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Abstract 

In situ ground improvement by deep mixing the soil with stabilizing agents or binders as lime, cement, cement 

kiln dust or a combination of these is the most common method applied in the Nordic countries. In Norway, soil 

stabilization with deep mixing has been applied to soft to medium stiff clays with sensitivity ranging from about 

5 to over 100. In this paper, a large database of laboratory results from lab-stabilized Norwegian clays is 

presented. The data show, for example, that shear strength of the stabilized clays decreases when the water to 

binder ratio (i.e. total clay water to binder content ratio) increases, and that the stiffness development is mainly 

controlled by time. Some observations from more advanced laboratory testing on samples taken from stabilized 

columns in the field highlight the anisotropic behaviour of the stabilized clays and the increase in strength with 

in situ stresses. The data presented is a useful guide on the selection of binder mixes for specific project 

applications and it should always be supplemented by testing on site-specific lab-mixed specimens. 

Keywords: Design methods and aids; Geotechnical engineering; Strength and testing of materials 
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Introduction 

In situ ground improvement by deep mixing the soil with stabilizing agents or binders as lime (L), cement (C), 

cement kiln dust (CKD) or a combination of these is the most common method applied in the Nordic countries 

since mid-1970's (Broms, 1984). In Norway, soil stabilization with deep mixing has been applied to soft to 

medium stiff clays with sensitivity ranging from about 5 to over 100. The method aims to increase the strength 

and stiffness of these soils by forming columns, panels or blocks of stabilized clay. Most common applications 

of the method in Norway are improvement of stability of natural slopes, cuts, and deep supported cuts and 

excavations (Karlsrud, Eggen, Nerland and Haugen, 2015; Karlsrud, 2012; NGF, 2012; O’Sullivan, Quickfall 

and Terzaghi, 2009). Other recent applications include the use of deep mixed columns for reducing settlements 

or vibrations of high-speed railways (Madshus, 2013; Holm, Andréasson, Bengtsson, Bengtsson, Bodare and 

Eriksson, 2002), under wind turbine foundations (Topolnicki and Soltlys, 2012) and bridge foundations (Juvik, 

Solås, Koa, Bache and Hove, 2019). 

Experience demonstrates that the strength and stiffness of a stabilized clay can show large variations (Karlsrud, 

Eggen, Nerland and Haugen, 2015) and therefore, there is a need for assessing those stabilization works. Testing 

of stabilized clays can be performed by various in situ tests, laboratory tests on lab-mixed specimens on 

representative samples, or laboratory tests on samples taken from stabilized columns. Testing of lab-mixed 

specimens is most common, and part of the normal design process for selecting type and amount of binder to be 

used in a project. In Norway, the standard practice is to perform unconfined compression tests (UC) on the lab-

mixed specimens, but in recent years drained and undrained triaxial tests (TC) and oedometer tests have also 

been undertaken, but so far mostly for research purposes. Column Penetration Sounding tests (CPS) or Reverse 

Column Penetration Sounding (RCPS) are most commonly used for verification of strength of columns in the 

field (Swedish Deep Stabilization Research Center, 2010). RCPS may be supplemented by cone penetration test 

(CPTU) and core sampling. For a sensitive Norwegian clay from Klett, Trondheim (Juvik, Solås, Koa, Bache 

and Hove, 2019; Long, L'Heureux, Bache, et al., 2019), the testing of lime and cement (L/C) stabilized clay 

showed higher values of shear strength in the field than those obtained when mixing and testing samples in the 

laboratory. 

