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Abstract: This note first summarizes the history of the manuscript “On a Continuum Model for
Avalanche Flow and Its Simplified Variants” by Grigorian and Ostroumov—published in this
Special Issue—since the early 1990s and explains the guiding principles in editing it for publication.
The changes are then detailed and some explanatory notes given for the benefit of readers who are
not familiar with the early Russian work on snow avalanche dynamics. Finally, the editor’s personal
views as to why he still considers this paper of relevance for avalanche dynamics research today
are presented in brief essays on key aspects of the paper, namely the role of simple and complex
models in avalanche research and mitigation work, the status and possible applications of Grigorian’s
stress-limited friction law, and non-monotonicity of the dynamics of the Grigorian–Ostroumov model
in the friction coefficient. A comparison of the erosion model proposed by those authors with
two other models suggests to enhance it with an additional equation for the balance of tangential
momentum across the shock front. A preliminary analysis indicates that continuous scouring
entrainment is possible only in a restricted parameter range and that there is a second erosion regime
with delayed entrainment.

Keywords: snow avalanches; mathematical models; snow entrainment; Voellmy and Grigorian
friction laws; hydraulic models; runout distance; analytic solutions

1. On the History of the Paper by Grigorian and Ostroumov

The paper “On a Continuum Model for Avalanche Flow and Its Simplified Variants” by Grigorian
and Ostroumov [1] has a long, tortuous history, the knowledge of which is a prerequisite for assessing
its value and for understanding why it is published in this Special Issue of Geosciences about a
quarter century after it was written and almost half a century after important parts of the work had
been completed.

Starting in the early 1960s, a vigorous research program on snow avalanche dynamics was started
in the Soviet Union, with Samvel S. Grigorian (1930–2015) and Margarita E. Eglit at Lomonossov
Moscow State University (MSU) as the key figures. They applied modern concepts of fluid mechanics
and hydraulics to the problem, thus going far beyond Voellmy’s work [2]. While the latter was designed
for simple engineering applications using a slide ruler, the effort at MSU included both powerful
mathematical analysis and numerical simulation on digital computers, applying state-of-the-art
numerical techniques. Already in 1966, a consistent quasi-two-dimensional (depth-integrated)
hydraulic model with frontal snow-cover entrainment was formulated, implemented as a computer
code and its results compared to avalanche experiments in the Caucasus [3]—more than two decades
before the influential work of Savage and Hutter [4].

A fair part of the snow avalanche work by Eglit and her co-workers has been made accessible
to western researchers through translations [5,6] and papers written in English [7–11], but only three
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papers by Grigorian in English translation are known to me [12–14], with [14] not explicitly focusing on
snow avalanches. Snow avalanches represent but a small part of Grigorian’s research interests—they
ranged from the mechanics and fracture of rocks and soil, surging glaciers, seismology, explosion
dynamics and missile penetration over practical problems arising in deep-well drilling, bio-mechanical
questions connected to blood circulation and its regulation, sports mechanics, to the theory of ball
lightning, typhoons and tornadoes, tectonic volcanism, celestial mechanics and cosmology [15].

After the end of the Soviet Union, scientists in Russia and the other successor states were
in dire straights, with many research institutions—notably defense-related ones—dismantled or
salaries grotesquely lagging behind the galloping inflation. Recognizing the potential threats from
this situation, the European Union financially supported INTAS (International Association for the
Promotion of Cooperation with Scientists from the Independent States of the Former Soviet Union; see
for example, [16]), which promotes joint research projects between research institutions in the FSU
(former Soviet Union) and in Europe and provides funding for the partners from the FSU.

Having long-standing relations with leading Soviet snow and avalanche researchers, Dr. Bruno
Salm from the Swiss Federal Institute for Snow and Avalanche research (SLF) obtained an INTAS grant
for supporting Grigorian’s work on avalanche dynamics. Salm mentioned the project occasionally
during lunch converations at SLF in the mid-1990s. The final report arrived by telefax in 1994 or 1995,
but for unknown reasons was not circulated. At the occasion of SLF’s 60 year jubilee symposium in
Davos in the fall of 1996, Grigorian was one of the invited speakers. When the overhead projector
failed right before his talk and could not be repaired on the spot, Grigorian closed his eyes while
facing the audience, put his finger tips against his temples, concentrated for two minutes, and then
delivered an improvised, yet impressive talk without any slides or other graphical support. However,
as the reader will immediately see by skimming the paper [1], it is not possible to convey any of the
(important) mathematical details about the models or the results obtained with them in this way.

Before or shortly after the symposium, Grigorian with co-author Alexander V. Ostroumov, who
had contributed to the original work in the 1970s and again in the 1990s, submitted a manuscript for
the planned proceedings volume. For various reasons, putting together the proceedings volume at SLF
took about three years. At that point, I was able to obtain a photocopy of Grigorian and Ostroumov’s
paper. Even though finally completed, the proceedings volume has never been published, and it seems
that the files with the electronically submitted papers are now lost.

In the context of the present Special Issue of Geosciences, I pondered the question whether Grigorian
would be interested in finally publishing this manuscript, preferably in an updated form. From
Margarita E. Eglit I learned, however, that Grigorian had passed away in 2015 and that Ostroumov
had given her an old manuscript on this topic in electronic form, which turned out to be the very same
paper except for the figures, which were not included in the electronic version.

To the best of my knowledge, Grigorian’s manuscript was not subjected to peer review or
substantial editing at SLF between 1996 and 1999. Publishing it unedited two decades later would
neither do justice to this work nor comply with the standards of a peer-reviewed journal. Since
Grigorian no longer can approve or reject changes to the manuscript, I decided to (i) make the original
manuscript accessible as Supplementary Materials Document (SMD) 1, (ii) to edit the text correcting
some minor errors and emphasizing grammatical correctness, standard terminology and ease of
reading over strict adherence to the original wording, (iii) to write figure captions and insert selected
figures in the text, relegating the others to SMD 2 for the sake of succinctness, and (iv) in the present
Comment paper to explain both my editorial choices and a number of technical points that may
not immediately be understandable for readers unfamiliar with the early work of the MSU school.
Ostroumov confirmed that he had no objections against publication and carefully checked the edited
version of the paper as well as the Supplementary Materials. Four short essays (Sections 3–6) discuss
points of potential relevance for today’s research. I hope that this, together with Reference [17],
will give western researchers a fuller appreciation of the pioneering work on avalanche dynamics from
the Soviet era and further the progress in this field.



Geosciences 2020, 10, 96 3 of 21

2. Notes on Editor’s Changes and on Technical Points in the Paper by Grigorian and Ostroumov

Note 0 The title was changed following the suggestion of an anonymous reviewer.
Note 1 The original manuscript has an abstract of considerable length, whereas the original Section 1

starts medias in res. To adhere to the guidelines for papers in Geosciences, the original abstract
was made into the Introduction (Section 1) and a new, shorter abstract was written by
the editor.

Note 2 Equation (3) can be derived from the modified dry-friction law stated below in Equation (4)
by assuming that the normal pressure pn decreases linearly with the height. Then the two
channel sidewalls combined contribute a force per unit length of 2µρah2/2 in the case τ1 < τ∗.
Dividing by the density ρ, the flow depth h and the channel width L to obtain an acceleration,
one verifies the upper part of Equation (3). In order to obtain the formula for the case τ1 > τ∗,
one first needs to find the height z∗ where the internal shear stress equals τ∗ from the equation

µρa(h− z∗) = τ∗,

and then add the contributions from the channel bottom, τ∗L, the channel walls up to z∗,
that is, 2τ∗z∗, and the channel walls above z∗, which amount to 2τ∗(h− z∗)/2. Again, the sum
is to be divided by ρL to obtain the frictional deceleration.

Note 3 See Section 4 for the editor’s comments on Grigorian’s modified friction law. An obvious
misprint in the lower line (µpn ≤ τ∗) was corrected to µpn ≥ τ∗. The optical appearance of
the conditions for the two alternatives was made consistent between Equations (3) and (4)
without changing their mathematical content.

Note 4 The jump conditions (5) and (6) can be derived by considering the mass and momentum
balances in infinitesimally thin boxes enclosing a short piece of the erosion front (see Figure 1).
These boxes are assumed to move with the erosion front. The mass and momentum changes
inside each of these boxes during a time interval ∆t must vanish—if this were not the case,
the density and/or the speed of the boxes would diverge because the box volume and thus
the mass and momentum content are infinitesimally small.

Let dl be the length of the box measured along the interface and ω and v the interface-normal
velocities of the interface and the moving snow, respectively, right above the interface
(measured relative to the fixed Earth coordinate system). Then the snow mass per unit
width flowing from the snow cover into the box in a time interval dt is

dmin = ρ0ω dl dt.

On the avalanche side, the mass

dmout = ρ1(ω− v)dl dt

leaves the box. Equating these two mass increments and dividing by dl dt immediately gives
equality of the fluxes according to Equation (5).

