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Contribution by Jorge Castro and Nallathamby Sivasithamparam 

The discussers congratulate the authors for their solution and the footnote citing the recent 

discussers’ solution (Sivasithamparam & Castro 2018), which clarifies that the discussers’ 

solution was published (strictly speaking, made available online) during the revision of the 

authors’ manuscript. The discussers would like to briefly comment on the differences 

between the two solutions (rotational hardening law) and the way the results are presented 

(undrained shear strength and yield locus). 

Rotational hardening law 

Both solutions extend the isotropic solution by Chen & Abousleiman (2012) considering an 

anisotropic critical state model with the same rotated ellipse as the yield surface (Dafalias 

1986). The main difference between the two solutions is the rotational hardening law that 

they consider. Sivasithamparam & Castro (2018) use the rotational hardening law proposed 

by Wheeler et al. (2003), i.e. S-CLAY1 model, while the authors use the original one 

proposal by Dafalias (1986, 1987). Dafalias & Taiebat (2013) present a detailed analysis of 

four rotational hardening laws, including the two above. Here, just two differences for this 

particular case are mentioned: 

(1) The original rotational hardening law by Dafalias (1986, 1987) does not predict a 

unique critical state line (CSL). Dafalias & Taiebat (2013) suggest a minor 

modification in the rotational hardening law formulation to achieve uniqueness of the 

CSL. Consequently, for the studied cavity expansion problem, the authors’ solution 

does not predict a unique inclination of the yield surface at CS (e.g. Fig. 11 of the 

authors’ paper), nor the stress state (e.g. Fig. 10), while the discussers’ solution 

predicts a unique inclination and stress state at CS that can be analytically obtained 

(Sivasithamparam & Castro 2018). 

Downloaded by [ NORGES GEOTEKNISKE INSTITUTT] on [10/12/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgeot.18.D.009 

 

(2) Sivasithamparam & Castro (2018) show how the yield surface rotates from the initial 

“vertical” anisotropy (axis of the yield surface in the triaxial compression plane, 

which corresponds to a Lode angle of θ=7π/6 using the authors’ definition of the Lode 

angle, Fig. 5) towards a “radial” anisotropy (axis of yield surface in the plane strain 

plane, θ=10π/6). In the authors’ case, minor fabric changes are predicted (Fig. 11) and 

rotation of the yield surface does not reach θ=10π/6. Thus, the effective vertical stress 

is not the intermediate stress at critical state (σ’z≠σ’r+σ’θ), as in Li et al. (2016). 

 

Undrained shear strength 

A difference between the presentation of results in the two papers is the way the undrained 

shear strength (su) is defined to normalise the results (e.g. Figs. 7 and 8). The authors use the 

“isotropic” value of su. and consequently, the normalized values of the initial stresses for 

isotropic and anisotropic cases are the same in Figs. 7 and 8. The “anisotropic” value of su 

depends on the initial inclination of the yield surface. For example, Sivasithamparam & 

Castro (2018) present the analytical equation to get su for the S-CLAY1 model, and use the 

corresponding su values for each initial inclination of the yield surface (α0). In the authors’ 

case, this is not possible due to the lack of uniqueness of the CSL introduced by the rotation 

hardening law (point 1 above). 

 

Yield locus 

An isotropic yield surface may be plotted using p’ and q stress invariants without loss of 

generality. However, for an anisotropic yield surface, it implies assuming a specific value of 

the Lode angle. As explained by the authors using Fig. 4, there is a continuous variation of 

the Lode angle during cavity expansion. So, termination of the elastic deformation is not 
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located at the initial anisotropic yield surface corresponding to θ=π/6 and 7π/6, but rather at 

some other elliptical cut taken through the initial yield surface yet with a changed value of θ. 

That is why Sivasithamparam & Castro (2018) decided to introduce a new stress invariant q  

and plotted yield loci in the deviatoric plane (π-plane). Yield loci in the p’-q plane were 

plotted for a constant Lode angle, namely θ=7π/6. In contrast, the authors plot yield loci in 

the p’-q plane for different Lode angles. For example, initial yield locus in Fig. 12b 

corresponds to Lode angle of point C (θ≈9π/6). 