This paper presents a large database of laboratory results from lab-stabilized Norwegian clays. The database 

mainly focuses on use of binders based on a combination of lime and cement (L/C) or lime and cement kiln dust 

(L/CKD), which have been most commonly used in Norwegian practice. The paper tries to identify which soil 
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parameters and binder mixes that mainly influence the strength and the stiffness of the stabilized clay and 

provide guidance on expected values that can be applied in design. The intention is that this should help in 

guiding selection of binder mixes for specific project applications, but it should always be supplemented by 

testing on site-specific lab-mixed specimens 

2. Deep mixing with L/C or CKD/C as a stabilization method for sensitive clays in Norway 

The marine Norwegian soft and sensitive clays typically have water contents in the range 25-65%. Due to 

leaching they can be very sensitive or quick. Experiences over about 40 years of applications (Karlsrud, Eggen, 

Nerland and Haugen, 2015) have shown that the dry mixing method (DDM), as most commonly used in 

Scandinavia, gives good results in terms of increased stiffness and shear strength, and is also a cost-effective 

improvement method. Mainly in cases where the water content of the clay is low, and the remoulded strength 

relatively high, the use of DDM will result in poor in-mixing of binders, and desired homogeneity, strength and 

stiffness of the stabilized clay will not be achieved.  The so-called Modified Dry Mixing method (MDDM) have 

in such cases been successfully used (Karlsrud, Eggen, Nerland and Haugen, 2015). With MDDM water is 

introduced through a separate pipe to the mixing head in addition to the dry binder powder. This gives some of 

the same effect as using Deep Wet Mixing with slurry but allows use of the simpler dry mixing rigs. 

The type and amount of binder has a large impact on the strength and stiffness achieved. In Norway, it has been 

common practice to use a 50/50 ratio of L/C, but in recent years CKD has been used instead of L. CKD is a by-

product material of the cement manufacturing process, consisting primarily of reactive minerals i.e. calcium 

carbonate and silicon dioxide. L is mainly composed by calcium oxide (CaO), while C has at least 2/3 of 

calcium silicates which are richest in CaO. L, C or CKD need the presence of water to react.  It is well known 

that increased cement content tends to give higher strength, but it can affect the achievement of a good in-

mixing. When the water in the clay reacts with the cement, hydration of the cement occurs resulting in 

pozzolanic reactions that gives a product with high strength that increases as it ages. The strength increase in L-

stabilization is mainly due to the hydration of carbon oxide (dewatering of the soil) and the precipitation of 

silica and alumina minerals from the clay, resulting in pozzolanic reactions and an increase of strength. In the 

case of CKD, it needs the presence of water to react in the same way as cement. Binders that need to act through 

pozzolanic reactions with the components of the soil particles are more sensitive to the type of soil than binders 

reacting primarily with the pore water in the soils (Åhnberg, Johansson, Pihl and Carlsson, 2003). Previous 

studies (Milburn and Parsons, 2004; Parsons, Kneebone and Milburn, 2004; Åhnberg, Johansson, Pihl and 
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Carlsson, 2003) have addressed the effect of using different binders in ground improvement. These studies 

report that high-plastic clays stabilized with CKD have approximately the same stiffness as for L-stabilized 

clays. In other soil types, the tests show a higher stiffness for L-stabilized clays than for CKD-stabilized clays. 

Outside Norway, the use of other type of binders have also showed good effects. Examples are for instance use 

of ground-granulated blast furnace (GGBS) activated by carbide slag (CS) (Yi, Gu, Liu and Puppala, 2014; Yi, 

Li and Liu, 2015), fly ash and lime kiln dust (Kang, Ge, Kang and Mathews, 2015; Kang, Kang, Chang and Ge, 

2015; Zentar, Wang, Benzerzour and Chen, 2012). 

3. Data collection on stabilized Norwegian clays 

NGI has during 2015-2019 compiled a database on lab-stabilized clays from 26 different Norwegian sites. The 

database includes 424 samples with 325 samples prepared in the laboratory and 99 samples taken from the field. 

It includes data from UC and TC tests. The present paper will focus on presenting the data from lab-mixed 

specimens. 

As summarized in Figure 1, the database mainly covers clays with water content in the range 20 to 48 %, 

plasticity index 5-20%, liquid limit 20-50%, and sensitivity 2 to 280. For the samples with sensitivity larger than 

about 10 to 20, the water content is equal to or larger than the liquid limit. As it will be discussed later, after 

stabilization the water content reduce and approach the plastic limit of the original clay. 

