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A B S T R A C T

Soft computing techniques are becoming even more popular and particularly amenable to model the complex
behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,
compared to the traditional methods. This paper presents an overview of some soft computing techniques as well
as their applications in underground excavations. A case study is adopted to compare the predictive performances
of soft computing techniques including eXtreme Gradient Boosting (XGBoost), Multivariate Adaptive Regression
Splines (MARS), Artificial Neural Networks (ANN), and Support Vector Machine (SVM) in estimating the
maximum lateral wall deflection induced by braced excavation. This study also discusses the merits and the
limitations of some soft computing techniques, compared with the conventional approaches available.
1. Introduction

Due to population growth and urbanization, there is an increasing
demand for the construction of underground projects such as the tunnels
for mass rapid transportation services as well as the deep braced/
anchored excavations for development of shopping malls, parking lots,
and the skyscrapers. The responses of underground engineering systems
in soils/rocks are complex, highly-nonlinear, uncertain, and not yet
completely understood. In recent years, with rapid development of sci-
entific computing software, evaluation of underground engineering re-
sponses or behaviors has entered a new stage. Engineers are now relying
more on computational intelligence particularly soft computing analysis
instead of carrying out huge complicated numerical analysis or compu-
tationally demanding calculations.

Soft computing methods (SCMs) allow computers to learn laws or so-
called patterns from existing data, either from field instrumentation or
case histories, without being explicitly programmed. These soft
computing techniques include but not limit to Multivariate adaptive
regression splines (MARS), artificial neural networks (ANNs), support
echnology for Construction of Ci
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vector machines (SVMs), Random Forest methods (RF), Decision Trees
(DT), Gradient boosting machines (GBM), Logistic regression (LR),
Gaussian process (GP), Hybrid methods such as the adaptive neuro-fuzzy
inference system (ANFIS), and gene expression programming (GEP) and
so forth. For the readers’ interest, Table 1 compiles the use of soft
computing use in underground excavations during the past 30 years.
Table 1 also contains the note for abbreviation explanations of the SCMs.

Soft computing methods have been widely used in evaluating exca-
vation performances such as the retaining wall deflection brought by
deep braced excavation (Goh et al., 1995; Chua and Goh, 2005; Kung
et al., 2007; Chern et al., 2009; Choi and Lee, 2010; Zhang et al., 2017a,
b, 2018, 2019; Xiang et al., 2018) and the ground surface settlement
induced by tunneling (Shi et al., 1998; Kim et al., 2001; Sen and Chuang,
2004; Neaupane and Adhikari, 2006; Suwansawat and Einstein, 2006;
Santos and Celestino, 2008; Hou et al., 2009; Goh and Hefney, 2010;
Tsekouras et al., 2010; Hajihassani et al., 2011; Pourtaghi and
Lotfollahi-Yaghin, 2012; Ocak and Seker, 2013; Ahangari et al., 2015;
Bouayad and Emeriault, 2017; Moeinossadat et al., 2017; Chen et al.,
2019). Some researchers have focused on the effects of the geological
ties in Mountain Area, Chongqing University, Ministry of Education, Chongqing
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parameters on stability assessment of underground constructions, such as
Leu et al. (2001), Mawdesley (2004), Goh and Zhang (2012), and Goh
et al. (2017a,b). Assessment of rock-burst and the risk prediction has
been investigated by Su et al. (2010), and Zhou et al. (2012, 2016, 2018).
Such as Zhou et al. (2016a) have compared ten types of learning algo-
rithms including LDA, QDA, PLSDA, NB, KNN, MLPNN, CT, SVM, GBM
and RF, and concluded that the best models for the prediction of rock-
burst were GBM and RF. In addition, Zhou et al. (2018) have systemat-
ically discussed the use of statistical and intelligent classification
methods of rockburst. Jang and Sun (1995), Dong et al. (2013), Jang and
Topal (2013), and Mottahedi et al. (2017, 2018) have investigated the
use of SCM in prediction of overbreak in tunneling and underground
mining. Mottahedi et al. (2017) has applied 267 data sets of contributing
factors and dependent response for overbreak prediction using the mul-
tiple linear and nonlinear regression analysis, ANN, FL, ANFIS, and SVM.
It was concluded that the FL and ANFIS models have provided more
appropriate predictions than other models.

The objective of this paper is to provide an overview of the features
relevant to the process and operation of ANNs, MARS, RF, and SVM, and
to present a review of their applications to date in underground exca-
vation. Through the case study, this paper compares the performance of
the SCMsmentioned above and discusses the merits and disadvantages of
each method. It also discusses most of the current challenges as well as
future directions in relation to the use of soft computing techniques in
underground engineering.

2. Overview of SCMs

In this study, the predictive capacities of three groups of SCMs
including machine learning (ANN and SVM), tree-based (CART, DT, RF
and XGBoost) and regression (LR and MARS) models were briefly
introduced while some of the methods are elaborated with detailed
process.

2.1. ANN

ANN is one of the most rapidly growing research fields, attracting
attentions from a wide variety of geotechnical communities. ANNs are
information processing systems inspired by the way biological nervous
system and the brain works. They are more generally configured for
specific applications including the pattern recognition (stable or not),
image processing and compression (concrete cracks), and conventional
bearing capacity predictions. ANNs perform best if the relationship be-
tween the inputs and the target responses are highly non-linear and
therefore, are especially suitable for solving problems where there are no
inherent algorithms or specific set of rules, i.e., pre-assumed or pre-
determined relationships.

An ANN basically comprises of three layers: input, hidden, and output
layers, where each layer may have a number of nodes, known to be
neurons perform the basic operations and the overall operation is the
weighted sum of these basic operations. It has to be trained so that a
known set of inputs produces the desired outputs. Training is usually
done by feeding teaching/instructing patterns to the network and letting
the network to adjust its weighting function according to some previ-
ously defined learning rules. The learning can either be supervised, semi-
supervised or unsupervised.

There are actually many types of ANNs, such as Back-Propagation
Neural Network (BPNN), Bayesian Neural Network (BNN), General
Regression Neural Network (GRNN), Multilayer Perceptron Neural
Network (MLPNN), and K-Nearest Neighbor (KNN), as well as the hybrid
form of Adaptive Neuro-Fuzzy Inference System (ANFIS). Among them,
backpropagation (BP) algorithm is used in most ANN as the method to
train the network. Here, output of the neural network is evaluated against
the desired output, and if the results are not as expected, the weights
between layers are modified and the process is repeated until the opti-
mization goal is satisfied. Factors affecting the performance of ANNs
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include the number of nodes/neurons in the hidden layer, the learning
rate, and the training tolerance.