In deriving the momentum jump condition, care is required with regard to the signs
of momentum fluxes and the choice of coordinate system. Here we choose to describe
the process in a coordinate system that moves with the interface and whose x-axis is
perpendicular to the interface, pointing from the snowcover into the avalanche. Then the
momentum flux (i.e., momentum per unit area and unit time) into the box is given by

Jin = ρ0ω2 + p∗.
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p∗ is the compressive strength of the snowcover that is mobilized at the interface and is a
non-negative quantity. It leads to momentum entering the box in the +x-direction and is
therefore counted positive. The corresponding momentum flux on the avalanche side is

Jout = ρ1(ω− v)2 + p(h, u).

The pressure from the avalanche acts in the −x-direction, reducing the momentum inside the
box. This corresponds to a positive momentum flux out of the box; the pressure p(h, u) being
a positive quantity, it is added to the mass-related momentum flux ρ1(ω − v)2. Equating
Jin to Jout and using ρ1(ω− v) = ρ0ω from the jump condition for the mass, one arrives at
(6). Equation (7) then follows by simple algebra. For further comments on the assumptions
behind this erosion model, see (Reference [9], [A.1.2.1]) and Section 5 of this paper.

Note 5 The correct formulation of the momentum balance equation in the presence of entrainment
has been a source of confusion and heated debates for decades. The authors formulate
the problem such that the eroded snow enters the avalanche with speed 0. Moreover,
they write an equation of motion rather than a momentum balance equation and
therefore—correctly—include the pseudo-force −qu/F, which arises because the eroded
snow must be accelerated to the mean speed of the avalanche, u. See the beginning of
Section 5.4 of this paper for details.

Note 6 The original computer code used in Reference [1] is lost, but A. V. Ostroumov [18] described
its key features, which are summarized below. The approach anticipates many features
of the numerical technique now known as the Material Point Method (MPM) in that two
separate grids, one moving and one fixed, are used for numerically solving Equations
(1)–(10) in Reference [1]. The equations for F(S, t) (cross-sectional area of the flow), u(S, t)
(depth-averaged velocity), w(t) (front velocity and S f (t) (front position) are solved on a
moving grid G1 with a constant, user-selected number of nodes, N1. The uppermost node
i = 1 is held fixed at the fracture line of the avalanche while the last node i = N1 moves with
the avalanche front. To avoid loss of precision due to large gradients of the flow depth h(S)
near the front of the avalanche, the cell length ∆S1 is kept constant at a user-selected value
between the nodes i = N1− n1 and i = N1 near the front. In contrast, the cell lengths between
the rear nodes i = 1, . . . , N1 − n1 grow uniformly in the process of avalanche propagation.

The variables δ(S, t) (erodible snow depth), α(S, t) (inclination of the snow surface relative to
the terrain) and q(S, t) (volumetric entrainment rate integrated over the avalanche width)
are calculated on a spatially fixed grid G2 with uniform, user-selected spacing ∆S2. At each
time step, the currently active portion of G2 is determined as follows: The rearmost active
node of G2, je, is chosen such that δ(Sj, t) = 0 for j < je and δ(Sj, t) > 0 for j ≥ je, that is,
behind node je the snow cover is already completely eroded. The frontmost node, j f , is set at
j f = dS f (t)/∆S2e+ 5; thus the number of active G2 nodes is N2(t) = j f (t)− je(t) + 1.

Simulations are advanced by one time step from t to t1 = t + ∆t by first calculating the
new values δ(Sj, t1), α(Sj, t1) and q(Sj, t1) on G2 by applying the formulas (5)–(9) to the
known values F(Sj, t) and u(Sj, t), which are obtained by interpolating from G1 to G2. After
interpolating the so obtained values from G2 to G1, δ(Si, t1), α(Si, t1) and q(Si, t1) can be used
to compute the new values F(Si, t1), u(Si, t1), w(t− 1), S f (t1) on G1.

For calculating each of the different cases listed in (Reference [1], Table 1), suitable values of
N1, n1, ∆S1 and ∆S2 are selected to obtain sufficiently precise results. The variable time step
∆t is determined from the stability condition of the numerical scheme.

Note 7 In the original manuscript, the authors erroneously state that they omitted the last two
terms of Equation (1) in Reference [1], that is, − f1 − f2. In reality, they drop the longitudinal
pressure gradient −(L/2F)∂S(aF2/L2) and the entrainment deceleration − f2, but retain the
resistance term − f1.
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Similar assumptions have been used in applications to various types of gravity mass flows. If
the momentum balance equations are integrated over the entire (instantaneous) length of
the flow, the pressure-gradient term integrates to zero. Grigorian and Ostroumov do not
explicitly carry out such an integration and therefore have to neglect the pressure-gradient
term explicitly. If one assumes a constant shape (but variable length and height) of the
longitudinal section of the flow, the local velocities and flow depths can be expressed in
terms of the center-of-mass velocity (or, alternatively, the front velocity), the maximum
instantaneous height over the entire body of the flow, and the assumed shape functions.
With this, important local variables like the bed shear stress or the entrainment rate can be
computed and integrated. In an early model of powder-snow avalanches, a half-ellipse was
assumed as the shape function [19], whereas uniform height leads to so-called “box models”
(e.g., Reference [20]).

Grigorian and Ostroumov integrate the mass balance equation over the avalanche length,
but do not carry out this step for the momentum balance (or equation of motion). Instead,
they argue that only the frontal region is of importance and, effectively, only write down the
equation of motion of the front. The combined assumptions of no entrainment and constant
longitudinal profile shape allow expressing the frontal flow depth simply as H = H0l0/l.

Note 8 In the original manuscript, the gravitational metric system (GMS) is used. This means that
densities and stresses have units of kg s2 m−4 and kg m−2, respectively, that is, they are
densities and stresses divided by the standard gravitational acceleration, g ≈ 9.806 65 m s−2.
In the edited text, SI units have been used consistently together with the approximation
g ≈ 10 m s−2, but GMS units are used in some of the original figures.

Note 9 The Tables 3.2 and 4.1 in the original manuscript were combined into the single Table 1 to
make the text more concise and to facilitate direct comparison between the results of the full
model and different approximations.

Note 10 In the argument of the first exponential function of the second term under the root sign, a
minus sign was omitted in the original manuscript. Note also that this formula assumes
tacitly that the value of D is constant within each segment. If D changes at some point
because τ crosses the value τ∗, the segment needs to be subdivided at that point.

Note 11 The original manuscript reads γS = A/B, which clearly is a misprint.
Note 12 The point-mass model can be derived from the full model by integrating over the length

of the avalanche body. The gradient of the hydrostatic pressure thereby integrates to the
difference of its values at the front and tail of the avalanche, which individually are 0. this
reflects the fact that this is an internal force and does not influence the motion of the center of
mass. Note, however, that in this derivation sin ψ(S) and cos ψ(s) should be understood as
their mean values along the avalanche body at this instant.

Note 13 Subsection titles added by the editor.
Note 14 In the original manuscript, ψ(ξ) is used instead of ψ1. Since ψ is declared constant, including

an explicit ξ-dependence may be confusing. To emphasize that the value of ψ to use is the
one from the first (inclined) segment, the subscript 1 was added. Moreover, the condition
u0 ≥ 0 was added because the formula is not valid in the (admittedly unrealistic) case where
the avalanche has an uphill initial velocity.

Note 15 The original manuscript reads u instead of u2.
Note 16 The full run-out distance is measured along the path and not along its projection onto the

horizontal plane, as would be more customary in hazard-mapping applications.
Note 17 The formula given in the original manuscript is

u = u0

√
1− gH(sin ψ1 − µ cos ψ1)

ku2
0

[
exp

(
−2k

H
(S− S0)

)
− 1
]

.
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This is correct only in the case u0 = 0. If u0 6= 0 and S→ ∞, it gives

u −→
√

u2
0 +

gH
k

(sin ψ1 − µ cos ψ1),

instead of tending to the correct asymptotic value

u∞ =

√
gH
k

(sin ψ1 − µ cos ψ1).

Solving the differential equation, one finds that a factor exp[−(2k/h)(S− S0)] was omitted
from the first term under the root. Moreover, if u0 < 0, the original equation gives u(S) < 0
all the while the avalanche is moving in the +S-direction.

After Equation (5.16) in the original manuscript (corresponding to (57) in the edited text), the
authors stated that the run-out distance does not depend on the size of the avalanche, even
though both the original and corrected equation show an approximately linear dependence
on the flow depth H. This statement has therefore been deleted.

Note 18 A small misprint (L2 instead of L on the left-hand side) has been corrected.
Note 19 The original manuscript erroneously subtracts l1 from the right-hand side of Equation (64).

That would give the same result as for l2 in (63).
Note 20 A spurious factor of H in the denominator of the expression for u∗∗ has been removed.
Note 21 The original manuscript states l2/l1 ≈ 0.125/8 = 0.0156 in the first case with Coulomb dry

friction and l2/l1 ≈ 0.25/8 = 0.0313 for the case of stress-limited dry friction.
Note 22 Compared to friction parameters typically used in the simulation of medium-size to large

avalanches with Voellmy-type models (see, e.g., Reference [21]), k = 0.02 (corresponding to
ξ = 500 m s−2) appears rather large. With a more typical value k = 0.005 (or ξ ≈ 2000 m s−2),
l2/l1 ≈ ... results with Coulomb-type dry friction and l2/l1 ≈ ... for the stress-limited
friction law.