The samples in the database were mixed with different types of binders using different ratios of binder 

combinations, total binder contents (as expressed by total binder, ), and curing times. Most of the clay samples 

were L/C stabilized, some CKD/C stabilized, both with 50/50 binder ratio. The most commonly used total 

binder content () in the database is 100 kg/m³. Figure 2 presents the distribution of the type of binder, binder 

ratio and binder factor used for the samples in the database. 

Figure 3 shows the water content and total unit weight values in situ (i.e. before mixing) against the values for 

stabilized clays (i.e. after mixing). As expected, the water content of the stabilized clays is about 13% lower 

than the in-situ values since part of the pore water was needed to complete the binder hydration process. In 

natural soils, a decrease in water content from around the liquid limit towards the plasticity limit is accompanied 

by an increase in strength (Åhnberg, Johansson, Pihl and Carlsson, 2003). The binder type showed no 

significant impact on the water content. The increase in total unit weight because of soil stabilization is 

relatively small, indicating that the stabilized clay may contain a larger volume of air pockets, also observed by 

(Åhnberg, Johansson, Pihl and Carlsson, 2003), mainly due to an inhomogeneous preparation of the samples in 
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the laboratory. These air pockets might affect the strength measurements and contribute to its large scatter. The 

total unit weight of the treated clays seems to mostly vary between 5% of that of the original clay. 

3.1 Some observations from UC tests on laboratory prepared samples 

The water content and plasticity index of the original clay have been suggested to influence the shear strength 

and stiffness of the stabilized clay. Note that the shear strength is defined as cu=qu/2, where qu is the axial stress 

at failure in the UC test.  Figure 4 shows the influence of the water content of the clay before mixing (in-situ) on 

the shear strength, cu, of the stabilized clay. The data is for L/C and CKD/C stabilized clays that were cured for 

1-6, 7, 14, 21, 28 and 54-60 days. The general trend agrees with past experiences that the strength of a clay 

stabilized with a specific binder increases with decreasing in-situ water content. In addition, the strength 

increases with curing time. Higher cu values are reached for clays stabilized with CKD/C and large curing times, 

and water contents lower than 30%. The scatter in the data could partly be due to human factors when mixing 

and testing the specimens rather than the clay type and variability in its mineralogy or other factors not directly 

reflected in the water content. 

Figure 5 presents the variation in cu with plasticity index, PI before stabilization. The strength decreases when PI 

increases.  Low plastic clays seem to be more sensitive to the type of binder used since higher cu values are 

reached with CKD/C treated clays for the longest curing times. Plastic limits for the stabilized clays are not 

included in the database, however, it is expected an increase in plastic and liquid limit because of the 

stabilization works, as observed for Swedish clays (Åhnberg, Johansson, Pihl and Carlsson, 2003). 

Figure 6 presents the variation in cu at 28 days with the binder factor  for L/C and CKD/C treated clays. As 

expected, the strength increases with  and with a reduction in win situ. The highest cu
 
is observed for  = 120 

kg/m³ and CKD/C treated clays; however, the tendency of the different binder type is not clear. The most 

common binder content factor used in the Norwegian practice is  = 100 kg/m³, however, the data shows that it 

is possible to reduce the binder factor to  = 70 kg/m³ without compromising the required strength. The 

Norwegian Public Roads Administration requires a minimum strength of 100 kPa for single stabilized columns. 

When looking at the complete database as presented in Figure 7, there is a large scatter in the values of cu for  

= 100 kg/m³ at different curing times. This larger scatter is observed for both clays stabilized with either L/C or 

CKD/C. As mentioned before, the scatter in the data could partly be caused by human factors when mixing and 

testing the specimens. It is to be expected that the type of binder has effects due to differences in geochemical 

reactions in the soil, and that the reaction times also depends on the binder type (Åhnberg, Johansson, Pihl and 



Accepted manuscript doi: 
10.1680/jgrim.19.00051 

 

Carlsson, 2003). The same author presented that for Swedish clays with water contents between 78-89% 

stabilized with L/C, the strength values at 28 days lie in the range 100-125 kPa, which are lower values than the 

data presented in Figure 6, mainly due to the high-water content of the clays. 