2.2. DT

In decision trees, the models are obtained via recursively partitioning
the data space and fitting a simple prediction model within each parti-
tion. As a result, the partitioning can be represented graphically as a
decision tree. Decision trees include the regression trees and classifica-
tion trees. Regression trees are for dependent variables taking continuous
or ordered discrete values, with prediction error typically measured by
the squared difference between the observed and predicted values (Loh,
2011). Classification trees are for dependent variables that take cate-
gorical values (e.g. tunnel classes or rockburst severities). In the decision
tree modelling, an empirical tree represents a segmentation of the data
that is created by applying a series of simple rules. These models generate
a set of rules which can be used for prediction through the repetitive
process of splitting (Tso and Yau, 2007). The DT approach is built upon
the implicit assumption that the relationship between features and target
objects is either linear or nonlinear. In DT, features that carry maximum
information are automatically selected for classification/regression and
the remaining features are rejected, which increases the computational
efficiency and averts the subjective uncertainty. The construction of a
tree is also based on a binary recursive partitioning. The term ‘‘binary”
implies that each group of observations, represented by a node in a DT, is
split into two child nodes, a process through which the original node
becomes a parent node. The term ‘‘recursive” refers to the fact that the
binary partitioning process can be applied repetitively. It is an iterative
process that splits the data into partitions. Initially, all the training
samples are used to determine the structure of the tree. The algorithm
then breaks the data using every possible binary split and selects the split
that partitions the data into two parts such that it minimizes the sum of
the squared deviations from the mean in the separate parts. The splitting
process is then applied to each of the new branches. The process con-
tinues until each node reaches a user-specified minimum node size (Xu
et al., 2005). Thus, each parent node can give rise to two child nodes and,
in turn, each of these child nodes may themselves be split, forming
additional children. The term ‘‘partitioning” refers to the fact that the
dataset is split into sections or partitioned.

2.3. CART

CART is a recursive partitioning procedure that classifies the cate-
gorical (classification tree) or continuous (regression tree) data at each
node (e.g., parent) using a set of if-then-else rules (Timofeev, 2004).
CART begins with the root node at the top of the tree, which contains the
whole data for the training pattern (Yap et al., 2011). A node in the CART
model is either a terminal node (a node without children), or
non-terminal node (a node with children). CART seeks the split using
search algorithms to classify the data into binary or even multiple classes
(Breiman et al., 1984) by checking all unique values across the range of
data values of different predictors (Ayoubloo et al., 2011).

2.4. MARS

MARS was first proposed by Friedman (1991) as a flexible procedure
to organize relationships between a set of input variables and the target
dependent that are nearly additive or involve interactions with fewer
variables. It is a nonparametric statistical method based on a “divide and
conquer” strategy in which the training data sets are partitioned into
separate piecewise linear segments (splines) of differing gradients
(slope), which representing the integration of additive regression, the
recursive regression, spline regression and recursive partitioning
regression. With respect to other methods, the prediction accuracy of
MARS is relatively high and it is also highly adaptive since it makes no
assumptions about the underlying functional relationships between



Table 1
SCM applications in underground excavations.

References SCM Applications

Hou et al. (2009) ANFIS Settlements induced by shield tunneling
Bouayad and Emeriault (2017) ANFIS, PCA Settlements induced by shield tunneling
Cabalar et al. (2012) ANFIS Geotechnical engineering
Jang and Sun (1995) ANFIS Overbreak prediction
Mottahedi et al. (2018) ANFIS-PSO Overbreak prediction
Armaghani et al. (2015) ANFIS Predicting ground vibration
Ahangari et al. (2015) ANFIS, GEP Tunneling-induced settlement
Moeinossadat et al. (2018) ANFIS, CAM Ground settlements caused by EPB tunneling
Chern et al. (2009) ANN Wall deflection in top–down excavation
Goh et al. (1995) ANN Lateral wall movements in braced excavations
Goh and Zhang (2012) ANN Stability assessment of rock caverns
Hajihassani et al. (2011) ANN Settlements induced by NATM tunneling
Huang and Wang (2007) ANN Reliability analysis for deep excavation
Jan et al. (2002) ANN Deep excavation
Kim et al. (2001) ANN Ground surface settlements due to tunneling
Lai et al. (2016) ANN Soil deformation in tunneling
Lee and Sterling (1992) ANN Underground openings probable failure modes
Leu et al. (2001) ANN Tunnel support stability
Li et al. (2008) ANN Pit retaining structure displacement
Sen and Chuang (2004) ANN Ground settlement induced by deep excavation
Tsekouras (2004) ANN Tunneling problems
Tsekouras et al. (2010) ANN Settlements during tunneling excavation
Yoo and Kim (2007) ANN Tunneling performance
Yu et al. (2009) ANN Settlement induced by foundation pit excavation
Mottahedi et al. (2017) ANFIS, SVM, FL Overbreak prediction in drill & blast tunneling
Chen et al. (2009) ANN, FL Construction pre-control of a connection tunnel
Ocak and Seker (2013) ANN, GP, SVM Surface settlements caused by EPB
Alimoradi et al. (2008) ANN, TSP-203 Geological hazardous zones of a tunnel face
Amiri et al. (2016) ANN, KNN Blast-induced ground vibration
Chen et al. (2019) ANN, BP, RBF, GRNN Settlement caused by EPB shield tunneling
Feng and Jimenez (2015) BN Predict tunnel squeezing
Chua and Goh (2005) BNN Wall deflections in deep excavations
Boubou et al. (2010) BPNN Settlements induced by shield tunneling
Darabi et al. (2012) BPNN Subsidence estimation
Santos and Celestino (2008) BPNN Tunnel settlement
Shi et al. (1998) BPNN Settlements during tunneling
Suwansawat and Einstein (2006) BPNN Settlements induced by EPB shield tunneling
Yun et al. (2011) BPNN Mechanical parameters of tunnel surrounding rock
Zhang et al. (2019a) BPNN Settlement prediction of foundation pit
Pourtaghi and Lotfollahi-yaghin (2012) BPNN, Wavenet Tunnel-induced ground settlement
Protopapadakis et al. (2016) FFNN Pile integrity tests
Goh and Hefney (2010) ANN Surface settlement caused by EPB tunneling
Zhou et al. (2016b) GBM Damage due to blasting vibrations of open pit
Su et al. (2010) GP Identify rockburst grades
Ahangari (2015) GRNN Lateral load bearing capacity of piles
Pal and Deswal (2008) GRNN, SVM Pile capacity
Atashpaz-Gargari and Lucas (2007) ICA Settlements induced by shield tunneling
Moghaddasi and Noorian-Bidgoli (2018) ICA-ANN, ANN, MR Surface settlement caused by tunneling
Ghasemi and Gholizadeh (2019b) KNN, DT Tunnel squeezing prediction
Ghasemi and Gholizadeh (2019a) LDA, BLR Tunnel squeezing prediction
Zhou et al. (2016a) LDA, QDA, PLSDA, NB, KNN, MLPNN, CT, SVM, RF, GBM Classification of rockburst
Lee et al. (2006) LR Ground subsidence hazard analysis
Li and Jimenez (2018) LR Rock burst hazard
Mawdesley (2004) LR Rock mass classification & excavation
Zhang and Goh (2016a, 2016b) LR, MARS Evaluating seismic liquefaction potential
Lee et al. (2006) LR Ground subsidence hazard analysis
Choi and Lee (2010) DT based LR Selecting retaining wall systems
Goh et al. (2017a) MARS Earth pressure balance tunnel
Goh et al. (2018) MARS EPB tunnel-related maximum surface settlement
Zhang and Goh (2014) MARS Serviceability limit state of twin caverns
Zhang et al. (2017c) MARS Lateral wall deflection in braced excavations
Zhang et al. (2019c) MARS Determination of wall deflection envelope
Adoko et al. (2013) MARS, ANN Predicting tunnel convergence
Zheng et al. (2019) MARS Earthquake induced uplift displacement of tunnels
Goh et al. (2017c) MARS, LR Underground entry-type excavations stability
Neaupane and Adhikari (2006) MLP Surface settlements induced by NATM tunneling
Moeinossadat et al. (2016) MR, ANFIS, CAM Settlement caused by EPB shield tunneling
Jang and Topal (2013) MRA, ANN Optimizing overbreak prediction
Feng and Jimenez (2015) NBC, BNs Tunnel squeezing prediction
Moeinossadat et al. (2017) NGS, ANFIS, GEP Surface settlement due to EPBM tunneling
Mahdevari and Torabi (2012) RBF, MVR Tunnel convergence
Liao et al. (2011) RBFNN Permeation grouting
Wang et al. (2014) RBFNN Geotechnical engineering
Zhou et al. (2018) Review Evaluation method of rockburst