Authors’ reply 

 The authors would like to thank Drs. Castro and Sivasithamparam for their interest in 

the paper. They are also to be congratulated on presenting a similar undrained solution for the 

cavity expansion problem in anisotropic critical state soils (Sivasithamparam & Castro, 

2018), which was published online in Acta Geotechnica during the revision of this paper 

(Chen & Liu, 2018) [more accurately in the second round of review process, after making the 

first revision submission to Geotechnique]. The discussers comment on the differences 

between their solution and the one derived by the authors from the following three aspects: 

the rotational hardening law involved, and the way the results being presented in terms of the 

undrained shear strength and yield locus, respectively. These points raised are addressed as 

follows. 

Rotational hardening law 

 It is recognized that both the two solutions by the authors (Chen & Liu, 2018) and the 

discussers (Sivasithamparam & Castro, 2018) are the extension of Chen & Abousleiman’s 

(2012) work from isotropic to anisotropic modified Cam Clay with the use of a same form of 

ellipsoidal yield surface, and that the main difference is pertinent to/resulting from the 
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rotational hardening rules considered in the respective anisotropic models (Dafalias, 1987; 

Wheeler et al., 2003) used for the development of analytical solutions. Our purpose here is to 

propose a rigorous analytical solution for the cavity expansion problem in generic anisotropic 

critical state soils, instead of the constitutive model itself. Hence, we have restricted attention 

to Dafalias’ (1987) model. 

 We agree that our solution by using Dafalias’ (1987) original rotational hardening law, 

which achieve multiple critical state lines (CSLs) in the void ratio versus mean effective stress 

plane as elaborated in Dafalias & Taiebat (2013), cannot predict a unique orientation of the 

yield surface at the critical state. This is in contrast with the discussers’ solution where a 

unique critical state inclination of the yield surface has been observed for different values of 

OCR considered. However, the authors do not agree with the discussers’ statement regarding 

the uniqueness of their obtained stresses 𝜎𝑟,𝑓
′ , 𝜎𝜃,𝑓

′ , and 𝜎𝑧,𝑓
′  as well at the failure critical state. 

Note that these stress components, as clearly shown in Fig. 6 of Sivasithamparam & Castro 

(2018), are only acquiring unique (constant) values when normalised with respect to the 

undrained shear strength 𝑠𝑢, while not their absolute magnitudes as 𝑠𝑢 indeed varies with the 

OCR value itself (see Table 2 in the discussers’ paper). 

 With regard to the vertical effective stress, it is true that in the discussers’ solution, 𝜎𝑧,𝑓
′  

at the critical state will become equal to the average of the radial and tangential stresses, i.e., 

𝜎𝑧,𝑓
′ =

𝜎𝑟,𝑓
′ +𝜎𝜃,𝑓

′

2
. Nevertheless, it is important to point out that such a simple and plausible 

relationship in fact is not a direct consequence of the plane strain conditions, as claimed by 

the discussers (Sivasithamparam & Castro, 2018). Nor should it be interpreted as equivalent 

to the intermediate stress condition imposed to the vertical stress 𝜎𝑧,𝑓
′ , the latter of which only 

requires 𝜎𝜃,𝑓
′ < 𝜎𝑧,𝑓

′ < 𝜎𝑟,𝑓
′  (or 𝜎𝑟,𝑓

′ < 𝜎𝑧,𝑓
′ < 𝜎𝜃,𝑓

′ ). The same can also be said to the three 
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critical state values of the rotational hardening parameters 𝛼𝑟,𝑓, 𝛼𝜃,𝑓, and 𝛼𝑧,𝑓, for which the 

discussers have asserted that 𝛼𝑧,𝑓 =
𝛼𝑟,𝑓+𝛼𝜃,𝑓

2
 holds as a result again of the plain strain 

conditions. The authors cannot find the logic behind these more or less taken-for-granted 

relationships/statements, they however may be rigorously proved as follows. 

