocks (cattle manure, grain husk, and woogsghiThey observed the TCE sorption onto BCs
was affected by the presence of PCE (reductiohefbrption); in contrast, the sorption of PCE was
much less strongly affected by the presence of TCE.

It appears that competition is dependent uponrttegdction between the sorbate and sorbent surface,
as well as the concentration of the sorbate uded.structure of the HCHs, and the surface functiona
groups of these BCs are different to those usqaremious studies, and sorption behavior, sites and

mechanism may be different.

3.2 Freundlich adsorption constants

Since the linear regression analysis showed noifisignt difference between the single- and
multicompound isotherms, Freundlich adsorption tamts k- (Table 2) were calculated using all data
(single- and multicompound). A comparison betwd® Ke singiecomponene@Nd Ke mutticomponenenC@n be
found in the Sl in Table S1. The sorption of HCldsBC was found to be well described by the
Freundlich model and the square of the coefficieftsorrelation (f) (Table 2) ranged between 0.73
and 0.98 for all the isomers.

The average of all the single- and multicomponenalues was 1.2 + 0.4; however most values
(excluding n fora-, y- andd-HCH for BC 10) deviated less than 13% from unhieTaverage n value
greater than one is skewed by the valuesufory- and$-HCH for BC 10 which were substantially
larger than 1. Freundlich exponents greater thamply an increase of the sorbent-surface sorption
strength with increasing sorbate equilibrium comior®®. This behavior has previously been
reported for the sorption of organic compounds @aithonaceous materials. For example Hale €t al.
reported n value 1.43 for pyrene sorption onto amt aged activated carbon (chemically aging at 60

9
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°C); while Kupryianchyk and coworkéfsobtained n of 1.38 for phenanthrene sorption @omonut
activated carbon. Freundlich exponents of 1.77 BA8, have been reported for toluene adsorption

onto multi walled carbon nanotubes in deionized symdhetic sea wat&r

3.3 Effect of HCH stereochemistry on sorption to BC

Fig 2 (a-c) shows isotherms (single- and multicongm) fora-, -, y- ands-HCH for BC 10, 18 and
19 (a, b and c respectively). A linear regressioalysis of the IK for each isomer and BC (Table 2)
was used in order to investigate whether there wtatistically significant differences between the
sorption of each of the isomers to each of the Bl results revealed statistically significant
differences (P < 0.0001) betweegn ¥alues for isomers and BCs, and the discussiambisl based on
these differences. Logd¥alues for the four isomers on BC 10, 18 and hged from 3.7 to 5.8 (ug

kg™ (ug L™ The values for each isomers and BC are listdthbie 2.

The effect of the size of the HCH isomers has lsssessed; the correlation between the volumes for
the isomersy, B, y andd (263.4, 266.6, 263.2, 264.7 Aespectively) and log Kis shown in Fig. S6,
other information can be found in SI. There wascoaelation between the Freundlich coefficients
and the volume of the isomers (y = - 0.17 x + 56.3;0.12), probably because of the small variation
in the volumes (around 1%). No effect of the molacsize has been observed in this study. This
issue may be due to the fact that the isomers'dsifa¥ences are not sufficient to imply differesda

the sorption.

The effect of the molecular size on the adsorpisoa well known issue. Pignatello and coworkers
studied the effect of soil humic on the organic poomds of wood charcoal, which was suspended in
a humic solution. They found that the adsorptionsafall organic compounds that would not
experience any size exclusion decreased in propotd their molecular size, benzene < naphthalene
< phenanthrene. Schreiter efZainvestigated the sorption of different BCs repagta higher log K

for the smaller sorbates. For example the lgdak manure-derived BC is 5.1 and 4.8 for TCE and

PCE, respectively, explained by the size exclusidarger sorbates in narrow-pored BCs.

10
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While there was no difference in the order of theHHisomers' adsorption strength to BC10 and 18
(followed: & > a >y > B), the absolute Kvalues differed, with those of BC10 being on agerane
order of magnitude higher than those of BC18 (T@bl®r a, y ands isomers. For BC 19, the order of
adsorption strength was~ 3 >y > o (Table 2). BC 10 had the strongest sorptiom,af and-HCH

(log Ke-values fora, y andé were 5.7, 5.5 and 5.8 for BC 10 compared to 42 a#d 5.0 for BC 18
and 4.1, 4.2 and 4.4 for BC 19).