(continued on next page)
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Table 1 (continued )

References SCM Applications

Xie and Peng (2019) RF Excavation damaged zones
Zhou et al. (2017) RF Shield-driven tunnel induced settlements
Zhou et al. (2019) RF Risk prediction of deep foundation pit
Dong et al. (2013) RF, SVM, ANN Rockburst classification
Zhang et al. (2019b) RF, PSO EPB shield steering
Seker and Ocak (2019) RF, ZeroR, GP, LR, MLP Roadheader performance prediction
Armaghani et al. (2017) SVM TBM penetration rate
Mahdevari et al. (2014) SVM Predicting tunnel penetration rates
Mahdevari et al. (2013) SVM Tunnel convergence
Shi et al. (2019) SVM Rock deformation of shallow buried tunnel
Yao et al. (2010) SVM Tunnel surrounding rock displacement
Zhou et al. (2012) SVM Prediction model of rockburst
Wu et al. (2014) SVM, ANN Tunnel surrounding rock displacement
Zhang et al. (2017a) SVM Tunnel-induced ground settlement
Liu et al. (2019) Improved SVM Predicting rock mass parameters of tunnel data
Zhu et al. (1996) TSAM Displacement in tunneling
Wang et al. (2013) RVM Tunnel-induced ground settlement

Note:
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Networks
BLR Binary Logistic Regression
BN Bayesian network
BPNN Back-Propagation Neural Network
CART Classification and Regression Trees
CT Classification Tree
DT DecisionTree
FCM Fuzzy C-Means Clustering
FFNN Feed-Forward Neural Networks
FL Fuzzy Logic
FORM First-Order Reliability Method
GBM Gradient-Boosting Machine
GEP Gene Expression Programming
GP Gaussian Processes
GRNN General Regression Neural Network
ICA Imperialist Competitive Algorithm

KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LR Logistic Regression
MARS Multivariate Adaptive Regression Splines
MLPNN Multilayer Perceptron Neural Network
MVR Multi-Variable Regression
NB Naive Bayes
NGS Neuro-Genetic System
PCA Principal Component Analysis
PLSDA Partial Least-Squares Discriminant Analysis
PSO Particle Swarm Optimization
QDA Quadratic Discriminant Analysis
RBFNN Radial Basis Function Neural Network
RF Random Forest
RNN Recurrent Neural Network
TSAM Time Series Analysis Method
SVM Support Vector Machine
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dependent and independent variables. In general, the splines are con-
nected smoothly together, and these piecewise curves (polynomials), also
known as Basis Functions (BFs), result in a flexible model that can handle
both linear and nonlinear behaviors. The connection/interface points
between the pieces are called knots. Marking the end of one region of
data and the beginning of another, the candidate knots are placed at
random positions within the range of each input variable.

In general, any model based on MARS follows three basic steps such
as:

(i) Constructive phase, also named the forward phase;
(ii) Pruning phase, also named the backward phase;
(iii) Selection of optimum MARS.

As for the detailed introduction of MARS algorithm, the model
development procedures as well as applications in underground exca-
vations, please refer to Zhang and Goh (2013, 2016a, 2016b), Goh and
Zhang (2014), Goh et al. (2017, 2018), and Zhang et al. (2017a, 2017b,
2019).
2.5. SVM

SVMs, firstly proposed by Vapnik (1995), was preliminarily intro-
duced for classification and later for regression (Smola and Sch€olkopf,
1998). An SVM uses a device called kernel, such as the Gaussian and
polynomial kernels, to map data into a high-dimensional feature space in
which the nonlinear problem becomes linearly separable (Zhang et al.,
2004). SVMs follow the same principles for classification and regression.
It searches for the optimal hyperplanes which maximize the margin be-
tween classes of data and minimize unexpected errors.

In SVM, the main goal is to separate the two classes by a function
which is done by placing a boundary between the two different classes
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and orient it in a way that the margin (i.e. the distance between the
nearest data point of each class) is maximized. For example, in Fig. 1a,
there are many possible linear classifiers that can separate the data but
there is only one that can maximize the margin. This linear classifier is
called the optimal separating hyperplane. Maximum margin has good
generalization capability. The nearest data points are used to define the
margin and are known as support vectors (see Fig. 1b).
2.6. RF

RF is an ensemble learning method proposed by Breiman (2001a), as
a nonparametric and tree-based method (Zhou et al., 2017b). In this al-
gorithm, using multiple DTs with the same distribution to set up a forest
to train and predict the sample data (Kuhn and Johnson, 2013; Zhang
et al., 2019b,d). As the primary intent of this review is to compare the
prediction regression, so only the regression tree (RT) is introduced in
this section. At each branching of RT, the mean of the samples on the leaf
nodes and the Mean Square Error (MSE) formed between each sample
were calculated. Pursuing the minimum of the leaf node MSE as
branching condition, until no more features are available, or the overall
MSE is optimal, the RT will stop growing.

To obtain an ensemble model with strong generalization ability, the
base learner RT in the ensemble model should be made as uncorrelated as
possible (Breiman, 1996, 2001). Bagging (bootstrap aggregating) is a
parallel ensemble model proposed by Breiman (1996). The bagging
flowchart is shown in Fig. 2 (Rodriguezgaliano et al., 2014). The RF
procedures for regression are as follows:

Step 1: pick randomly n data points from the training pool. It should
be stressed that the reason it is called random forest is due to the fact
that the data points are randomly taken out from the pool and
therefore the outcome tree is random.



Fig. 1. Optimal separating hyperplane (a) and support vectors with maximum
margin (b) (adapted from Sitharam et al., 2008).

Fig. 2. Bagging flowchart.
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Step 2: build RT 1 based on these n data points.
Step 3: repeat steps 1 & 2 to the pre-determined number K trees.
Step 4: generate the Forest by parallelly adding the K sub-trees
together.
Step 5: the estimation process of each tree is independent, and take
the average value as the final prediction. The random forests
regression predictor is described by the following equation:

bf Krf ðxÞ¼ 1
K

XK
k¼1

TðxÞ (1)

2.7. XGBoost

XGBoost was proposed by Chen and Guestrin (2016), as an optimized
distributed gradient boosting library designed to be highly efficient,
flexible and portable. It implements machine learning algorithms under
the Gradient Boosting framework. In boosting, the trees are built
sequentially such that each subsequent tree aims to minimize the errors
of the previous tree. Each tree learns from its predecessors and updates
the residual errors. Hence, the tree that grows next in the sequence will
learn from an updated version of the residuals. Quicker model explora-
tion is possible as the parallel and distributed computing ensures faster
learning. The prediction output function of the XGBoost model is as
follows:

byi ¼ XK
k¼1

fkðxiÞ; fk 2 F (2)

where K is the total number of trees, k represents the kth tree, xi is the
features corresponding to sample i, byi corresponds to the predicted score
from this tree, F is the space of RTs.