From Figure 8 it is difficult to observe a significant impact on the strength cu of the value of aw, defined as the 

ratio between the dry weight of binder to the dry weight of soil before stabilization. There is a large variability 

for specific curing times (7 and 14 days), probably mainly due to human factors and some variation in the index 

properties of the original clay. For data coming from a specific site, and for a specific curing time, the strength 

of stabilized clay increases with aw, for L/C stabilized clays. The literature (Coastal Development Institute of 

Technology, 2002) shows that cu increased almost linearly with increasing aw irrespective the curing time. This 

was for a high plastic clay with water content close to 100%. The peak strength increased with aw and curing 

time for another clay with water content close to 120%. This increase of cu  with aw for a specific site stabilized 

with L/C agrees well to what has been described before in the case of stabilization with only lime (Terashi, 

Okumura and Mitsumoto, 1977; Bell, 1996; Liu, Indraratna, Horpibulsuk and Suebsuk, 2012). They state that to 

achieve the maximum cementation effect (i.e. peak strength), sufficient lime must be added to reach the 

adequate pH conditions to allow the reaction between the lime and clay minerals. An excess of lime may modify 

the plasticity indices, water content and reactivity of the clay, which might affect the completion of the 

hydrolysis of the binder. Consequently, there is generally an increase in strength with lime content until peak 

strength is achieved, however, with further addition of lime, beyond the optimum content, reductions in strength 

and stiffness can be observed. In the case of cement, (Terashi, Tanaka, Mitsumoto, Niidome and Honma, 1980) 

and (Zhang, Zheng and Bian, 2017) presented an almost linear correlation between aw and cu. However, this last 

observation cannot be verified with the data presented herein due to its large scatter. 

A comparison of the water/binder (w/b) ratio (or total clay water/binder content ratio cw/aw) for L/C and CKD/C 

stabilized clays and its influence in cu is presented in Figure 9. It can be observed that the CKD/C treated clays 

can show 400 kPa difference in strength for small variation in w/b ratio from 4 to 5, while L/C treated clays may 

show just 200 kPa difference in the same w/b ratio interval. The data shows as expected, that larger curing time 

will then increase cu for higher values of w/b (i.e. cw/aw). These results agree with previously published data by 

(Lorenzo and Bergado, 2004; 2006) and the relation proposed by (Miura, Horpibulsok and Nagaraj, 2001). 

Figure 10 shows the influence of curing time on the strength, cu, and stiffness, defined as the secant elastic 

modulus, E50, of clays stabilized with L/C or CKD/C. The data confirm the trend of increasing cu with 
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increasing curing time and . A similar trend for curing time might be observed for E50; however, the scatter in 

the data is larger and no particular impact of the binder content, , can be observed. Some of the low values in 

cu and E50 at large curing times may indicate anomalies in the stabilized samples that seem to become more 

important with an increase in strength and brittleness. The highest values of cu and E50 are observed for 

stabilized clays with CKD/C at 28 days of curing and more than 100 kg/m³ of binder. Similar values of cu are 

observed for lower binder factor values at larger curing times for CKD/C stabilized clays, however the stiffness 

decreases. A more detailed study is intended in Figure 11, where the influence of curing time on cu is presented 

for three different clays from the database: Norcem quick clay and Sjølyst clay both with water contents about 

41-44% and Vik quick clay with water content of 28%. Three different binder factors are also plotted for either 

L/C or CKD/C treated clays. As expected, a larger cu is observed for larger curing times for both types of 

binders. No particular difference in cu is observed for the type and the amount of binder for high water contents. 