Note 23 A. V. Ostroumov confirmed that the authors observed this behavior only in simulations with
both entrainment and the stress-limited friction law [18].

Note 24 This table was compiled by the editor on the basis of the information contained in
Figures 8 and 9 and Figures S2.10–S2.14.

α
S

x

ρ0
ρ1

ρ

h

ω

ω−v

Figure 1. Schematic representation of the integration volume (blue box) for the mass and momentum
jump conditions across the interface between snowcover (density ρ0) and avalanche (density ρ1). The
normal velocity components on both sides of the interface (red arrows) refer to the coordinate system
moving with the front.

3. Grigorian and Ostroumov’s Work in the Context of Present-Day Avalanche Dynamics
Research—Is There Still a Use for Simple Avalanche Models in the 21st Century?

The rapid increase of computational power at the users’ fingertips has made it possible to
numerically simulate complex natural processes in an ever increasing degree of detail. During the past
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decade, codes simulating depth-averaged snow avalanche flow on arbitrary surfaces have become
the de facto standard in hazard mapping. With the widespread availability of digital terrain models
with a grid resolution of 10 m or better and user-friendly geographical information systems, quasi-3D
avalanche simulations can now be set up and carried out more rapidly than calculations with simpler
models along a profile line, which needs to be carefully defined by an expert. When it comes to
avalanche dynamics, the question has been raised, however, whether our knowledge of the underlying
physical processes, the material properties and the initial conditions is sufficient to justify the use of
complicated models [22]. Moreover, complicated non-linear models may exhibit unexpected solutions
or chaotic behavior, that is, infinitesimal differences in the initial conditions may lead to qualitatively
different solutions.

This ongoing debate has not always been very fruitful because one approach is usually put against
the other. In contrast, the results of this paper suggest that combining simple and more comprehensive
models may often increase insight. The simple models often allow one to understand the effect of
one process or one specific parameter by inspecting the analytic solution of the problem. They also
make it easier and quicker to scan a multi-dimensional parameter space. Grigorian and Ostroumov
show, however, in Section 5 that large deviations from the solution provided by the full model can
arise if simplification is carried only a little too far. In the present case, the evolution of the maximum
flow depth near the front was found to be crucial because it strongly influences the retarding force
per unit mass. Thus the simplest (mass-point) model is useful for comparing the general behavior
of the solutions for different friction laws, but hardly for obtaining approximate solutions to the full
equations. In contrast, the simplified (box) model captures the effect of decreasing maximum flow
depth quite well, but at the expense of two dynamical variables and a substantially more involved
analytic treatment.

The analysis presented in Reference [1] applies to models of dense-flow avalanches with the
Voellmy friction law and variants thereof. Much of the approach to simplification should be applicable
to other rheological assumptions or to models of powder-snow or mixed avalanches.

My personal experience with students at the master’s level in the geosciences suggests that
the present paper might also serve as teaching material in self-study or courses on natural hazards.
These students often have a good background in geomorphology, geology, geotechnics or geomatics,
but most of them lack a solid understanding of the physical and mathematical foundations underlying
the modeling of the dynamics of gravity mass flows. Modern software packages make it easy to
run simulations, but they provide little assistance in the critical interpretation of the simulation
results. A student who has worked through Section 2 of Reference [1] will easily understand the
assumptions and simplifications upon which modern two-dimensional depth-averaged models are
built. After assimilating the rest of the paper, their mathematical skills will have increased significantly
(even though hardly anything beyond the level of first-year or at most second-year mathematics in a
physics or engineering curriculum is required). Additionally, they will have gained insight into the key
features of the solutions to the simplified equations in an archetypical situation in hazard mapping,
namely an avalanche path with a hockeystick profile. Such a foundation in the mechanics of these
phenomena will contribute greatly to the quality of their hazard-mapping and hazard-mitigation work
in their future professional activities.

4. A Brief Discussion of Grigorian’s Stress-Limited Friction Law

Like the majority of snow avalanche models developed and used in the West over the past six
decades, the Soviet work on avalanche dynamics—including large parts of the present paper—mostly
uses Voellmy’s [2] friction law, which can be expressed as

τb = µσn +
g
ξ

u2 ≡ µσn + ku2. (1)
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The bed shear stress, τb, is written as the sum of a velocity-independent Coulomb-type
contribution proportional to the normal stress on the bed, σn, and a Chézy-type term proportional to
u2, the square of the velocity. The dimensionless coefficients µ and k can be considered as the tangent
of the bed friction angle and a drag coefficient, respectively. The Voellmy friction law has several
properties that are widely believed to at least qualitatively agree with observations [2]: (i) Avalanches
may stop on sufficiently gentle slopes, so there must be some velocity-independent component of
friction. (ii) Avalanches may have a tendency to reach a terminal velocity on a long inclined plane,
which requires the bed shear stress to increase with velocity (see, however, References [23,24] for recent
inferences based on statistical analysis of aggregated measurements). (iii) Larger avalanches (with
larger flow depth) attain higher velocities and longer run-out [24]. Besides this, Voellmy’s friction law
has important shortcomings and can only be considered a heuristic model of a granular flow.

One should expect the Voellmy friction law to apply equally well to rock avalanches and landslides.
These phenomena exhibit an intriguing dependence on the size: The run-out ratio R is defined as the
total drop height divided by the horizontal run-out distance from the escarpment or fracture line to the
distal end of the deposit and is essentially equal to the effective friction coefficient µeff. Observations
of giant landslides show that R ∝ V−a with a ∼ 1

6 and that R can attain values that are smaller than
any plausible value of µeff or µ. With the Voellmy friction law, however, the inequality

R ≈ µeff > µ (2)

must necessarily hold so that it cannot reproduce the scaling behavior of large landslides, unless one
chooses µ according to the size of the landslide.

In a very short paper [14], Grigorian proposed a simple solution to this conundrum. He asserted
that the Coulomb friction law (or more precisely, the Coulomb failure criterion), which stipulates
proportionality of shear stresses and normal loads, cannot be valid for normal stresses beyond
some material-dependent limit. He therefore postulated the existence of an upper limit τ∗ of the
shear strength that a given material can mobilize and modified the Coulomb criterion accordingly
(Equation (3) of Reference [1]; see Section 5.5 for a discussion of the relation of τ∗ to the snow strength
p∗ in the erosion model):

τb = min (µσn, τ∗) + ku2. (3)

No limitation is imposed on the Chézy-type contribution to the shear stress. With Grigorian’s friction
law (GFL), the run-out ratio will decrease as h−1 for large flow depths h, or as V−1/3 if one supposes
that the length and width scale linearly with h. Grigorian considered this stress-limited friction
law a break-through with many diverse engineering applications [15] and also applied it to snow
avalanches [1]. It has, however, received very little attention in the West—the author is not aware of
any publication of non-Soviet researchers citing it.

Grigorian does not discuss the physical mechanisms that would limit the shear stress in a
geophysical medium irrespective of the applied normal stress, but some insight can be gained by
discussing possible scenarios. Let us first consider highly contractive and completely saturated soils
or quick clays. They are examples of materials whose intricate texture will be destroyed if the shear
stress exceeds some threshold. Large amounts of pore water are liberated thereby and lead to complete
liquefaction. The residual yield strength can be orders of magnitude smaller than the peak strength
during initial loading. Since the effective stress vanishes in this case and the whole load is borne
by the (essentially incompressible) pore water, the shear stress will depend on the shear rate, but
there is no obvious reason for the yield strength to grow with the normal stress. The yield strength of
sensitive clay is almost independent of the normal stress applied in a controlled experiment; it depends,
however, about linearly on the overburden it was exposed to in its natural environment. Not having
stress-history dependence built in, the GFL law is too simple to fully capture such materials, but they
support his notion of an upper limit of the frictional shear stress, independent of the normal stress.
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Another important scenario, especially in connection with mega-landslides, concerns a granular
material at the interface under such high load that the granules are crushed. Crushing will lead to
denser packing and a larger average number of grain–grain contacts because small debris can fill
the voids between larger particles. In this way, the load will be distributed over a larger number of
force chains and the compressive or shear stress acting on a single particle will eventually decrease
below the strength of the material. At that stage, one expects, however, the Coulomb friction law to
become applicable again, perhaps with a somewhat lower friction angle because the particles are more
rounded. The comminution of the granular material is expected to have a significant effect on the
collisional shear stresses: According to the kinetic theory of granular flows, the collisional stresses are
proportional to the square of the particle size. This would mean that comminution will allow large
flows to attain much higher speeds than small ones, but it is questionable whether this mechanism can
explain the observed volume dependence of the run-out angle of mega-landslides.