Bias-variance tradeoff is compromised to achieve a balance between
model performance and operation speed, which defines the following
regularized objective function as:
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Obj¼
Xn

lðyi;byiÞ þXK
ΩðfkÞ (3)
i¼1 k¼1

where
Pn
i¼1

lðyi; byiÞ is the training loss function, quantifying how well the

model fit on the training data. The second term ΩðfkÞ ¼ γT þ 1
2 λ

PT
j¼1

w2
j as

the additional regularization term penalizes the complexity of the model
to avoid over-fitting, in which γ is the complexity cost by introducing

additional leaf, T is the number of leaves, λ is the hyperparameter,
PT
j¼1

w2
j

is used to measure how good a structure tree is, and the greater value it is
of, the better. Therefore, under this objective function, the model of a
simple predictive function is selected as the best model.

Start from the constant prediction, and add a new function each time.
Therefore, the first term loss function is also related to all trees that have
been built. It has already included the iteration results of all trees, so the
entire objective function is related to the total number of trees. Formally,

let by ðtÞ
i be the prediction of the ith instance at the tth iteration, ft is also

included to minimize the following objective.

ObjðtÞ ¼
Xn

i¼1

l
�
yi;byðt�1Þ

i þ ftðxiÞ
�þΩðftÞ (4)

To quickly optimize the objective in the general setting for the first
term loss training function, we approximate it using the second order
Taylor expansion.

ObjðtÞ ’
Xn

i¼1

�
l
�
yi;byðt�1Þ

i

�þ giftðxiÞþ 1
2
hif 2t ðxiÞ

�
þΩðftÞ (5)

where gi ¼ ∂by ðt�1Þlðyi; by ðt�1ÞÞ and hi ¼ ∂2by ðt�1Þ lðyi; by ðt�1ÞÞ are first and

second order gradient statistics of the loss function, respectively. The
constant terms can be eliminated to get the following approximate
objective in step t:



Table 2
Summary of the main features, merits and disadvantages for the four SCMs used in this study.

SCM Main features Merit Disadvantage

XGBoost An ensemble grouping model using
subsequent trees learning from and
minimizing the errors from the previous tree.

Each tree learns from its predecessors and updates the residual
errors. Trees that grow next in the sequence will learn from an
updated version of the residuals. Distributed computing ensures
faster learning.

Susceptible to overfitting issues since it cannot
deal with outliers when the model is trained by a
small number of datasets.

MARS Non-parametric regression that combines a
series of linear splines for flexible model

Generates a flexible model that can handle both linearity and
nonlinearity, with random knots and piecewise splines of differing
gradients.

Susceptible to overfitting and limited to
handling large data, less accurate for sparse data

ANN A network model consisting of input, hidden,
and output layers to emulate a biological
neural system

Self-adaptive model as compared to traditional linear and simple
nonlinear analyses, perform best if the relationship between the
inputs and the target responses are highly nonlinear.

Local minima problem in which an optimization
process often stops at a locally, rather than
globally, optimized state.

SVM Conducts optimal grouping of data and can be
combined with a regression model for the
optimal groups.

Supports optimal grouping of data by maximizing the margin
between groups using kernel functions

Susceptible to overfitting issues depending on
kernel functions used in optimal grouping

W. Zhang et al. Geoscience Frontiers 11 (2020) 1095–1106
ObjðtÞ ’
Xn

giftðxiÞþ 1
2
hif 2t ðxiÞ þΩðftÞ (6)
i¼1

� �
By optimizing Eq. (6), the tth tree associated with the model pa-

rameters and predictions can be determined. The optimization proced-
ures are repeated until the predefined stopping criterion is achieved, and
meanwhile the ultimate predictions are obtained. More detailed expla-
nations of the XGBoost algorithm are referred to Chen and Guestrin
(2016). In this study, a Python-based XGBoost algorithm was adopted for
modelling.
Fig. 3. Cross-sectional soil and wall profile.
2.8. Main features, advantages, disadvantages of SCMs

Table 2 summarizes of the main features, merits and disadvantages of
the main SCMs used in the performance comparison part of this study.

3. Case study and performance comparison

3.1. Database

The database includes results of 1120 plane strain finite element (FE)
analyses of diaphragmwalls in deep braced excavation. The influences of
various parameters such as the excavation geometries, soil properties and
wall stiffness on the wall deflections were investigated in Zhang and Goh
(2015). For simplicity, brief introduction is as follows, including the
cross-sectional soil and wall profile in Fig. 3 while the ranges of the
design parameters are listed in Table 3.

The parameters depicted in Fig. 3 include: the excavation width B,
excavation depth He, soft clay thickness T, soil unit weight γ. The pa-
rameters listed in Table 3 are: the system stiffness ln(S) [S¼ EI⁄(γw h4avg)],
where E is the Young’s modulus of wall material, I is the moment of
inertia of the wall section, the unit weight of water γw, and the average
spacing of the struts havg; cu/σ0v is the relative soil shear strength ratio,
where cu is the undrained shear strength while σ0v denotes the vertical
effective stress; the relative soil stiffness ratio E50/cu, where E50 is the
secant stiffness in standard drained triaxial test.

For brevity, the numerical simulation schemes as well as the para-
metric analysis are omitted. The database is enclosed in the Appendix A,
for performance comparison with the adopted SCMs in this study.

Fig. 4 shows the distribution of wall deflection, it approximates to a
lognormal distribution, and most of the wall deflection are between 50
and 200 mm, the mean and standard deviation are 137.53 mm and 69.36
mm, respectively. In this study, according to the distribution of wall
deflection, the Spearman rank correlation coefficient was applied to
determine the correlation coefficient of each two variables of the B,He, T,
γ, ln(S), cu/σ0v, E50/cu and wall deflection, and then these coefficients are
post-proceeded to a heatmap, as shown in Fig. 5. A heatmap is a graphical
representation of data where the individual values contained in a matrix
are represented as colors. In general, the parameter correlation co-
efficients are displayed in a heatmap because of its high efficiency and
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simplicity. It is clear that the wall deflection is highly influenced by ln(S),
followed by E50/cu, γ, h, cu/σ0v, T and B. The correlation between each
feature variable is not significant, which means that the data are not
multivariate collinearity, and promising for modeling. Parameter corre-
lation coefficients shown in this heatmap can be used as reference for
examining the accuracy of the modeling.

For the ANN and SVM algorithms, datasets with different scales,
distributions, and dimensions would significantly affect the optimization
time. They can also affect the effectiveness of the optimizer, occasionally
hindering the algorithm from reaching the optimum point. In addition,
existence of outliers would affect the training if this aspect is not given
proper consideration. To solve this problem, standardization or
normalization of the data is important. By equalizing the range and
distribution of input variables, these can help the optimizer to converge
to the optimum point more efficiently, and they also avert the presence of
outliers. Standardization converts themean and standard deviation of the
data to zero and one, respectively:

fsðxiÞ¼ xi � μi
σi

(7)

where fs is the standardizer function, xi is a value from series of input
feature variable i into themodel, μi is the mean of the input variable i, and
σi is the standard deviation of the input variable i. However, for XGBoost
and MARS, the standardization is unnecessary.



Table 3
Parameter descriptions and the ranges.

Parameter Ranges

Relative shear strength ratio cu/σ0v 0.21, 0.25, 0.29, 0.34
Relative soil stiffness ratio E50/cu 100, 200, 300
Soft clay thickness T (m) 25, 30, 35
Wall stiffness EI ( � 106 kN m2/m) 0.36, 1.21, 2.88, 5.63
Excavation width B (m) 20, 30, 40, 50, 60
Soil unit weight γ (kN/m) 15, 17, 19
Excavation depth He (m) 11, 14, 17, 20

Fig. 4. Histogram of lateral wall deflections.