For low water contents, as in Vik quick clay, no significant change in cu is observed for the amount of L/C used; 

however, the amount of CKD/C seems to have a positive effect in increasing cu. These results may indicate that 

at high water contents, the type of binder and the binder amount do not have any significant effect on the 

strength. However, a further and systematic study should be done to confirm this. 

The values of E50 in the database varies substantially between about 5 and 200 MPa. The results in Figure 10 

show that the stiffness development is mainly controlled by time, while the type of binder used also has some 

impact. Surprisingly, no significant impact of normalized binder content, , can be observed. 

The observations presented above are specific for Norwegian clays with lower water contents and plasticity than 

clays presented by, for example, (Zhang, Zheng, Bian, 2017; Coastal Development Institute of Technology, 

2002; Åhnberg, Johansson, Pihl and Carlsson, 2003). The database shows also a large variability due to the 

inherent clay variability, different laboratories performing the tests (i.e. human factors) and the origin of the 

data. Even though, the observations agree basically to what is expected from the literature and it shows that 

there can be significant variability that is not directly related to only simple index properties of the clays 

stabilized. 
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3.2 Some observations from more advanced laboratory testing on samples taken from stabilized columns 

in the field 

In relation to some construction projects in Trondheim and Oslo, Norway, some manually extracted block 

samples and cored samples have been collected from columns. Such samples have been subjected to both 

conventional UC tests and more advanced consolidated drained and undrained triaxial compression (CIUC and 

CIDC) and extension tests (CIUE), direct simple shear tests and constant rate of strain oedometer tests (CRS). 

Figure 12 shows the results of tests on block samples from Møllenberg (Trondheim) (Hansson, 2012), Klett 

(Trondheim) and Oslo S (Oslo) (Bache and Lund, 2018; NGI, 2017). The in situ vertical effective stress for the 

samples is unknown, therefore the undrained shear strength, cu-adv, is plotted against the sample depth, z. All the 

data are from L/C stabilized clays with binder ratio 50/50. Curing time varies from 65 days for Klett data to 90 

days for Oslo S data. Both data come from undrained TC in isotropic conditions (CIUC). Møllenberg data has 

curing times between 530-583 days and the testing conditions were either undrained (CIUC) or drained (CIDC). 

Møllenberg tests were performed without use of back-pressure to have the same saturation conditions as in-situ, 

since stabilized clays are rarely saturated (Ånhberg, 2004). Undrained tests showed a very low pore pressure 

response without giving much effect in the strength, and therefore, most of the tests were performed drained 

(Hansson, 2012). The results of these TC show an increasing trend between the sample depth and the strength 

and stiffness of the stabilized clay. The scatter in the data is due to variations in the confining stress during the 

consolidation phase. 

The high stiffness values for Møllenberg samples in Figure 12 are from CIUC and CIDC test with samples 

cured for almost 2 years. The E50-values vary between 100-500 MPa which are substantially higher than those 

used in common design practice. For Swedish clays, an E50 =50-100 MPa is normally recommended, and such 

values have also commonly been adopted in Norway. Swedish research concludes that the properties of 

stabilized clays are stress dependent (Åhnberg, 2006a; Björkman and Ryding, 1996), and that the strength and 

stiffness properties of the stabilized clays therefore will increase with depth. 

Triaxial and DSS tests results from Klett and Oslo S (Bache and Lund, 2018) are also shown in Figure 12. The 

results from Klett show an increase in shear strength with depth, while the results from Oslo S show 

approximately the same shear strength at the two depths. The L/C cement stabilized clay is a heterogeneous 

material with relatively large variations within the stabilized body. Therefore, the results usually show some 

scatter. To capture the effect of stress dependency, one should collect field samples from large depths, so that 
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the stress dependency is not masked by the natural variation in the stabilized clay. Multiple tests performed with 

RCPS at Klett also showed an increase in shear strength with depth. Figure 13 shows the range of variation of 

these RCPS tests. The columns are L/C columns installed to a depth of 25 m in a deposit of very sensitive clay. 