Variation in the partitioning of the HCH isomersshiaeen previously reported for other materials.
Goss and coworketsreported differences between the various HCH isemeith regard to
partitioning over water, quartz surface and hunu gHA) phases. For example, the HA-air and
guartz-air sorption coefficients ¢-HCH were observed to be higher of thoseaefand y-HCH

(Ki ,quartz.afm*-mi” at 35 °C was 1.36 x f011.1 x 1G and 1.37 x 18 for o, B andy, respectively).
Hale et af’ reported differences in the sorption of the HCHghe rubbery polymer polyethylene,
with log Kpe.waervaluesfollowing the order >y > > 8. They reported 109 ke water(PE thickness 26
pm) 2.80, 2.24, 2.62 and 2.20 respectivelyofo3-, 8- andy-HCH. The authors also used hexadecane
as a proxy for polyethylene and found that estichgirtitioning coefficients followed the order>y

> 6 > B, with l0og Khexadecane-wateOf 3.05, 2.12, 2.84 and 2.21 L'kg‘or a-, p-, 6- andy-HCH,
respectively. Thus isomer stereochemistry can lgigday a role in the environmental behaviour of

HCHs isomers based on HCH stereochemistry and hi@Haictions with the selected matrix.

3.3 Effect of BC type on sorption of HCHs

In order to investigate which sorbent propertigea@fHCH sorption onto BC, sorption coefficients
(Log Kg) were correlated with selected BC physicochemitaracteristics from Table 1. Freundlich
sorption constants were also normalized to thedmeat (K-r) and the C@SA (Kgsa) of the BCs,

being the parameters advocated to affect the rhesidsorption organic contaminaftd

3.3.1 Freundlich coefficients normalized for BCnircontent
The effect of iron content on the HCH sorption baen investigated to understand if any interaction,
for example ion-dipole, between the Cl of the HQtd @he iron in the BC surface functional groups

11
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would occur. The tested BCs had the following, higkariable, iron contents: 1.19, 11.7 and 0.0722 g
kg" for BC 10, 18 and 19 respectively (Table 1). Ndimwg to the iron content allows one to
compare the adsorption of the HCHSs to the diffeB@s like if they had the same iron content. This
issue implicitly means that, if the BCs had the saron content, this paremeter does not affect the
calculated log Kr. . The log K . values, thus allow to assess the parameters taifjethe HCHs
sorption onto BCs excluding the Fe content. Folitmyihe normalization, the average logekranged
between 2.94 and 5.76 (by comparison, lggr&nged from 3.68 to 5.83). The calculated log-K
were the higher for all isomers for BC 10 thanB&@s 18 and 19. This implies that if the BCs had the
same iron content, BC 10 would show stronger somptif o, y andé-HCH than BCs 18 and 19. One
possible reason for this observation is the higha8BC10, which was, at 328.6 m2 g-1, one to two
orders of magnitude higher than that of BC18 and 8(5.4 and 63.8 Mmrespectively). The SA is
known to be one of the most important parametersndy the sorption of organic compounds onto
sorbent surfaces. For BC 18 and 19, the oppostaltwvas observed, where the y- and6-HCH
were sorbed (Fe-normalization) more strongly to BECthan to BC 18, despite BC 18 having the
highest SA. This finding implies that, in additibm SA and Fe, there are other properties that taffec
sorptiorf®. In contrast to the other isomefBHCH had a completely different order of sorption
strength: BC 19 > BC 10 > BC 18, showing the sorpfor this compound does not follow SA and is
likely also dependent on sorbent-sorbate interasti@-HCH is a stronger H-acceptor and has
significant H-donor properties, in contrast to tiker isomers which are H-accepfdrsXiao et al’®
demonstrated this H-acceptor property as they wbde-HCH to have an air/water partitioning
coefficient (log KL, L) of -4.82, much lower than that of, andy-HCH (-3.58 and -3.96,

respectively) because of the stronger H-bridge &vion between water aidHCH.

3.3.2 Freundlich coefficients normalized for BC SA

The role of the SA was evaluated to check its @rilte on the HCHs sorption. The effect of the pore
size distribution has been related to the sorpitoassess if the HCHs' stereochemistry leads to any
different steric hindrance. The tested BCs exhibitee following CQ-SAs (0.4-1.5 nm pores): 328.6,
5.4 and 63.8 fg* for BC 10, 18 and Prespectively (Table 1). Normalizing to the SA albwne to

12
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compare the adsorption of the HCHs to the diffe®@s at the same SA (GSA) and thus SA is
excluded from the subsequent discussion. After abmation for BC SA, the Ksa of a, y andd
showed the following trend BC 18 > BC 10 > BC 1#&hwiog K¢ sa ranging from -1.84 and 1.25. One
possible characteristic that may play a role is B@ iron content. HCH have variable H-
acceptor/electron donor properfiésand this implies that there are varying interatibetween the
Cl of the HCH and the iron in the BC surface fuoiél groups. The presence of'fen the BC
surface may increase the sorption of chlorinateshpmunds due to the occurrence of ion-dipole
interactions. The surface of BC contains a greambar of variable functional groups making ion
exchange, proton interaction and electrostaticdagteons with ther-electrons associated with C=C or
C=0 possible binding mechanisms with soltftes

Similar to the Fe-normalizedalues,3-HCH demonstrated a trend different from that & dther
isomers. For this isomer sorption followed: BC 1BG 19 > BC 10.