Fig. 5. Spearman rank correlation coeffi
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3.2. Performance indicators

Assessment of the performance of models are done based on the in-
dicators. In the following equations, N is the total number of data; yi andbyi are the FEM value and the SCM estimations, respectively; y is the mean
of the FEM results.

Root Mean Square Error (RMSE) (Kisi et al., 2013) value closer or
equal to 0 indicates that the error in prediction is marginal.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn

i¼1

�byi � yi

�2
s

(8)

Coefficient of determination R2 (Nagelkerke, 1991) values should be
closer to 1 and also closer to each other shows that the model used most
of the variability in soil parameters.

R2 ¼
Pn

i¼1ðbyi � yÞ2 �Pn
i¼1ðbyi � yiÞ

2Pn
i¼1ðbyi � yÞ2 (9)

Bias Factor is a factor whose value more than unity represents the
overestimated model, value of less than unity represents an underesti-
mation model, and a value of unity indicates a prediction which is un-
biased (Prasomphan and Mase, 2013).

Bias Factor ¼ 1
N

Xn

i¼1

yibyi (10)

Mean Absolute Percentage Error (MAPE) (Armstrong and Collopy,
1992) value closer to 0 shows predictions of high accuracy.

MAPE ¼ 1
N

Xn

i¼1

				byi � yibyi
				 (11)
cient for parameters in this study.



Fig. 6. Training results of FEM wall deflection.

Fig. 7. Testing results of FEM wall deflection.
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3.3. Calculation and results

This section mainly demonstrates the comprehensive performance
comparisons of the SCMs, including XGBoost, MARS, ANN and SVM. Out
of the 1120 FE results, about 80% of the data points were randomly
selected as the training dataset while the remains were used for testing.
The PC used to develop the XGBoost, MARS, ANN and SVM model was
with an i5 Intel (R) Core and 8500 CPU running at 3.00 GHz and 8 GB
RAM with the Windows 10 operating system, under the Python devel-
opment environment. The computational times for each of the four
methods are all within 1 s and the efficiency difference is marginal.

It should be noted that the uncertainties of the key design parameters
associated with the predictions via the four methods might be considered
for robustness performance comparison, for which the probabilistic
reliability analysis is more desired. In addition, to avoid bias in data
selection, one of the most popular validation methods, 5-fold cross-
validation (Kohavi, 1995; Wong, 2015), was employed in this study
during the process of data pattern determination and the comprehensive
model assessment.

Figs. 6 and 7 show the training and testing results of the prediction of
wall deflection by XGBoost, MARS, ANN and SVM, respectively. It is clear
that the four methods all achieved reasonable results since the data
points representing different SCMs predictions fit well around the
reference line. Table 4 lists the values of the performance indicators
mentioned above. The RMSE, R2, bias factor and MAPE between the FEM
prediction vs SCM estimations provided by the XGBoost model were
7.90, 0.99, 1.00 and 0.04, respectively, for the testing data. The RMSE,
R2, bias factor and MAPE given by the MARS model were 11.10, 0.97,
1.02 and 0.07, respectively, for the testing patterns. The RMSE, R2, bias
factor and MAPE for the predicted values via the ANNmodel were 11.73,
0.97, 1.00 and 0.07, respectively. Lastly, the RMSE, R2, bias factor and
MAPE by the SVMmodel were 17.40, 0.94, 1.01 and 0.06 respectively. It
is obvious that the overall performance has been improved by ensemble
learning XGBoost method, compared with the more conventional MARS,
ANN and SVM. As a strong tree-based tool, XGBoost is able to balance the
relationship between the predictive accuracy and requirements of
intelligibility.

3.4. Feature importance analysis

The trained XGBoost model automatically evaluates the importance
of the features, as shown in Fig. 8, in which the feature score can be
obtained by the interface feature importance, i.e. the gain criterion. The
gain represents the relative contribution of the corresponding feature to
the model, calculated by assessing the contribution of each feature of
each tree in the model. The higher the value of this indicator compared to
other features, the more important it is for generating forecasts. For
simplicity, percentage is used to sort the feature scores of the seven
variables from high to low, as plotted in Fig. 8. It can be seen that ln(S) is
the most important feature variable, followed by E50/cu, γ, h, cu/σ0v, T and
B. This is consistent with the correlation coefficient reflected by the
heatmap in Fig. 5. In addition, the XGBoost model is capable of giving
reasonable results of feature scores within just 1 s. It is more applicable
than FE analysis to some extent, or can be used for cross-checking with
the FE numerical results.

4. Discussion and conclusions

It is inevitable for underground excavations to encounter problems
that are very complex, highly nonlinear, multidimensional, and not well
understood, especially for excavation constructions under complicated
surrounding condition nowadays. In this regard, SCMs provide several
advantages over traditional theoretical solutions, statistical analysis or
numerical simulations. For most traditional mathematical models, the
lack of physical understanding is usually supplemented by either
simplifying the problem or implementing several more assumptions into
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the models. Numerical techniques also rely on assuming the soil/rock
constitutive models (behaviors) in advance. Consequently, these ap-
proaches fail to simulate the complex behavior of most underground
engineering systems. In contrast, SCMs are data-driven approaches in
which the model development is based on training (learning) of input-
output data pairs to determine the structure and parameters or hyper-
parameters of the model. In this case, there is less need to either simplify
the problem or incorporate assumptions. It should also be mentioned that
the developed soft computing models are more apt to be updated to
obtain better results by feeding the new training examples as the new
observations become available.

The presented SCMs, including XGboost, MARS, SVM and ANN, are of
powerful learning capabilities. Even under various influential factors,
such as the size of the data sets, the number of features, they can still
capture the complex relationship among variables and provide accurate
estimations of the wall deformation induced by braced excavation. It
should be mentioned that there is a limitation that the database
employed in this study is generated by numerical simulation. There are
very limited case histories can be used to develop the SCMmodels which
demands a huge database of high quality instrumented recordings.

It should be stressed that actually it is the data and the features that
determine the upper limit of accuracies by SCMs, while the various
models and algorithms only try to approach this limit in different ways or
perspectives. In this regard, high-quality data sets and the well extracted



Table 4
Performance indicators of the developed SCM models.

SCMs Evaluation index

RMSE R2 Bias MAPE

Training Testing Training Testing Training Testing Training Testing

XGBoost 5.52 7.90 0.99 0.99 1.00 1.00 0.03 0.04
MARS 10.51 11.10 0.98 0.97 1.02 1.02 0.07 0.07
ANN 11.28 11.73 0.97 0.97 1.00 1.00 0.06 0.07
SVM 16.61 17.40 0.94 0.94 1.01 1.01 0.05 0.06

Fig. 8. Features importance analysis by XGBoost.
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features which are closely related with the dependent responses are of
vital importance for successful applications of SCMs.

Despite the success of SCMs, they are still facing conventional op-
position due to some inherent shortcomings including the model inter-
pretability, knowledge extraction, and model uncertainty. Therefore,
special attention should be paid to incorporating prior knowledge about
the underlying physical process based on engineering judgment or
human expertise into the learning process. In addition, the imple-
mentation of the physics-based formulation into the data-driven char-
acteristics will for sure greatly enhance the usefulness of SCMs and
advance the field to the next level of sophistication and application.