With some minor algebraic manipulations, the three equations of (41) in 

Sivasithamparam & Castro (2018) can be reformed as 

 
𝐷

𝐷𝑟
(𝜎𝑟

′ + 𝜎𝜃
′ − 2𝜎𝑧

′) = −
(1−2𝜈)(𝑛𝑟−𝑛𝜃)(𝑛𝑟+𝑛𝜃−2𝑛𝑧)ℋ

𝐸𝛤𝑟
    (57) 

with 

 𝑛𝑟 =
𝜕𝑓𝑦

𝜕𝜎𝑟
′ =

𝑝′(𝑀2−𝛼2−�̅�2)

3
+ {3[𝜎𝑟

′ − (𝛼𝑟
𝑑 + 1)𝑝′] − 𝑠𝑟𝛼𝑟

𝑑 − 𝑠𝜃𝛼𝜃
𝑑 − 𝑠𝑧𝛼𝑧

𝑑}    (58) 

 𝑛𝜃 =
𝜕𝑓𝑦

𝜕𝜎𝜃
′ =

𝑝′(𝑀2−𝛼2−�̅�2)

3
+ {3[𝜎𝜃

′ − (𝛼𝜃
𝑑 + 1)𝑝′] − 𝑠𝑟𝛼𝑟

𝑑 − 𝑠𝜃𝛼𝜃
𝑑 − 𝑠𝑧𝛼𝑧

𝑑}    (59) 

 𝑛𝑧 =
𝜕𝑓𝑦

𝜕𝜎𝑧
′ =

𝑝′(𝑀2−𝛼2−�̅�2)

3
+ {3[𝜎𝑧

′ − (𝛼𝑧
𝑑 + 1)𝑝′] − 𝑠𝑟𝛼𝑟

𝑑 − 𝑠𝜃𝛼𝜃
𝑑 − 𝑠𝑧𝛼𝑧

𝑑}    (60) 

where 𝐷 denotes the material derivative; and all the other notations in the above equations 

have exactly the same definitions as those appearing in Sivasithamparam & Castro (2018). 

Substituting Eqs. (58)–(60) into Eq. (57), one obtains 

 
𝐷

𝐷𝑟
(𝜎𝑟

′ + 𝜎𝜃
′ − 2𝜎𝑧

′) = −
3(1−2𝜈)(𝑛𝑟−𝑛𝜃)ℋ

𝐸𝛤𝑟
{(𝜎𝑟

′ + 𝜎𝜃
′ − 2𝜎𝑧

′) − 𝑝′(𝛼𝑟
𝑑 + 𝛼𝜃

𝑑 − 2𝛼𝑧
𝑑)} (61) 

At the critical state, the deviatoric rotational hardening parameters according to Eq. (33) 

in Sivasithamparam & Castro (2018) can be determined as 

 𝛼𝑟,𝑓
𝑑 =

𝜎𝑟,𝑓
′

3𝑝𝑓
′ −

1

3
,    𝛼𝜃,𝑓

𝑑 =
𝜎𝜃,𝑓
′

3𝑝𝑓
′ −

1

3
,    𝛼𝑧,𝑓

𝑑 =
𝜎𝑧,𝑓
′

3𝑝𝑓
′ −

1

3
 (62) 

Upon the substitution of Eq. (62), Eq. (61) pertinent to the critical state conditions may be 

expressed as 

 
𝐷

𝐷𝑟
(𝜎𝑟

′ + 𝜎𝜃
′ − 2𝜎𝑧

′) = −
3(1−2𝜈)(𝑛𝑟−𝑛𝜃)ℋ

𝐸𝛤𝑟
{
2

3
(𝜎𝑟

′ + 𝜎𝜃
′ − 2𝜎𝑧

′)} (63) 
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which indicates that, to guarantee the constant stress components at the critical state, i.e., 

𝐷

𝐷𝑟
(𝜎𝑟

′ + 𝜎𝜃
′ − 2𝜎𝑧

′) ≡ 0, the only possible zero term on the right side, 𝜎𝑟
′ + 𝜎𝜃

′ − 2𝜎𝑧
′, must 

also vanish (Chen & Abousleiman, 2012). The desired relationship 𝜎𝑧,𝑓
′ =

𝜎𝑟,𝑓
′ +𝜎𝜃,𝑓

′

2
 is 

therefore justified. Furthermore, in light of Eq. (62), it can be easily seen that 𝛼𝑧,𝑓
𝑑  must also 

be the mean of the other two deviatoric anisotropic variables 𝛼𝑟,𝑓
𝑑  and 𝛼𝜃,𝑓

𝑑 , i.e., 𝛼𝑧,𝑓
𝑑 =

𝛼𝑟,𝑓
𝑑 +𝛼𝜃,𝑓

𝑑

2
. Hence, evidently 𝛼𝑧,𝑓 =

𝛼𝑟,𝑓+𝛼𝜃,𝑓

2
. 