One may further consider flows in which the normal and shear stresses are large enough to
melt a thin shear layer at the interface between the flow and the substrate. Prime candidates for
such a mechanism are glaciers, wet-snow avalanches or very large landslides. Such melting will not
occur along the entire bed–flow interface at once, but patch-wise; the size of the melted patches will
grow with the normal and shear stresses. Accordingly, one should expect the average value of the
dry-friction coefficient µ to decrease with the normal stress. The GFL may well capture the qualitative
features of the bed shear stress evolution in such situations.

The GFL appears to be less suited for describing the surprisingly low friction in the (fluidized)
head of dry-snow avalanches that is primarily observed under conditions with a substantial layer
of cold, light new snow. In such avalanches, the largest normal basal stresses tend to occur in the
non-fluidized, dense body of the flow. While Reference [1] does not consider density changes in
avalanche flow, full-scale experiments at Mt. Elbrus (see Reference [25], Figure 60 on page 195) for
a succinct summary of the experimental findings), in which Grigorian was involved, indicated the
existence of an intermediate, fluidized flow regime. Grigorian and Ostroumov may well have been
aware of the challenges offered by the experimental results when they wrote the last paragraph of
Reference [1].

These considerations suggest that the GFL should be considered a heuristic description of diverse
and complex mechanisms that limit the growth of the shear stress in some systems when they are
subjected to normal loads that are large compared to some system-specific, intrinsic scale. As the
examples discussed above suggest, detailed physical models of these mechanisms may be complicated,
difficult to validate in detail and unsuitable for practical applications. In such situations, the GFL
offers a simple and elegant alternative, especially if one can estimate the order-of-magnitude of τ∗ from
a simplified formulation of the relevant process. For example, an estimate of τ∗ for rock avalanche
events exhibiting basal melting and frictionite formation would allow comparing the predictions of
Grigorian’s model to those of a model that incorporates the melting process explicitly [26].

To conclude this discussion of the GFL, we ask whether it could be used to absorb the strong
volume dependence in the standard calibration of the friction coefficients µ and k of Voellmy-type
models for dry-snow avalanches. Figure 2 shows the volume dependence of µ according to
Reference [21] for avalanches with a return period of 300 years. The different curves correspond
to selected combinations of three altitude zones and four classes of terrain characteristics. Experience
confirms that these values give plausible run-out distances in the majority of cases. In the range
5000 m3 < V < 60, 000 m3

µ(V, . . .) ∝ V−0.25 (4)

captures the volume dependence of the calibrated values reasonably well. The GFL implies instead

µ ∝ h−1 if µ0ρhg cos θ > τ∗. (5)
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µ0 is the dry-friction coefficient for |τ| < τ∗. To compare the calibration of the Voellmy model to
the GFL, one has to assume a (statistical) relation between the avalanche volume and the fracture
depth/flow depth. Postulating h ∝ V0.25, GFL matches the behavior of Equation (4) in the range
5000 m3 < V < 60, 000 m3 (Figure 2). However, to avoid unrealistically low values for very large
avalanches, h must be assumed to scale with an exponent much closer to 0 (Figure 2, yellow curve).

In which range is τ∗ expected to lie? To match the calibration [21] of µ, τ∗ should typically be
reached in avalanches with a volume of 5000–10,000 m3, corresponding to fracture or flow depths
h ∼ 0.5 m. With the density in the range 200–300 kg m−3, one estimates τ∗ = 1–1.5 kPa, which is
encouragingly similar to the shear strength of a new-snow layer. To test the practical applicability of
the GFL, one needs to compare its overall performance in a large number of avalanche cases to that
of a Voellmy-type model with the standard calibration. The test cases should span a wide range of
avalanche sizes, climatic conditions and terrain characteristics.
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Figure 2. Volume dependence of dry-friction coefficient µ in the recommended calibration for the flow
model RAMMS::AVALANCHE for different altitude zones and two types of terrain characteristics.
With an assumed scaling relation h ∝ V−0.25, the Grigorian’s friction law (GFL) captures that behavior
well up to V = 60, 000 m3 (brown curve). To avoid large discrepancies for large volumes, the scaling
exponent of h needs to be reduced to about 0.1 (yellow curve).

5. Some Remarks on the Grigorian–Ostroumov Erosion Model

From today’s perspective, the most relevant aspect of Reference [1] is how erosion and entrainment
are modeled. The Grigorian–Ostroumov formula for the erosion rate was applied in References [27,28],
but is not implemented in any code used in practice today. Below we discuss some aspects of this
remarkable formula and try to assess its applicability in dynamical models of snow avalanches.

5.1. How Does the Grigorian–Ostroumov Erosion Formula Relate to Other Erosion and Entrainment Models?

Already the first depth-averaged avalanche model by the Moscow State University
group [3]—called the Eglit–Grigorian–Yakimov erosion model (EGYEM) below—described
entrainment, in this case plowing entrainment at the front, formulated as a jump condition at the
moving boundary of the computational domain. This entrainment mechanism can often be observed
visually in slowly moving wet-snow avalanches but is absent in fast-moving dry-snow avalanches,
which tend to have relatively low density at the front. Such avalanches erode the snow cover more
gradually along the bottom of the flow. The Grigorian–Ostroumov erosion model (GOEM) was
developed to address this situation [1]. A simpler, yet conceptually related model for basal entrainment
in depth-averaged flow models that assume a uniform velocity profile and sliding at the bottom was
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formulated in References [29,30] and is termed tangential-jump entrainment model (TJEM) in the
following. A brief comparison of the three models will help understanding the particular features of
the GOEM.

These three models conceptualize the avalanche–snow cover interface as a moving non-material
shock front where the eroded snow abruptly changes its velocity and usually also its density.
Accordingly, jump conditions for mass and momentum (and total energy) apply at the shock.
The compressive or shear strength of the snow cover enters the jump conditions for the momentum
and together with the dynamical variables—flow depth, velocity, density—determines the entrainment
rate uniquely; it can, in principle, be measured independent of an avalanche event, thus there are no
empirical parameters that need to be fixed a posteriori. This is a fundamental difference from the vast
majority of entrainment models and crucial for practical applications because no further parameter is
introduced that needs to be fitted from scarce or high-uncertainty data.

The concept of the bed–flow interface being a shock applies to situations where the velocity and
possibly the density change considerably in the process. One expects this to be the case if the bed
material can be characterized as brittle so that erosion is a sudden process rather than a relatively
slow deformation over an extended period. If the eroded material is strongly dilatant or contractive,
a density shock is to be expected. These conditions are met in dense, strongly eroding gravity mass
movements like snow avalanches, debris flows and pyroclastic flows that flow over beds that are
granular or fracture into a granular material. They are also fulfilled in dilute flows if the erosion rate is
strong, for example, in powder-snow avalanches, turbidity currents and nuées ardentes. The shock
concept applies neither to slow flows over a highly plastic, cohesive bed, in which it is hard to define
an interface between substrate and flow, nor to flows that only sporadically manage to erode a particle
from a very strong bed, for example, a torrent flowing over bedrock.

Figure 3. Control volumes used in the derivation of the Eglit–Grigorian (EGYEM, left), Grigorian–
Ostroumov (GOEM, middle), and tangential-jump (TJEM, right) entrainment models. Note that the
EGYEM and GOEM evaluate the jump equations for the velocity and momentum components normal
to the “long” side of the control volume while the TJEM considers tangential velocity and shear stresses.

Figure 3 shows the control volumes across which the jump conditions are evaluated. The EGYEM
evaluates the jump conditions of longitudinal momentum across a vertically oriented control volume
at the front end of the (expanding) computational domain. In contrast, the TJEM considers the jump in
tangential momentum (determined by the longitudinal velocity and the shear stresses); it neglects the
variable inclination of the erosion interface relative to the terrain surface. The GOEM accounts for the
inclination of the interface relative to the terrain and evaluates the jump conditions for the momentum
components normal to the interface.

5.2. The Eglit–Grigorian–Yakimov Model for Frontal Entrainment

The jump conditions in the EGYEM are essentially the same as in a hydraulic jump or bore in
hydraulics. The only difference is that the pressure from the downstream side is not hydrostatic fluid
pressure, but the resistance of the (solid) snow cover. A derivation of the shock velocity ω in terms of
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the depth δ, density ρ0, and compressive strength σ∗ of the snow cover as well as the frontal flow depth
h f , density ρ1, and near-front velocity u f can be found in, for example, Reference [17], the result being

ω =
h2

f ρ1g cos ψ

2ρ0u f δ
− σ∗

ρ0u f
. (6)

The EGYEM has a number of notable features: (i) The differential mass balance equation and the
equation of motion do not contain entrainment terms—all entrainment occurs at the boundary of the
computational domain and manifests itself as a boundary condition. (ii) Rearranging Equation (6)
as (h2

f /2)ρ1g cos ψ = σ∗δ + ρ0ωu f δ shows directly how the hydrostatic pressure exerted by the
avalanche head is used partly for overcoming the resistance σ∗δ of the entrainable snow cover,
partly for accelerating the eroded snow cover mass ρ0ωδ to the internal velocity u f of the avalanche.
(iii) The density change from ρ0 in the snow cover to ρ1 in the avalanche is assumed given, but it could,
in principle, be calculated from an appropriate constitutive law. (iv) The model idealizes the front as
an infinitesimally thin shock, but in reality it is extended in the flow direction and the snow motion
inside it is complicated, with comminution of the snow cover, compression or dilation from ρ0 to ρ1

and lifting of the center-of-mass from the height δ/2 to h f /2. As in hydraulic jumps, some of the
pressure work done by the avalanche is dissipated across the shock. The shape of the front is largely
determined by the effective friction angle, implying that the control volume in reality extends over a
length of the order of the flow depth.