Currently, the authors still hold the view that SCMs should be better
adopted as a complementary measure to conventional computing tech-
niques or field instrumentations rather than as an alternative, or even as
the final solution. It may also be used as a quick check on solutions
provided by more time-consuming and in-depth FE analyses.

Moreover, in recent years, Ensemble Learning technique including
has been becoming a hot research topic. It is a meta-algorithm that
combines several machine learning techniques into one surrogate model
to reduce variance and deviation by bagging, boosting and stacking to
improve the predictive accuracy. It adopts a good strategy on data sets of
all dimensions and sizes, and have not widely been used in geotechnical
engineering including underground excavations. Its application in un-
derground geotechnical engineering is promising.

Declaration of conflict of interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

The authors acknowledge the invitation for this review article from
1103
Geoscience Frontiers. They are also grateful to the authors of papers
referred, as well as the suggestive comments from the two reviewers. This
work was supported by High-end Foreign Expert Introduction program
(No. G20190022002) and Chongqing Construction Science and Tech-
nology Plan Project (2019–0045). The financial support is gratefully
acknowledged.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.gsf.2019.12.003.

References

Adoko, A.C., Jiao, Y.Y., Wu, L., Wang, H., Wang, Z.H., 2013. Predicting tunnel
convergence using Multivariate Adaptive Regression Spline and Artificial Neural
Network. Tunn. Undergr. Space Technol. 38, 368–376. https://doi.org/10.1016/
j.tust.2013.07.023.

Ahangari, K., Moeinossadat, S.R., Behnia, D., 2015. Estimation of tunnelling-induced
settlement by modern intelligent methods. Soils Found. 55 (4), 737–748. https://
doi.org/10.1016/j.sandf.2015.06.006.

Alimoradi, A., Moradzadeh, A., Naderi, R., Salehi, M.Z., Etemadi, A., 2008. Prediction of
geological hazardous zones in front of a tunnel face using TSP-203 and artificial
neural networks. Tunn. Undergr. Space Technol. 23, 711–717.

Amiri, M., Amnieh, H.B., Hasanipanah, M., Khanli, L.M., 2016. A new combination of
artificial neural network and K-nearest neighbours models to predict blast-induced
ground vibration and air-overpressure. Eng. Comput. 32 (4), 631–644. https://
doi.org/10.1007/s00366-016-0442-5.

Armaghani, D.J., Momeni, E., Abad, S., Khandelwal, M., 2015. Feasibility of ANFIS model
for prediction of ground vibrations resulting from quarry blasting. Environ. Earth Sci.
74 (4), 2845–2860. https://doi.org/10.1007/s12665-015-4305-y.

Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N., 2017. Development of
hybrid intelligent models for predicting TBM penetration rate in hard rock condition.
Tunn. Undergr. Space Technol. 63, 29–43.

Armstrong, J.S., Collopy, F., 1992. Error measures for generalizing about forecasting
methods: empirical comparisons. Int. J. Forecast. 8, 69–80. https://doi.org/10.1016/
0169-2070(92)90008-W.

Atashpaz-Gargari, E., Lucas, C., 2007. Imperialist Competitive Algorithm: an Algorithm
for Optimization Inspired by Imperialistic Competition. IEEE, Piscataway.

Ayoubloo, M.K., Azamathulla, H.M.m Jabbari E., Zanganeh, M., 2011. Predictive model-
based for the critical submergence of horizontal intakes in open channel flows with
different clearance bottoms using CART ANN and liear regression approaches. Expert
Syst. Appl. 38, 10114–10123.

Bouayad, D., Emeriault, F., 2017. Modeling the relationship between ground surface
settlements induced by shield tunneling and the operational and geological
parameters based on the hybrid PCA/ANFIS method. Tunn. Undergr. Space Technol.
68, 142–152.

Boubou, R., Emeriault, F., Kastner, R., 2010. Artificial neural network application for the
prediction of ground surface movements induced by shield tunnelling. Can. Geotech.
J. 47, 1214–1233.

Breiman, L., 1996. Bagging predictors. Mach. Learn. 24 (2), 123–140. https://doi.org/
10.1007/bf00058655.

Breiman, L., 2001a. Random forests. Mach. Learn. 45 (1), 5–32. https://doi.org/10.1023/
a:1010933404324.

Breiman, L., 2001b. Using iterated bagging to debias regressions. Mach. Learn. 45 (3),
261–277. https://doi.org/10.1023/a:1017934522171.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and Regression
Trees. Wadsworth, Belmont, CA.

Cabalar, A.F., Cevik, A., Gokceoglu, C., 2012. Some applications of adaptive neuro-fuzzy
inference system (ANFIS) in geotechnical engineering. Comput. Geotech. 40, 14–33.

Chen, T., Guestrin, C., 2016. Xgboost: a scalable tree boosting system. In: Proceedings of
the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data
Mining. ACM, pp. 785–794.

Chen, Y., Azzam, R., Fernandez, T.M., Li, L., 2009. Studies on construction pre-control of a
connection aisle between two neighbouring tunnels in Shanghai by means of 3D FEM,
neural networks and fuzzy logic. Geotech. Geol. Eng. 27, 155–167.

https://doi.org/10.1016/j.gsf.2019.12.003
https://doi.org/10.1016/j.gsf.2019.12.003
https://doi.org/10.1016/j.tust.2013.07.023
https://doi.org/10.1016/j.tust.2013.07.023
https://doi.org/10.1016/j.sandf.2015.06.006
https://doi.org/10.1016/j.sandf.2015.06.006
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref6
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref6
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref6
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref6
https://doi.org/10.1007/s00366-016-0442-5
https://doi.org/10.1007/s00366-016-0442-5
https://doi.org/10.1007/s12665-015-4305-y
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref9
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref9
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref9
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref9
https://doi.org/10.1016/0169-2070(92)90008-W
https://doi.org/10.1016/0169-2070(92)90008-W
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref11
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref11
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref12
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref12
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref12
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref12
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref12
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref13
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref13
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref13
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref13
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref13
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref14
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref14
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref14
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref14
https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/bf00058655
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1017934522171
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref18
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref18
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref19
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref19
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref19
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref20
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref20
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref20
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref20
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref21
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref21
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref21
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref21


W. Zhang et al. Geoscience Frontiers 11 (2020) 1095–1106
Chen, R.P., Zhang, P., Kang, X., Zhong, Z.Q., Liu, Y., Wu, H.-N., 2019. Prediction of
maximum surface settlement caused by earth pressure balance (EPB) shield tunneling
with ANN methods. Soils Found. 59 (2), 284–295. https://doi.org/10.1016/
j.sandf.2018.11.005.

Chern, S., Tsai, J.H., Chien, L.K., Huang, C.Y., 2009. Predicting lateral wall deflection in
top–down excavation by neural network. Int. J. Offshore Polar Eng. 19 (2), 151–157.

Choi, M., Lee, G., 2010. Decision tree for selecting retaining wall systems based on logistic
regression analysis. Autom. ConStruct. 19 (7), 917–928. https://doi.org/10.1016/
j.autcon.2010.06.005.

Chua, C.G., Goh, A.T.C., 2005. Estimating wall deflections in deep excavations using
Bayesian neural networks. Tunn. Undergr. Space Technol. 20 (4), 400–409.

Darabi, A., Ahangari, K., Noorzad, A., Arab, A., 2012. Subsidence estimation utilizing
various approaches – a case study: tehran No. 3 subway line. Tunn. Undergr. Space
Technol. 31, 117–127.