To the best of our knowledge this is the first gtiid which the iron content of a carbonaceous
material has been investigated as a factor thataffant the sorption of HCHs, and the data indicate
that Fe content could play a role. However, previstudies have investigated the interaction between
chlorinated compounds and zero-valent iron (ZVIu &t al*® investigated the TCE dechlorination
using ZVI incorporated into a polymeric membranéey observed that TCE sorption in the
membrane led to a preconcentration of TCE andtexbiuh a synergetic effect between TCE sorption
and degradation. Chang et *alinvestigated the sorption of-HCH onto nZVI/Cu bimetallic
nanoparticles (Cu doping on the Fe surface) supgodn activated carbon (ACF€u). They
reported the simultaneous degradation and adsorptipHCH by respectively, the ZVI and the AC.

For the BCs used here, the presence of ZVI on tBes@face is unlikely, as ZVI oxidizes to 'B&

over a period of 60 days and the Fe is thus mainly expected to be preseiton oxides.

3.3.3 Other parameters affecting HCH sorption to BC
The measured Logdgc values are plotted correlated with log,Kalues (from Hale et al. 2010) for

a-, B-, y- andd-HCH (log K, = 3.94, 3.92, 3.83, 3.19 respectively) in Fig.i®&BIl. No correlation
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between the Freundlich coefficients and thg Kas observed (y = - 0.89 x + 7.8;= 0.16), thus
HCHs isomers uptake onto BCs was not affected mgpomnd hydrophobicity. Relationships with
Freundlich sorption partitioning coefficients {Kwere also tested for the BC physicochemical
properties listed in Table 1 (Temperature, micrepaslume, mean pore size, % C, % C aromatic, %
N, % O, % H, O:C, H:C, CEC, C-C/C-H, C-O, C=0, Ca&R,CA-carbon) as shown in Fig. S8 in SI.
No clear relationships were observed between arilgeoBC properties and HCH sorptioA fanged
between 0.019 and 0.34). The effect of variable$eeck has not been assessed in this work. In order
to properly assess how feedstock affected theisarmifferent feedstocks should have been used to

make BCs at the same temperature .

3.3.4 Multivariate analysis

Multivariate analysis, i.e. PCA, was carried out fiee physicochemical characteristics of BC 10, 18
and 19 reported in Table 2. The resultant PCA shiowkig. 3 allows an assessment to be made as to
whether there is any correlation between the patenne(sorption to the BCs and the BC
physicochemical properties). Results of the PCAndtbthata-, y- andd-HCH behave similarly; the
points K, Kg, and K plot very close to each other and this shows tveyhighly related. On the
other hand,a, y and & have a vastly different behavior thgsHCH, supporting all previous
observations and discussion. Variables arranged \#a° angle are not related. Variables related to
each other via a 180° angle are inversely relatbad. behavior of the tested BCs was dominated by
various physicochemical properties. SA and Fe contere the parameters that affected the sorption
of the HCHSs to the greatest extent for BC 10 and1BCrespectively, and this is the first study to
show that Fe content is a BC property that cauémfte HCH sorption. Sorption onto BC 19 was
affected to the greatest extent by the CEC, widothetermined by negative surface charges and thus
H-bridge formation and ion-dipole interaction padgies. This may explain why this BC has the
greatest sorption affinity fq3-HCH; it could be due to the H-donor propertieghi$ isomer. Overall

the PCA confirmed the fact that sorption to the§€sBs driven by various different physicochemical

properties and that it is difficult to pick out oaemore key property that clearly drives the sSorpt

14



361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

3.4 Correlation between sorption to BCs and othébanaceous sorbents

In order to assess if there was any similarity leetwthe sorption of the HCHSs to the tested BCs and
that to other carbonaceous sorbents, the curremhsured Kvalues were compared to partitioning
coefficients (K in L Kg™), calculated using polyparameter linear free epewationships (pp-
LFER)" for peat’, activated carbdf organic carboti, humic acid* and coal tar. More information
about how these values and the corresponding pprkREere calculated, is given in the SlI. The
resulting correlations are shown in Fig. S9. Evitethere was a lack of correlation between thgK
determined here and the calculategsKThis implies that the currently studied BCsaehdifferently
from the other carbonaceous sorbents. Carbonacewusrials are very diverse, heterogeneous
materials and sorption to one is often not mirroiredsorption to anothét although coal tar PP-

LFERs were found to describe sorption to naturdirsents extremely well.