Equation (6) assumes the hydrostatic pressure in the avalanche front to be sufficient to erode and
entrain the entire erodible snow cover. In (Reference [17], Equation (5)) three alternative modifications
of the model in the case of Equation (6) predicting ω < 0 are suggested, but no unique solution is
singled out. However, the mass jump equation ρ0ωδ = ρ1(ω − u f )h f implies the strong constraint

ω/u f = 1/
(

1− ρ0δ
ρ1h f

)
, that is, ω > u f ; this problem deserves further study.

5.3. Main Features of the Tangential-Jump Entrainment Model

The TJEM neglects the contribution of normal pressure to the erosion process; instead, the snow
cover is assumed to fracture at a critical value of the shear stress, |τ| ≥ τc. The difference between the
shear stress exerted by the avalanche and τc is available for accelerating the eroded mass from rest to
the avalanche velocity u. Thus the tangential momentum jump condition leads to the entrainment rate

q = −ρ0ω = Θ(|τ| − τc)
|τ| − τc

|u| . (7)

Here, Θ(x) = 1 if x > 0 and 0 otherwise. When erosion occurs, ω < 0.
Although disregarded in Reference [29], the jump conditions for mass and bed-normal momentum

may also be evaluated. The mass jump condition, ρ0ω = ρ1(ω− w), implies that the flow body must
have a small negative (positive) velocity w normal to the terrain if the substrate is contractive (dilatant).
The jump condition for bed-normal momentum states that the eroded mass is accelerated from 0 to w
by the jump in normal pressure across the interface. This effect has little practical significance, however.

At first sight, the TJEM appears to achieve closure without any adjustable parameters and is the
unique consistent solution under the stated conditions. However, there is a critical hidden assumption:
The bed shear stress τb over an eroding bed as a function of flow velocity u and depth h differs in
general from that over a non-erodible bed under the same flow conditions. If one considers that the
interface is, in reality, a thin layer across which the eroded particles are accelerated, it is evident that the
shear rate or sliding velocity at the interface between this accelerating layer and the quasi-stationary
flow is less than it is at the bottom of a non-eroding flow. A simple friction law like Voellmy’s, which
depends only on the depth-averaged velocity ū and h does not contain enough information for finding
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a consistent solution [30]. If one uses the standard friction law for non-erodible beds in Equation (7),
one will likely overestimate the erosion rate.

5.4. Particular Features of the Grigorian–Ostroumov Erosion Model

The GOEM is based on a control volume parallel to the instantaneous interface between the
avalanche and the snow cover, which is inclined by the angle α(S, t) relative to the terrain. Like the
EGYEM, the GOEM evaluates the jump conditions for mass and the interface-normal momentum
component across the control volume, which in this case read

ρ0ω = ρ1(ω− v), (8)

ρ0 · 0 ·ω− p∗ = ρ1v(ω− v)− pα. (9)

ω and v are the interface-normal components of the shock propagation velocity and flow velocity,
respectively. −pα < 0 is the interface-normal stress exerted by the avalanche, p∗ the (compressive)
strength of the snow cover. As in the EGYEM and TJEM, the avalanche density, ρ1, is assumed known
rather than computed from a constitutive equation. Equation (9) is valid only if pα > p∗; if not, ω = 0.
This leads to

ω = Θ(pα − p∗)

√
pα − p∗

ρ0(1− ρ0/ρ1)
. (10)

Due to the factor 1− ρ0/ρ1, ω would become imaginary if ρ1 < ρ0. In contrast to the EGYEM and
TJEM, the GOEM is thus not applicable to the fluidized and suspended parts of mixed avalanches.

Surprisingly, the Formula (10) is independent of the avalanche velocity u, and the erosion speed
ω grows with the square root of the excess pressure, pα − p∗, whereas both the EGYEM and TJEM lead
to an inverse dependence on the flow velocity and a linear dependence on the relevant excess stress.
Technically, this comes about because v is eliminated in (9) with the help of (8). The same procedure
could be applied to the EGYEM, leading to

ω = Θ(h f p̄ f − σ∗δ)
h f p̄ f − σ∗δ

ρ0

(
1− ρ0

ρ1
δ

h f

)
δ

(11)

instead of Equation (6), with p̄ f ≡ (h f /2)g cos ψ. Conversely, in deriving the GOEM one can choose to
substitute ρ0ω for ρ1(ω− v) in Equation (9) to obtain

ω = Θ(pα − p∗)
pα − p∗

ρ0v
, (12)

showing that the erosion or entrainment speed has the same dependence on the excess stress and the
interface-normal component of the flow speed in all three models.

In their review of erosion and entrainment models, Eglit and Demidov ([9], A.1.2.1) criticized the
expression that Grigorian and Ostroumov use for the pressure at the interface between the avalanche
and the snow cover,

p = ρah cos α + Cρū2. (13)

ū is the depth-averaged velocity, h the flow depth, and ρ the mean avalanche density, which may
differ from the density at the interface, ρ1; a ≡ g cos ψ + κū2, where κ is the curvature of the path
profile. There is no explanation given in Reference [1] why the second term, which resembles dynamic
pressure or turbulent friction drag, should be present; neither is the origin and physical significance of
the parameter C discussed. Eglit and Demidov argue that only the so-called static pressure should
enter the momentum balance equation from which the jump condition is derived; the stagnation
or dynamic pressure is already accounted for by the advective terms. This may explain why the
entrainment speeds simulated in Reference [1] are an order of magnitude larger than observed in
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Nature—whenever erosion occurs in the simulations, a snowpack of 1 m is typically eroded over a
distance of 5 m or less.

The simplest way to amend the GOEM would be to drop the velocity-dependent term in (10),
simultaneously disposing of the empirical parameter C. This leads to smaller, more realistic
entrainment rates with significantly lower values of p∗ = O(1 kPa) rather than the values O(5 kPa)
used in (Reference [1], Table 3). However, a more thorough analysis is warranted because the GOEM
does not enforce the jump condition for the momentum tangential to the control volume, effectively
treating an oblique shock as a normal shock. This work remains to be done, but a few pointers can be
given here. First consider that, even though the GOEM only involves the normal stress on the interface
between the avalanche and the snow cover, there is also a shear stress, τα. Accordingly, the maximum
shear stress (inclined relative to the interface) in the new-snow layer is

τmax =

√
1
4

(
1

1− ν

)2
p2

α + ‖τα‖2 ≡
√

b2 p2
α + τ2

α , (14)

where ν ≈ 0.2–0.35 is Poisson’s ratio for snow [31] and b ≡ 1/(2− 2ν) is in the range 1/2 ≤ b ≤ 1,
typically b ≈ 0.6–0.8. With the typical range τα ≡ ‖τα‖ ∼ (0.2–0.6)pα, the two terms in (14) are of
similar magnitude, but there may be a significant velocity dependence in τα. The threshold condition
for erosion in (10) thus should be Θ(τmax − τc), with τmax from Equation (14) and τc the shear strength
of the snow cover. Next, examine pα and τα; they refer to the interface, which is inclined at the
angle α ≡ arctan(∂Sδ(S, t)) to the terrain, relative to which the flow model is formulated. The tensor
transformation laws lead to

pα = pb + τb sin(2α), (15)

τα = τb cos(2α). (16)

The hydrostatic pressure pb ≡ ρ1ah is assumed isotropic. If τb, the bed shear stress tangential to
the terrain, is calculated from the Voellmy friction law, Equations (13) and (15) behave qualitatively
similar.