The tests were made 7-12 days after installation. The larger increase after 15 m is mainly due to a larger amount 

of binder (around 3 times more) used during the DDM. The CIUC and CIUD triaxial tests on stabilized 

Møllenberg clay (Hansson, 2012), were tested for both vertical and horizontal orientation of the test specimens, 

under different confining pressures. They showed a clear increase in shear strength shear with confining 

pressure. For the relatively high confining pressures applied there were no significant differences between 

vertically and horizontally trimmed specimens (Figure 12). 

The increase in shear strength of stabilized clays with depth, or confining stress level, has not normally been 

reflected in Norwegian design practice. This effect could potentially result in significant cost savings. More 

research is needed to quantify the contribution of confining stress during curing and stress paths followed during 

testing on the strength of stabilized clays. 

The tests presented in Figure 12 were also intended to study if L/C stabilized clays had an anisotropic type of 

behavior. The undrained triaxial and DSS tests on samples from 3 and 7 m from Klett, show that stabilized clay 

is anisotropic. When normalized to the CIUC strength the strength ratios for CIUE/CIUC= 0,35, and 

DSS/CIUC= 0,77. These anisotropic strength ratios are very similar to what is the case for the non-stabilized 

clay (0,35 and 0,63), see for instance database by (Karlsrud and Hernandez-Martinez, 2013). However, the 

results from test on stabilized clay from Oslo S showed less anisotropy, with CIUE/CIUC=0,70. The anisotropy 

of stabilized clays might be explained a difference in horizontal and vertical effective stress at the end of curing, 

which will be impacted by the geometry of the stabilized body as well as if or to what extent excess materials 

are allowed to escape to ground level. This will clearly impact the total stresses set up in the ground during the 

stabilization works. At Klett, the ground consisted of quick clay which was completely remolded during 

installation of L/C columns, so that excess masses emerged from the column along the drill string. At the Oslo 

S, the stabilized clay was less sensitive which would result in relatively speaking larger horizontal stresses than 

at Klett. The Møllenberg tests could suggest that the anisotropy strength ratio decreases over time as the 

material cements. However, this was also block stabilized clay which one would expect to leave larger 

horizontal stresses in the ground than for the panel-type stabilization at the two other sites. 
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More work is needed to clearly define if or to what extent anisotropy should be accounted for in design, and if 

or to what extent it depends on the configuration of the stabilized body, the ease with which surplus material can 

escape to ground level, and the dependency of type of stress path followed during loading. The latter was for 

instance discussed by (Ignat, 2018). 

3.3 More detailed stress-strain behaviour and strain at failure 

Figure 14 shows a typical example of stress-strain curve of a lab-mixed specimen of Vik quick clay (win situ = 

28%) stabilized with L/C and CKD/C with  = 100 kg/m³. The stress-strain curve of the original clay is also 

plotted. The treated clay curve shows a very high strength and small axial strain at failure, while the original soil 

has a small strength and large strain at failure. 

Figure 15 shows the relationship between the axial strain at failure, f, and the unconfined compressive strength, 

cu, of treated soils with L/C or CKD/C. The axial strain at failure decreases with increasing curing time and 

increasing cu, which is expected since the clay becomes stiffer. The highest cu values are for CKD/C treated 

clays at 60 days curing time. Swedish clays stabilized with different types of binder (Åhnberg, 2006b) decreased 

rapidly with increasing strength at cu < 100 kPa, they follow a similar pattern, towards the lower bound, to the 

one presented for Norwegian clays. 

The elasticity modulus E50 of treated soils is plotted in Figure 16 against cu. The values of E50 for L/C treated 

clays vary between 50*cu and 800*cu depending on the curing time. A best-fit line for 28 days curing is found at 

E50 = 237*cu with a coefficient of determination r² = 0,80. In the case of CKD/C treated clays, the values of E50 

between 55*cu and 660*cu depending on the curing time. A best-fit line for 28 days curing is found at E50 = 

290*cu with a coefficient of determination r² = 0,75. 