Dong, L.J., Li, X.B., Peng, K., 2013. Prediction of rockburst classification using Random
Forest. Trans. Nonferrous Metals Soc. China 23 (2), 472–477. https://doi.org/
10.1016/s1003-6326(13)62487-5.

Feng, X.D., Jimenez, R., 2015. Predicting tunnel squeezing with incomplete data using
Bayesian networks. Eng. Geol. 195, 214–224. https://doi.org/10.1016/
j.enggeo.2015.06.017.

Friedman, J.H., 1991. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67.
Ghasemi, E., Gholizadeh, H., 2019a. Development of two empirical correlations for tunnel

squeezing prediction using binary logistic regression and linear discriminant analysis.
Geotech. Geol. Eng. 37 (4), 3435–3446. https://doi.org/10.1007/s10706-018-
00758-0.

Ghasemi, E., Gholizadeh, H., 2019b. Prediction of squeezing potential in tunneling
projects using data mining-based techniques. Geotech. Geol. Eng. 37 (3), 1523–1532.
https://doi.org/10.1007/s10706-018-0705-6.

Goh, A.T.C., Hefney, A.M., 2010. Reliability assessment of EPB tunnel-related settlement.
Geomech. Eng. 2 (1), 57–69. https://doi.org/10.12989/gae.2010.2.1.057.

Goh, A.T.C., Zhang, W.G., 2012. Reliability assessment of stability of underground rock
caverns. Int. J. Rock Mech. Min. Sci. 55, 157–163.

Goh, A.T.C., Zhang, W.G., 2014. An improvement to MLR model for predicting
liquefaction-induced lateral spread using multivariate adaptive regression splines.
Eng. Geol. 170, 1–10.

Goh, A.T.C., Wong, K.S., Broms, B.B., 1995. Estimation of lateral wall movements in
braced excavations using neural networks. Can. Geotech. J. 32 (6), 1059–1064.

Goh, A.T.C., Zhang, F., Zhang, W.G., Otard Chew, Y.S., 2017b. Assessment of strut forces
for braced excavation in clays from numerical analysis and field measurements.
Comput. Geotech. 86, 141–149.

Goh, A.T.C., Zhang, W.G., Zhang, Y.M., Xiao, Y., Xiang, Y.Z., 2018. Determination of EPB
tunnel-related maximum surface settlement: a Multivariate adaptive regression
splines approach. Bull. Eng. Geol. Environ. 77, 489–500. https://doi.org/10.1007/
s10064-016-0937-8.

Goh, A.T.C., Zhang, F., Zhang, W.G., Zhang, Y.M., Liu, H.L., 2017a. A simple estimation
model for 3D braced excavation wall deflection. Comput. Geotech. 83, 106–113.

Goh, A.T.C., Zhang, Y.M., Zhang, R.H., Zhang, W.G., Xiao, Y., 2017c. Evaluating stability
of underground entry-type excavations using multivariate adaptive regression splines
and logistic regression. Tunn. Undergr. Space Technol. 70, 148–154.

Hajihassani, M., Marto, A., Nazmi, E., Abad, S., Shahrbabaki, M., 2011. Prediction of
surface settlements induced by NATM tunneling based on artificial neural networks.
Electron. J. Geotech. Eng. 16, 1471–1480.

Hou, J., Zhang, M.X., Tu, M., 2009. Prediction of surface settlements induced by shield
tunneling: an ANFIS model. In: Liu, H. (Ed.), Geotechnical Aspects of Underground
Construction in Soft Ground—Ng. Taylor and Francis Group, London, pp. 551–554.

Huang, F.K., Wang, G.S., 2007. ANN-based Reliability Analysis for Deep Excavation. IEEE,
New York.

Jan, J.C., Hung, S.L., Chi, S.Y., Chern, J.C., 2002. Neural network forecast model in deep
excavation. J. Comput. Civ. Eng. 16 (1), 59–65.

Jang, J.S.R., Sun, C.T., 1995. Neuro-fuzzy modeling and control. Proc. IEEE 83 (3),
378–406.

Jang, H., Topal, E., 2013. Optimizing overbreak prediction based on geological
parameters comparing multiple regression analysis and artificial neural network.
Tunn. Undergr. Space Technol. 38, 161–169. https://doi.org/10.1016/
j.tust.2013.06.003.

Kim, C.Y., Bae, G.J., Hong, S.W., Park, C.H., Moon, H.K., Shin, H.S., 2001. Neural network
based prediction of ground surface settlements due to tunnelling. Comput. Geotech.
28 (6–7), 517–547. https://doi.org/10.1016/s0266-352x(01)00011-8.

Kisi, O., Shiri, J., Tombul, M., 2013. Modeling rainfall-runoff process using soft
computing techniques. Comput. Geosci. 51, 108–117. https://doi.org/10.1016/
j.cageo.2012.07.001.

Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and
model selection. IJCAI 14 (2), 1137–1145.

Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling. Springer, New York.
Kung, G.T.C., Hslao, E.C.L., Schuster, M., Juang, C.H., 2007. A neural network approach

to estimating deflection of diaphragm walls caused by excavation in clays. Comput.
Geotech. 34 (5), 385–396. https://doi.org/10.1016/j.compgeo.2007.05.007.

Lee, C., Sterling, R., 1992. Identifying probable failure modes for underground openings
using a neural network. Int. J. Rock Mech. Min. Sci. 29 (1), 49–67.

Lai, J.X., Qiu, J.L., Feng, Z.H., Chen, J.X., Fan, H.B., 2016. Prediction of soil deformation
in tunnelling using artificial neural networks. Comput. Intell. Neurosci. 16. https://
doi.org/10.1155/2016/6708183.

Lee, S., Kim, K., Oh, H.J., Park, N.W., Ieee, 2006. Ground subsidence hazard analysis in an
abandoned underground coal mine area using probabisltic and logistic regression
models 2006. Ieee Int. Geosci. Remote Sens. Symp. 1–8, 1549–1552.
1104
Leu, S.S., Chen, C.N., Chang, S.L., 2001. Data mining for tunnel support stability: neural
network approach. Autom. ConStruct. 10 (4), 429–441.

Li, N., Jimenez, R., 2018. A logistic regression classifier for long-term probabilistic
prediction of rock burst hazard. Nat. Hazards 90 (1), 197–215. https://doi.org/
10.1007/s11069-017-3044-7.

Li, Y.Z., Yao, Q.F., Qin, L.K., 2008. The Application of Neural Network to Deep
Foundation Pit Retaining Structure Displacement Prediction. World Acad Union-
World Acad Press, Liverpool.

Liao, K.W., Fan, J.C., Huang, C.L., 2011. An artificial neural network for groutability
prediction of permeation grouting with microfine cement grouts. Comput. Geotech.
38 (8), 978–986.

Liu, B., Wang, R., Guan, Z., Li, J., Xu, Z., Guo, X., Wang, Y., 2019. Improved support
vector regression models for predicting rock mass parameters using tunnel boring
machine driving data. Tunn. Undergr. Space Technol. 91. https://doi.org/10.1016/
j.tust.2019.04.014.

Loh, W.Y., 2011. Classification and regression trees. Wiley Interdiscipl. Rev.: Data Min.
Knowl. Discov. 1 (1), 14–23.

Mahdevari, S., Torabi, S.R., 2012. Prediction of tunnel convergence using artificial neural
networks. Tunn. Undergr. Space Technol. 28, 218–228. https://doi.org/10.1016/
j.tust.2011.11.002.