The next task is to relate p∗ to the shear strength τc so that the shock propagation velocity ω can
be computed. The GOEM disregards the shear stresses at the interface so that Equation (14) simplifies
to τmax = pα/(2− 2ν) and one obtains p∗ = 2(1− ν)τc in terms of the shear strength of the snow
cover. However, the problem is more involved with shear stresses because there is no justification for
assuming that the ratio between pα and τα remains unchanged across the shock. At this point, one
needs to use the constraint from the jump condition for the interface-parallel momentum component:

ρ0 · 0 ·ω− τ∗ = ρ1w(ω− v)− τα. (17)

If one assumes a uniform velocity profile and neglects the small component of ω parallel to
the terrain, v ≈ ū sin α and w ≈ ū cos α, implying that the jump in the shear stress accelerates the
eroded mass to the mean avalanche speed as in the TJEM. τ∗ (not to be confused with τ∗ in Grigorian’s
modified friction law, see Section 4) indicates the critical shear stress along the interface; it is related to
p∗ and τc by

τ2
c = b2 p2

∗ + τ2
∗ . (18)

The mass jump condition (8) allows to transform (17) into

ω = Θ(τmax − τ∗)
τα − τ∗

ρ0w
. (19)
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The shock speed ω has to be the same, whether calculated from Equation (12) or (19), requiring

pα − p∗ = (τα − τ∗) tan α. (20)

pα and τα are given by Equations (15) and (16) and related to the maximum shear stress by (14). This
leads to a quadratic equation with the solution

p∗ =
pα − τα tan α

1 + b2 tan2 α
±

√
τ2

c (1 + b2 tan2 α)− (pα − τα tan α)2(b4 tan4 α + 2b2 tan2 α)

1 + b2 tan2 α
. (21)

To find the approximate conditions for the existence of a physical solution, assume the erosion angle α

to be small—measurements at Vallée de la Sionne point towards typical values of 0.01 or less. Then,
pα ≈ pb and τα ≈ τb. Furthermore, the ratio µeff ≡ τb/pb is typically in the range 0.3–1. A physical
solution to Equation (20) thus only exists if τ∗ & 0, p∗ . τc/b, τmax > τc, and pα ≈ τc/b + µeff pb tan α.
Hence, a rough estimate for the admissible range of the hydrostatic pressure is

τc

b
1√

1 + (µeff/b)2
< pb <

τc

b
1

1 + µeff tan α
. (22)

The lower limit of pb is typically (0.9–1.5) τc, the upper limit (1.2–1.7) τc.
If pb falls below the lower limit, entrainment ceases. What happens if pb exceeds the upper limit?

On the one hand, the conditions for erosion, that is, the propagation of the shock, are still fulfilled
and ω obtained from Equation (12) increases with pb. On the other hand, τb is too small to satisfy
Equation (19). This means that the eroded mass cannot be accelerated to the full avalanche speed at
once and forms a bottom layer that is dragged along by the main flow above.

5.5. Can the Grigorian–Ostroumov Erosion Formula Be Used in Practice?

The importance of modeling entrainment has been acknowledged among avalanche dynamics
researchers for half a century, but it will probably still take years until flow models with entrainment
(and deposition) become a standard in avalanche hazard mapping procedures. There are both a
fundamental modeling problem and a number of practical issues to be overcome.

On the practical side, the following challenges persist: (i) Data suitable for testing entrainment
models is still scarce. (ii) Entrainment models can be validated only in conjunction with a specific
avalanche rheology or bed friction law. (iii) Many authors argue that entrainment models just add
to the list of poorly constrained initial conditions and friction parameters (see, e.g., Reference [22]).
First, published data [27,32] already allows for at least qualitative validation. The situation can be
further improved by pooling observations and data from different sites to create a sound basis for
quantitatively validating dynamical models. The second problem can be approached by implementing
the EGYEM, GOEM and TJEM in flow models based on different friction laws or rheologies and
comparing their performance with and without entrainment for selected test cases. Thirdly, a practical
method needs to be developed for prescribing the erodible snow depth and the shear strength as
functions of the return period, regional precipitation data, winter temperature, slope orientation, and
the dominant wind directions. This task appears feasible where distributed data of temperature, snow
depth and precipitation are available; however, additional measurements of snow shear strength at
different altitudes and under different topographical conditions might also be required.

The first theoretical problem is to understand how the snow-strength parameter p∗ in the GOEM,
the limit shear strength τ∗ in the GFL, σ∗ in the EGYEM and τc in the TJEM are related to each other and
to measurable properties of the snow cover. At this point, only a tentative answer can be offered. First,
note that all four process models for friction or erosion originally refer to the top layer of the substrate
(the new-snow layer in the case of snow avalanches). However, a weak layer underneath the top layer
or poor bonding between the layers will greatly influence the behavior of the system; with regard to the
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erosion models, see the discussion below. In the GFL and TJEM, shear stresses are transmitted across a
competent top layer to the weak layer, which will fail before the top layer. Thus, the shear strength
of the weakest layer is decisive. In the original GOEM, the propagation of the primary shock front is
determined by the strength p∗ of the top layer, but the normal stress min(pα, p∗) is transmitted across
the top layer and may induce failure of a weak layer or interface underneath. Describing this situation
is, however, beyond the scope of the GOEM. Perhaps surprisingly, the weak-layer shear strength does
not contribute to the momentum jump condition in the EGYEM if the shock is infinitesimally thin. This
implies that the strength of the top layer is the decisive parameter in the EGYEM whereas the weak
layer determines the erosion depth. In a refined version of the EGYEM with a finite-width transition
zone, the weak-layer strength will contribute to some degree.

A second point to note is that the parameters of all four process models are failure criteria for a
solid under given normal and shear stresses. All models implicitly assume that there are confining
lateral stresses (only in the spanwise direction for the EGYEM). This implies that both the normal and
the shear stress have to be taken into account to determine the maximum shear stress, as shown in
Equation (14). The failure criterion is τmax exceeding the shear strength of the snow cover. The GOEM,
TJEM and GFL neglect one of the two contributions to τmax, but this can easily be improved. The shear
strength of snow can, in principle, be determined as half the difference between the major and minor
normal stress at failure in a triaxial compression test—a standard procedure in soil mechanics. However,
with snow these tests have to be conducted at high compression rates to enter the brittle-failure regime.

The second theoretical question in entrainment modeling concerns the layered structure of natural
snowpacks: Profiling-radar measurements at the test site Vallée de la Sionne in 1999 gave evidence
for continuous, scouring-type erosion and entrainment ([33], Figure 3) as described by the GOEM or
TJEM. However, later measurements at the same locations frequently show step-wise (“ripping” [34])
erosion [27,28] where the erosion front at the radar location quasi-instantaneously jumps, presumably
either because the layer is weak or because a weak layer underneath fails. In general, one has to
expect that both erosion modes coexist in the same event. We conjecture that scouring occurs when the
new-snow shear strength increases with depth and the layer bonds well to the underlying snowpack.
With step-wise erosion, the eroded slab is too massive to be entrained immediately. It is compressed,
comminuted and gradually accelerated while the erosion front advances with the avalanche front.

A simple approach to this problem is to disregard the weak layer and to use a model for scouring
erosion, hoping that the effects of delayed entrainment are small on the scale of the entire flow.
Alternatively, one may envisage an extended model that treats the new-snow layer as dynamical.
Where the shear stress at the interface to the old snow exceeds the weak-layer shear strength τw,c,
fracture is assumed and τw,c is replaced by a suitable friction law. The slab is accelerated by the
difference in the shear stresses from the avalanche and the substrate and by the longitudinal pressure
gradient. The mass-exchange term between the two layers should describe instantaneous entrainment
of a slab segment when the relative velocity difference is nearly zero. The model should also account
for possible scouring entrainment from the moving slab into the avalanche. Transforming this concept
(Figure 4) into a consistent set of equations and a working model is left for future work.

The time appears right for a new attempt to solve the problem of entrainment and
deposition—Sovilla et al. [35] found inclusion of entrainment to improve the modeling results when
compared to observations and to substantially reduce the unphysical scatter of friction parameter
values needed to reproduce the observed run-out distances. Recently, Rauter and Köhler [36]
demonstrated that two rather dissimilar avalanches released in the same path on the same day
could be modeled with the same parameter set, provided that the avalanche model accounts for both
entrainment and deposition. The GOEM (with the modifications discussed above and preferably
an extension for dynamically calculating the avalanche density) provides a physically consistent
description of continuous, scouring erosion of a homogeneous snowpack without empirical parameters.
Being one of the few serious contenders in this field, it clearly deserves further study.
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Figure 4. Schematic representation of the entrainment process for entire slabs. At the avalanche front,
the new-snow layer (yellow, density ρ0) is compressed to density ρ1, but only partially accelerated,
as shown by the rightmost velocity profile. Friction from the overriding avalanche body (turquoise)
reduces the velocity deficit of the slab (represented by color changing from yellow to turquoise)
until it becomes a part of the main body. During the process, scouring entrainment may also occur
(small arrows).

6. Do Avalanches Behave Non-Monotonically in the Friction Coefficients?

Probably the most surprising finding in Reference [1] is the non-monotonic behavior with regard
to variations of the dry-friction parameter µ under otherwise identical conditions: The avalanche
“ignited” only in a limited range of µ, both with larger or smaller friction coefficients entrainment soon
ceased and the flow stopped. Such behavior was observed only in the complete model and only if
both GFL and the GOEM were activated [18]. If such behavior were to generally occur in models
with non-smooth friction law and a threshold for entrainment, the practical usefulness of advanced,
complex models would be put in question. One way to investigate this problem is to reimplement the
“complete” model as a numerical code to confirm that the observed non-monotonous behavior is not
caused by numerical artifacts and to explore the phase diagram of the model.