It should be remarked that in Chen & Liu (2018), no such simple relationships as Eq. 

(62) will exist due to the lack of uniqueness/determinacy of 𝛼𝑟,𝑓
𝑑 , 𝛼𝜃,𝑓

𝑑 , and 𝛼𝑧,𝑓
𝑑  at the critical 

state. That well explains why 𝜎𝑧,𝑓
′ ≠

𝜎𝑟,𝑓
′ +𝜎𝜃,𝑓

′

2
 and 𝛼𝑧,𝑓 ≠

𝛼𝑟,𝑓+𝛼𝜃,𝑓

2
 in the authors’ solution. 

Nevertheless, it is interesting to note that the above equation (61) actually still holds true in 

our solution while using Dafalias’ (1987) rotational hardening rule. We thus get the following 

result connecting the critical stresses with the associated anisotropic hardening variables 

 
𝜎𝑟,𝑓
′ +𝜎𝜃,𝑓

′ −2𝜎𝑧,𝑓
′

𝑝𝑓
′ = 𝛼𝑟,𝑓 + 𝛼𝜃,𝑓 − 2𝛼𝑧,𝑓 (64) 

Undrained shear strength 

The primary purpose of Figs. 7 and 8 in Chen & Liu (2018) is to illustrate the 

influences of the 𝐾0 consolidation anisotropy on the stress distributions around the cavity and 

on the typical stress paths followed in the 𝑝′ − 𝑞  plane, for two identical normally 

consolidated soils. In our opinion, choosing the same “isotropic” value of 𝑠𝑢  for both 

isotropic and anisotropic cases to normalise the resulting stresses in these two figures would 

make more sense than introducing an additional “anisotropic” value of 𝑠𝑢 for the anisotropic 

solution as advocated by the discussers. This is because the use of the “anisotropic” 
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undrained shear strength for the normalisation, which differs from the “isotropic” one 

corresponding to the isotropic Cam Clay model, will somewhat mask the true influences of 

the 𝐾0 consolidation anisotropy on the calculated stress responses due to the inconsistency of 

the normalisation denominator involved. 

It seems that in the discussers’ solution the “anisotropic” value of the undrained shear 

strength (plane strain conditions) used for the normalisation are calculated from 𝑠𝑢,𝑃𝑆 =

𝜎𝑟,𝑓
′ −𝜎𝜃,𝑓

′

2
, with 𝜎𝑟,𝑓

′  and 𝜎𝜃,𝑓
′  at the critical state being numerically determined following the 

solution procedure proposed in their paper. If that is the case, then it is difficult to see why the 

authors’ solution cannot be normalised in a similar way in terms of the evaluated critical state 

stress components as in the discussers’ case, although the authors do agree with the non-

uniqueness statement of the CSL  in association with the currently involved rotational 

hardening law (Dafalias, 1987). 

Yield locus 

The authors fully agree with the discussers’ suggestion that, to more clearly and 

effectively demonstrate the effective stress path for the cavity expansion in an anisotropic 

soil, it is favorable to present the projections of the stress path on both the 𝑝′ − 𝑞 plane and 

the deviatoric (𝜋) plane. As a matter of fact, in a more recent paper on the drained cavity 

analysis (Liu & Chen, 2018), we have already done so to give a clearer insight into the stress 

path evolution during the cavity expansion process. However, for the plotting of effective 

stress path in the 𝑝′ − 𝑞 plane, our preference is to include the yield locus passing through the 

initial yielding stress point 𝐶 , i.e., the particular intersection curve between the initial 

ellipsoidal yield surface and a plane containing the hydrostatic axis and point 𝐶, see Figs. 

12(b) and 12(c) in Chen & Liu (2018). Such a deliberate treatment in presenting the initial 
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yield locus should possess advantage over the elliptical cut corresponding to a constant Lode 

angle of 𝜃 =
7𝜋

6
 as adopted by the discussers, since according to their Figs. 8(b) and 8(c) it 

appears that yielding may take place for a stress state even within the initial yield surface 

which is sort of misleading. 
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