4. Conclusion

This study demonstrated BC and aBC can represest effective sorbent to amend PFCs

contaminated soils. Due to the higher surface tiveaBC has higher performances than the BC. On
the other hand the choose of the material shouldcdienected to the perfomances required,
furthermore, being the BC obtained from wood wadke increasing of the % of sorbent would not

represent a problem for the cost point of view.
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555 Tables and figures

556  Table 1. Biochar characteristics. Properties ofIBC18 and 19 taken from Sing et?al.

BC 10 BC 18 BC 19
feedstock Digestate Tomato waste Durian shell
T(C) 700 550 400
CO~SA (nf g')’ 328.6 5.4 63.8
N—SA (nf g*)” 28.4 1.9 2.7
micropore volume (cig?)’ 186.6 5.1 36.6
mean pore size (A) 1.05 5.85 3.42
% C 59.1 30.7 65.5
% C aromatic 81 58 55
% N 1.16 2.54 2.15
% O 10.7 28 19.4
% H 0.97 1.23 34
o:.C 0.14 0.68 0.22
H:C 0.2 0.48 0.62
CEC (mmol kg™) 71.1 96.5 106.9
Fe content (Average) (g Ki 1.19 11.7 0.0733
C-C/C-H (% of C 1s peak) 75.3 56.1 69.9
C-O (% of C 1s peak) 17.7 12.2 14.1
C=0 (% of C 1s peak) 4.6 5 4.2
COO (% of C 1s peak) 3.1 5 3.3
BPCA-carbon (g kg-1) 105.2 a7.7 99.7

557  *Specific SA and porosity measurements were cawoigdusing C@adsorption (0.4-1.5 nm pores) at
558  0°C with Micromeritics ASAP2020 Gas Adsorption addrosity System; other information can be
559  found in literaturé’.

560 " N,-SA (pores > 1.5 nm) was measured at the Univeo$iBjlorida, Gainesville, FL.

561 The parameters used for PCA analysis were: T,~S@ (pores > 0.4 nm) micropore volume, mean
562  pore size, % C, % C aromatic, % N, % O, % H, O:GC,HCEC, Fe content, C-C/C-H, C-O, C=0,
563 COO, COO.

564
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565
566
567

568

Table 2. List of log Freundlich adsorption conssafibg K), log K= normalized for the BC iron
content (log kr) and BC SA (log KKsp) for BC 10, 18 and 19 calculated based on all gaiats
(single- and multicomponent isotherms) for each HCH

BC type and HCH

log K¢

|Og KF,Fe

log Kesa (CO,-SA)

n

isomer (ug kg) (Mg LY" (Mg @) (Mg LH™  (ugm?) (ug L™

BC 10a 5.65+0,178 5.57 0.137 1.82+0.246 0.786
BC 108 3.68 + 0.0722 3.60 -1.84 1.04 + 0.0740 0.964
BC 10y 5.54 + 0.0843 5.46 0.0183 1.96+0.149  0.901
BC 105 5.83 + 0.238 5.76 0.318 1.81+0.288 0.768
BC 180 4.39 £ 0.578 3.32 0.658 1.17+0.110  0.858
BC 188 4.01 +0.0548 2.94 0.274 0.968 +0.0643 0.919
BC 18y 4.22 £0.102 3.15 0.491 0.987 £+0.167 0.725
BC 185 4.99 + 0.0617 3.92 1.25 1.2840.142  0.880
BC 19a 4.13 +0.0270 5.27 -0.67 0.937+0.0313 0.977
BC 194 4.42 +0.0280 5.55 -0.39 0.986 + 0.0386 0.962
BC 19y 4.20 +0.0415 5.34 -0.602 0.853 + 0.0481 0.943
BC 195 4.44 + 0.0660 5.58 -0.364 1.03+0.107 0.865
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anda single- and multicomponent onto BC 10, 18 anddl®(and c) respectively. All data are
reported as single points.
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Figure 2 a-ca, B, y ands (single- and multicomponent) isotherms for BC 1®and 19 (a, b and c)
respectively. All data are reported as single @oint
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Figure 3. Principle component analysis (PCA). Maltiate analysis carried out for all the parameters
reported in Table 1 for BC 10, 18 and 19.
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1)
2)
3)
4)

5)

Biochars were used for the sorptionuefp-, y- andd-hexachlorocyclohexane.
Isotherms were carried out in single- and multi-poment (isomers mixture).
No competition was observed in water batch tedisdena-, -, y- ands-HCH.
LogKe ranged from 3.7 to 5.8 (ug K{ug L) ™" for all the isomers on biochars.

Sorption is affected by BC surface area, iron caraed HCH/BC interactions.