Grigorian and Ostroumov did not observe non-monotonic behavior in the “simplified” models,
but those models do not include entrainment, which seems to be an essential prerequisite for this
phenomenon to occur. It may therefore be instructive to study the “simplified” model enhanced by an
entrainment term derived from the GOEM because it has only two degrees of freedom—the maximum
of the instantaneous flow depth, H, and the front velocity U—in contrast to the infinite number of
degrees of freedom contained in the fields h(S, t) and u(S, t) of the “complete” model. One can thus
study such an “enhanced simplified” model with the techniques developed in the mathematical theory
of dynamical systems. In principle, this can be done for any given path profile described by ψ(S f ), but
in practice one will select a few elementary types like an inclined plane or the hockeystick profile with
slope angle ψ1 > ψ0 ≥ 0.

Such a study remains yet to be done, but we briefly derive the set of equations here. The mass
balance, initially expressed as an integral over space and time,

F(t) = F0 +
∫ t

0

∫ S f (t′)

S0

we(p(S, t))dS dt′, (23)

transforms into a spatial evolution equation for the longitudinal section area F(S f ) = κ(S f − S0)H(S f )

with F(S f ,0) ≡ F0 = κ(S f ,0 − S0)H0 if one uses the front position S f as the independent variable
instead of the time and sets dX/dt = UdX/dS f ≡ U(S f )X′(S f ):

H′ =
1

S f − S f ,0

(
1

κU

∫ S f

S f ,0

we(p(S, t))dS− H

)
. (24)
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The equation of motion reads

UU′ = g sin ψ(S f )− sgn(U) f (U, H, ψ(S f ))− we(p(S f ))
U
H

. (25)

The appearance of an integral in (24) but not in (25) is a direct consequence of the assumptions
that (i) the shape of the longitudinal section of the avalanche remains self-similar and (ii) only the
front is relevant for the dynamics of the flow. To evaluate Equation (24), some further simplifying
assumptions are required. Grigorian and Ostroumov mention that the shape of the avalanche is well
described by the parabola

h(S, t)/H(t) = (S/S f (t))2, (26)

which leads to the value κ = 1/3 for the shape parameter, close to the recommended value 0.36. If
there were no entrainment, self-similarity of the shape through time would imply

u(S, t)/U(t) = S/S f (t). (27)

In the presence of entrainment (which diminishes with distance from the front), the velocity must
be smaller than the value given by Equation (27) so that part of the eroded snow is transported towards
the tail to maintain the parabolic shape. However, for the purpose of investigating the qualitative
properties of this dynamical system, it seems justifiable to use Equation (27) as an approximation. The
integral over the erosion rate can then be evaluated in terms of H and U, the resulting expression
depending on the one choice for the pressure p(H(t), U(t)), as discussed in Section 5.4.

The two Equations (24) and (25) determine the trajectories of the system in the phase space (H, U).
Of particular interest are its fixed points, that is, pairs of values (H∗, U∗) for which H′(H∗, U∗) =

U′(H∗, U∗) = 0, and critical lines with H, U → ∞. Fixed points (H∗, 0)—corresponding to avalanches
that stop—can exist only if tan ψ(S f ) < µ over a suitable interval in S f . In contrast to the classic
examples of dynamical systems found in textbooks, the Grigorian–Ostroumov model on a hockeystick
profile with slope angles ψ1 > ψ2 > 0 has a continuum of such fixed points, with their basins of
attraction degenerated to a single line.

In Reference [37], a rather general asymptotic solution to a simplified model for an entraining
flow on an infinite inclined plane was found; it corresponds to a critical line tending to a straight line
parallel to U = cH. A characteristic property of that model is that the bed shear stress is limited to the
shear strength of the snow (the TJEM is a limiting case with the depth of the shear layer shrunk to 0).
It remains to be seen whether such a solution also exists for the Grigorian–Ostroumov model.

Once the structure of the phase space with its fixed points, critical lines and basins of attraction
is determined for given values of µ, τ∗, k, and p∗, one may proceed to study the dependence of this
structure on µ, with the other three parameters held fixed. Figure 5 visualizes the dependence of the
phase-space structure for different values of µ in a strongly simplified way. The non-monotonicity
found in Reference [1] would manifest itself in the way that some starting point (H0, U0) in the phase
space lies within the basin of attraction of some fixed point (H∗, 0) for µ < µ1 and µ > µ2, but belongs
to the basin of attraction of another fixed point (H∗ > 0, U∗ > 0) or tends towards a critical line with
H, U → ∞ if µ1 < µ < µ2.

Almost half a century after the main work by Grigorian and Ostroumov summarized in
Reference [1] and close to a quarter century since the writing of that paper, our insight into the
flow behavior of snow avalanches has been dramatically deepened through new experiments, and a
large number of new numerical models have been developed and are being applied in practical work.
Yet, the span of topics discussed in the present Comments paper, the open questions raised by the
Grigorian–Ostroumov model and the new avenues for research that a fresh reading of their paper
suggests are proof enough that this work can inspire the work of today’s generation of avalanche
researchers. The same holds for early and more recent work summarized in the review paper by
Eglit et al. [17], which extends the scope of Reference [1].
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Figure 5. Strongly simplified representation of a hypothetical structure of the (H, U) phase space
of the “enhanced simplified” Grigorian–Ostroumov model. Three copies of the phase-space plane,
representing different values of the friction coefficient µ, are shown; the parameters k, τ∗ and p∗ are
held fixed. The red dots mark an (arbitrarily chosen) initial condition (H0, U0). The avalanche evolves
either to a final rest state indicated by the blue points on the axis U = 0 (if µ < µ1 or µ > µ2) or towards
and along a critical line (in blue) that approaches either a fixed point corresponding to a moving steady
state or to a state where the avalanche grows and/or accelerates indefinitely. The colored areas indicate
the basin of attraction of the fixed points on the axis U = 0.

Funding: The writing of this paper was in part supported by NGI’s Strategic Projects SP 4—Snow Avalanche
Research and SP 11 MERRIC—Multi-scale Erosion Risk under Climate Change. The latter is jointly funded by the
Research Council of Norway and NGI, the former by the Norwegian Petroleum and Energy Department through
a grant administrated by the Norwegian Directorate of Water Resources and Energy.

Acknowledgments: D.I. thanks A. V. Ostroumov and M. E. Eglit for their most valuable help with a number of
technical points concerning the Eglit–Grigorian–Yakimov and Grigorian–Ostroumov erosion models as well as for
supplementing aspects of the history of Reference [1]. Insightful remarks from an anonymous reviewer improved
the manuscript.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the writing of the
manuscript, or in the decision to publish it.

References

1. Grigorian, S.S.; Ostroumov, A.V. On a continuum model for avalanche flow and its simplified variants.
Geosciences 2020, 10, 35. [CrossRef]

2. Voellmy, A. Über die Zerstörungskraft von Lawinen. Schweiz. Bauztg. 1955, 73, 159–165, 212–217, 246–249,
280–285.

3. Briukhanov, A.V.; Grigorian, S.S.; Miagkov, S.M.; Plam, M.Y.; Shurova, I.Y.; Eglit, M.E.; Yakimov, Y.L.
On some new approaches to the dynamics of snow avalanches. In Physics of Snow and Ice, Proc. Intl. Conf.
Low Temperature Science, Sapporo, Japan, 1966; Ôura, H., Ed.; Institute of Low Temperature Science, Hokkaido
University: Sapporo, Japan, 1967; Volume I, Part 2, pp. 1223–1241.

4. Savage, S.B.; Hutter, K. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech.
1989, 199, 177–215. [CrossRef]

5. Eglit, M.E. Teoreticheskie podkhody k raschetu dvizheniia snezhnyk lavin. (Theoretical approaches to
avalanche dynamics). Itogi Nauki. Gidrologiia Sushi. Gliatsiologiia 1967, 69–97. (In Russian) English translation
in: Soviet Avalanche Research—Avalanche Bibliography Update: 1977–1983. Glaciological Data Report
GD–16, pages 63–116. World Data Center A for Glaciology [Snow and Ice], 1984.

http://dx.doi.org/10.3390/geosciences10010035
http://dx.doi.org/10.1017/S0022112089000340


Geosciences 2020, 10, 96 20 of 21

6. Bakhvalov, N.S.; Eglit, M.E. Issledovanie reshenii upravlenii dvizheniia snezhnykh lavin (Investigations
of the solutions to snow avalanche movement equations). Akad. Nauk SSSR Inst. Geogr. Mat. Gliatsol.
Issledov. Khr. Obsuzhdeniia 1969, 15, 31–38. (In Russian) Translated in: Glaciological Data, Soviet Avalanche
Research—Avalanche Bibliography Update: 1977–1983, World Data Center A for Glaciology, Boulder, CO,
USA, Report GD-16, 1984.

7. Eglit, E.M. Some mathematical models of snow avalanches. In Advances in the Mechanics and the Flow of
Granular Materials, 1st ed.; Shahinpoor, M., Ed.; Trans Tech Publications: Clausthal-Zellerfeld, Germany, 1983;
Volume II, pp. 577–588.