As discussed before, the win situ has an influence on the values of E50 and cu. Figure 17 presents the data at 28 

days curing time for three different ranges of water content. For water contents between 30-50%, no large E50 

variations are observed. When the water content is lower than 30%, the stiffness increases almost in an 

exponential form when increasing the strength. 

Conclusions 

A large database of laboratory results from lab-stabilized Norwegian clays has been presented. The database 

mainly focuses on the combination of binders: lime and cement (L/C) or lime and cement kiln dust (L/CKD). 

The data follows some well-known rules about the influence of the index properties for the original clays, like 

the water content and plasticity of the clay before stabilization, and the binder dosage, on the strength and the 
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stiffness of the stabilized clay. In addition, it confirms earlier findings that UC-tests on lab-mixed specimens 

will underestimate the strength that can be achieved on DDM columns in-situ. This is most likely due to a 

combined effect of higher and longer lasting curing temperatures in the field, and the stresses acting on a 

column during curing. 

The data presented is a useful guide on the selection of binder mixes for specific project applications and it 

should always be supplemented by testing on site-specific lab-mixed specimens. As a general observation the 

design strength limit of 150 to 200 (300) kPa used in most projects in Norway up until today, is considered 

conservative, and could be increased by a factor of two to three in future projects provided proper control during 

and after in-mixing of binder. 
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List of notations 

aw   is the binder content ratio or dry weight binder/dry weight soil ratio 

CKD/C  is the cement kiln dust/cement binder 

CPS  is the Column Penetration Sounding tests 

CS  is the carbide slag 

cu  is the shear strength from unconfined compression tests 

cu, 28  is the shear strength at 28 days from unconfined compression tests 

cw  is the total clay water 

DDM  is the dry mixing method 

DSS  is the direct simple shear 

E50  is the elasticity modulus from unconfined compression tests 

GGBS  is the ground-granulated blast furnace 

L/C  is the lime/cement binder 

MDDM  is the Modified Dry Mixing method 

PI   is the Plasticity Index 

qu  is the axial stress at failure in the unconfined compression test 

r²  is the coefficient of determination 

RCPS   is the Reverse Column Penetration Sounding 

TC   is the triaxial compression 

UC  is the unconfined compression 

w/b  is the water/binder ratio in weight 

  is the binder factor or amount of binder 

f  is the axial strain at failure from unconfined compression tests 
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Figure captions 

Figure 1. Distribution of index properties in the database 

Figure 2. Distribution of binder type and binder ratio in the database 

Figure 3. Comparison of water content and total unit weight before and after stabilization 

Figure 4. Shear strength, cu, at different curing times plotted against water content in situ, win situ 

Figure 5. Shear strength, cu, at different curing times plotted against plasticity index, PI, of the clays before 

stabilization 

Figure 6. Variation in shear strength at 28 days, cu 28, with binder factor,  

Figure 7. Variation in shear strength, cu, at different curing times with binder factor,  

Figure 8. Variation in shear strength, cu, at different curing times with dry binder/soil ratio, aw 

Figure 9. Variation in shear strength, cu, with water/binder ratio, w/b, or total clay water/binder content ratio, 

cw/aw 

Figure 10. Variation in shear strength, cu, with curing time 

Figure 11. Variation in shear strength, cu, with curing time for three specific clays 

Figure 12. Advanced shear strength values, cu adv, of samples from Møllenberg, Klett and Oslo S 

Figure 13. Range of RCPS from Klett after 7 to 12 days of installation 

Figure 14. Variation in shear stress with axial strain for Vik quick clay 

Figure 15. Variation in shear strength, cu, at different curing times with axial strain at failure, f 

Figure 16. Variation in elasticity modulus, E50, with shear strength, cu 

Figure 17. Values of elasticity modulus, E50, and cu at 28 days curing time, at different water content in situ, win 

situ 
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