8. Eglit, M.E. Mathematical and physical modelling of powder-snow avalanches in Russia. Ann. Glaciol. 1998,
26, 281–284. [CrossRef]

9. Eglit, M.E.; Demidov, K.S. Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci.
Technol. 2005, 43, 10–23. [CrossRef]

10. Kulibaba, V.S.; Eglit, M.E. Numerical modeling of an avalanche impact against an obstacle with account of
snow compressibility. Ann. Glaciol. 2008, 49, 27–32. [CrossRef]

11. Eglit, M.E.; Yakubenko, A.E. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci.
Technol. 2014, 108, 139–148. [CrossRef]

12. Grigorian, S.S. Mechanics of snow avalanches. In Snow Mechanics Symposium Mécanique de la Neige—
Proceedings of the Grindelwald Symposium, April 1974; LaChapelle, E.R., Kuroiwa, D., Salm, B., Eds.;
International Association of Hydrological Sciences: Wallingford, UK, 1975; pp. 355–368.

13. Grigoryan, S.S.; Urumbayev, N.A. On the nature of an avalanche air wave. Nauchnye trudy Instituta
Mekhaniki Moskovskogo Gosudarstvennogo Universiteta [Scientific Works of the Institute of Mechanics of Moscow
State University] 1975, 42, 74–82. (In Russian) English translation in: 34 Selected Papers on Main Ideas of the
Soviet Glaciology, 1940s–1980s. Kotlyakov, V.M., Ed.; Glaciological Association of Russia: Moscow, Russia,
1997; pp. 289–296.

14. Grigoryan, S.S. A new law of friction and mechanism for large-scale avalanches and landslides. Sov. Phys.
Dokl. 1979, 24, 110–111.

15. Sadovnichii, V.A.; Nigmatulin, R.I. Samvel Samvelovich Grigoryan (On his Eightieth Birthday). J. Appl.
Math. Mech. 2010, 74, 255–266. [CrossRef]

16. Available online: https://cordis.europa.eu/event/rcn/1575/en (accessed on 31 May 2019).
17. Eglit, M.E.; Yakubenko, A.; Zayko, J. A review of Russian snow avalanche models—From analytical solutions

to novel 3D models. Geosciences 2020, 10, 77. [CrossRef]
18. Ostroumov, A.V. (Institute of Mechanics, Lomonossov State University, Moscow, Russia). Personal

communication, to D. Issler, September 2019.
19. Kulikovskiy, A.G.; Sveshnikova, Y.I. Model’dlya rasheta dvizheniya pylevoy snezhnoy laviny (A model for

calculating the motion of a powder-snow avalanche). Mater. Glyatsiol. Issled. 1977, 31, 74–80. (In Russian)
20. Dade, W.B.; Huppert, H.E. A box model for non-entraining, suspension-driven gravity surges on horizontal

surfaces. Sedimentology 1995, 42, 453–471. [CrossRef]
21. Bartelt, P.; Bühler, Y.; Christen, M.; Deubelbeiss, Y.; Salz, M.; Schneider, M.; Schumacher, L.

RAMMS::AVALANCHE User Manual; WSL Institute for Snow and Avalanche Research SLF: Davos Dorf,
Switzerland, 2017.

22. Salm, B. A short and personal history of snow avalanche dynamics. Cold Reg. Sci. Technol. 2004, 39, 83–92.
[CrossRef]

23. Gauer, P. Comparison of avalanche front velocity measurements and implications for avalanche models.
Cold Reg. Sci. Technol. 2014, 97, 132–150. [CrossRef]

24. McClung, D.M.; Gauer, P. Maximum frontal speeds, alpha angles and deposit volumes of flowing snow
avalanches. Cold Reg. Sci. Technol. 2018, 153, 78–85. [CrossRef]

25. Bozhinskiy, A.N.; Losev, K.S. The Fundamentals of Avalanche Science; Institut für Schnee- und
Lawinenforschung: Davos, Switzerland, 1998.

26. De Blasio, F.V.; Medici, L. Microscopic model of rock melting beneath landslides calibrated on the
mineralogical analysis of the Köfels frictionite. Landslides 2017, 14, 337–350. [CrossRef]

27. Sovilla, B. Field Experiments and Numerical Modelling of Mass Entrainment and Deposition Processes in
Snow Avalanches. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2004. [CrossRef]

http://dx.doi.org/10.3189/1998AoG26-1-281-284
http://dx.doi.org/10.1016/j.coldregions.2005.03.005
http://dx.doi.org/10.3189/172756408787814771
http://dx.doi.org/10.1016/j.coldregions.2014.07.002
http://dx.doi.org/10.1016/j.jappmathmech.2010.07.001
https://cordis.europa.eu/event/rcn/1575/en
http://dx.doi.org/10.3390/geosciences10020077
http://dx.doi.org/10.1111/j.1365-3091.1995.tb00384.x
http://dx.doi.org/10.1016/j.coldregions.2004.06.004
http://dx.doi.org/10.1016/j.coldregions.2013.09.010
http://dx.doi.org/10.1016/j.coldregions.2018.04.009
http://dx.doi.org/10.1007/s10346-016-0700-z
http://dx.doi.org/10.3929/ethz-a-004784844


Geosciences 2020, 10, 96 21 of 21

28. Sovilla, B.; Burlando, P.; Bartelt, P. Field experiments and numerical modeling of mass entrainment in snow
avalanches. J. Geophys. Res. 2006, 111, F03007. [CrossRef]

29. Issler, D.; Jóhannesson, T. Dynamically Consistent Entrainment and Deposition Rates in Depth-Averaged Gravity
Mass Flow Models; NGI Technical Note 20110112-01-TN; Norwegian Geotechnical Institute: Oslo, Norway,
2011. [CrossRef]

30. Issler, D. Dynamically consistent entrainment laws for depth-averaged avalanche models. J. Fluid Mech.
2014, 759, 701–738. [CrossRef]

31. Shapiro, L.H.; Johnson, J.B.; Sturm, M.; Blaisdell, G.H. Snow Mechanics—Review of the State of Knowledge and
Applications; CRREL Report 97-3; US Army Corps of Engineers, Cold Regions Research and Engineering
Laboratory: Hanover, NH, USA, 1997.

32. Sovilla, B.; Sommavilla, F.; Tomaselli, A. Measurements of mass balance in dense snow avalanche events.
Ann. Glaciol. 2001, 32, 230–236. [CrossRef]

33. Issler, D. Experimental information on the dynamics of dry-snow avalanches. In Dynamic Response of Granular
and Porous Materials under Large and Catastrophic Deformations; Lecture Notes in Applied and Computational
Mechanics; Hutter, K., Kirchner, N., Eds.; Springer: Berlin, Germany, 2003; Volume 11, pp. 109–160._4.
[CrossRef]

34. Gauer, P.; Issler, D. Possible erosion mechanisms in snow avalanches. Ann. Glaciol. 2004, 38, 384–392.
[CrossRef]

35. Sovilla, B.; Margreth, S.; Bartelt, P. On snow entrainment in avalanche dynamics calculations. Cold Reg. Sci.
Technol. 2007, 47, 69–79. [CrossRef]

36. Rauter, M.; Köhler, A. Constraints on Entrainment and Deposition Models in Avalanche Simulations from
High-Resolution Radar Data. Geosciences 2020, 10, 9. [CrossRef]

37. Issler, D.; Pastor Pérez, M. Interplay of entrainment and rheology in snow avalanches: A numerical study.
Ann. Glaciol. 2011, 52, 143–147. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2005JF000391
http://dx.doi.org/10.13140/RG.2.2.31327.71840
http://dx.doi.org/10.1017/jfm.2014.584
http://dx.doi.org/10.3189/172756401781819058
http://dx.doi.org/10.1007/978-3-540-36565-5_4
http://dx.doi.org/10.3189/172756404781815068
http://dx.doi.org/10.1016/j.coldregions.2006.08.012
http://dx.doi.org/10.3390/geosciences10010009
http://dx.doi.org/10.3189/172756411797252031
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	On the History of the Paper by Grigorian and Ostroumov
	Notes on Editor's Changes and on Technical Points in the Paper by Grigorian and Ostroumov
	Grigorian and Ostroumov's Work in the Context of Present-Day Avalanche Dynamics Research—Is There Still a Use for Simple Avalanche Models in the 21st Century?
	A Brief Discussion of Grigorian's Stress-Limited Friction Law
	Some Remarks on the Grigorian–Ostroumov Erosion Model
	How Does the Grigorian–Ostroumov Erosion Formula Relate to Other Erosion and Entrainment Models?
	The Eglit–Grigorian–Yakimov Model for Frontal Entrainment
	Main Features of the Tangential-Jump Entrainment Model
	Particular Features of the Grigorian–Ostroumov Erosion Model
	Can the Grigorian–Ostroumov Erosion Formula Be Used in Practice?

	Do Avalanches Behave Non-Monotonically in the Friction Coefficients?
	References