Mahdevari, S., Haghighat, H.S., Torabi, S.R., 2013. A dynamically approach based on
SVM algorithm for prediction of tunnel convergence during excavation. Tunn.
Undergr. Space Technol. 38, 59–68. https://doi.org/10.1016/j.tust.2013.05.002.

Mahdevari, S., Shahriar, K., Yagiz, S., Akbarpour Shirazi, M., 2014. A support vector
regression model for predicting tunnel boring machine penetration rates. Int. J. Rock
Mech. Min. Sci. 72, 214–229. https://doi.org/10.1016/j.ijrmms.2014.09.012.

Mawdesley, C., 2004. Using logistic regression to investigate and improve an empirical
design method. Int. J. Rock Mech. Min. Sci. 41 (3), 507–508.

Moeinossadat, S.R., Ahangari, K., Shahriar, K., 2016. Calculation of maximum surface
settlement induced by EPB shield tunnelling and introducing most effective
parameter. J. Cent. South Univ. 23 (12), 3273–3283. https://doi.org/10.1007/
s11771-016-3393-5.

Moeinossadat, S.R., Ahangari, K., Shahriar, K., 2017. Modeling maximum surface
settlement due to EPBM tunneling by various soft computing techniques. Innov.
Infrastruct. Solut. 3 (1) https://doi.org/10.1007/s41062-017-0114-3.

Moeinossadat, S.R., Ahangari, K., Shahriar, K., 2018. Control of ground settlements
caused by EPBS tunneling using an intelligent predictive model. Indian Geotech. J. 48
(3), 420–429. https://doi.org/10.1007/s40098-017-0253-7.

Moghaddasi, M.R., Noorian-Bidgoli, M., 2018. ICA-ANN, ANN and multiple regression
models for prediction of surface settlement caused by tunneling. Tunn. Undergr.
Space Technol. 79, 197–209. https://doi.org/10.1016/j.tust.2018.04.016.

Mottahedi, A., Sereshki, F., Ataei, M., 2017. Development of overbreak prediction models
in drill and blast tunneling using soft computing methods. Eng. Comput. 34 (1),
45–58. https://doi.org/10.1007/s00366-017-0520-3.

Mottahedi, A., Sereshki, F., Ataei, M., 2018. Overbreak prediction in underground
excavations using hybrid ANFIS-PSO model. Tunn. Undergr. Space Technol. 80, 1–9.
https://doi.org/10.1016/j.tust.2018.05.023.

Nagelkerke, N.J.D., 1991. A note on a general definition of the coefficient of
determination. Biometrika 78 (3), 691–692.

Neaupane, K.M., Adhikari, N.R., 2006. Prediction of surface settlements induced by
NATM tunneling with the multi-layer perceptron. Tunn. Undergr. Space Technol. 21,
151–159.

Ocak, I., Seker, S.E., 2013. Calculation of surface settlements caused by EPBM tunneling
using artificial neural network, SVM, and Gaussian processes. Environ. Earth Sci. 70
(3), 1263–1276. https://doi.org/10.1007/s12665-012-2214-x.

Pal, M., Deswal, S., 2008. Modeling pile capacity using support vector machines and
generalized regression neural network. J. Geotech. Geoenviron. Eng. 134 (7),
1021–1024.

Pourtaghi, A., Lotfollahi-Yaghin, M.A., 2012. Wavenet ability assessment in comparison
to ANN for predicting the maximum surface settlement caused by tunneling. Tunn.
Undergr. Space Technol. 28, 257–271.

Prasomphan, S., Mase, S., 2013. Generating prediction map for geostatistical data based
on an adaptive neural network using only nearest neighbors. Int. J. Mach. Learn.
Comput. 3 (1), 98–102. https://doi.org/10.7763/IJMLC.2013.V3.280.

Protopapadakis, E., Schauer, M., Pierri, E., Doulamis, A.D., Stavroulakis, G.E.,
Bohrnsen, J.U., Langer, S., 2016. A genetically optimized neural classifier applied to
numerical pile integrity tests considering concrete piles. Comput. Struct. 162, 68–79.

Rodriguezgaliano, V., Mendes, M.P., Garciasoldado, M.J., Chicaolmo, M., Ribeiro, L.,
2014. Predictive modeling of groundwater nitrate pollution using random forest and
multisource variables related to intrinsic and specific vulnerability: a case study in an
agricultural setting (southern Spain). Sci. Total Environ. 476–477 (4), 189–206.
https://doi.org/10.1016/j.scitotenv.2014.01.001.

Santos Jr., O.J., Celestino, T.B., 2008. Artificial neural networks analysis of Sao Paulo
subway tunnel settlement data. Tunn. Undergr. Space Technol. 23 (5), 481–491.

Seker, S.E., Ocak, I., 2019. Performance prediction of roadheaders using ensemble
machine learning techniques. Neural Comput. Appl. 31 (4), 1103–1116. https://
doi.org/10.1007/s00521-017-3141-2.

Sen, S.L., Chuang, H.L., 2004. Neural-network-based regression model of ground surface
settlement induced by deep excavation. Autom. ConStruct. 13 (3), 279–289. https://
doi.org/10.1016/s0926-5805(03)00018-9.

Shi, J., Ortigao, J.A.R., Bai, J., 1998. Modular neural networks for predicting settlements
during tunneling. J. Geotech. Geoenviron. Eng. 124, 389–395.

Shi, S.S., Zhao, R.J., Li, S.C., Xie, X.K., Li, L.P., Zhou, Z., Liu, H.L., 2019. Intelligent
prediction of surrounding rock deformation of shallow buried highway tunnel and its
engineering application. Tunn. Undergr. Space Technol. 90, 1–11. https://doi.org/
10.1016/j.tust.2019.04.013.

https://doi.org/10.1016/j.sandf.2018.11.005
https://doi.org/10.1016/j.sandf.2018.11.005
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref23
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref23
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref23
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref23
https://doi.org/10.1016/j.autcon.2010.06.005
https://doi.org/10.1016/j.autcon.2010.06.005
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref25
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref25
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref25
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref26
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref26
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref26
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref26
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref26
https://doi.org/10.1016/s1003-6326(13)62487-5
https://doi.org/10.1016/s1003-6326(13)62487-5
https://doi.org/10.1016/j.enggeo.2015.06.017
https://doi.org/10.1016/j.enggeo.2015.06.017
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref30
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref30
https://doi.org/10.1007/s10706-018-00758-0
https://doi.org/10.1007/s10706-018-00758-0
https://doi.org/10.1007/s10706-018-0705-6
https://doi.org/10.12989/gae.2010.2.1.057
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref34
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref34
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref34
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref35
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref35
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref35
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref35
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref36
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref36
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref36
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref38
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref38
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref38
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref38
https://doi.org/10.1007/s10064-016-0937-8
https://doi.org/10.1007/s10064-016-0937-8
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref37
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref37
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref37
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref39
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref39
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref39
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref39
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref41
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref41
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref41
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref41
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref42
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref42
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref42
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref42
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref42
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref43
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref43
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref44
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref44
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref44
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref45
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref45
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref45
https://doi.org/10.1016/j.tust.2013.06.003
https://doi.org/10.1016/j.tust.2013.06.003
https://doi.org/10.1016/s0266-352x(01)00011-8
https://doi.org/10.1016/j.cageo.2012.07.001
https://doi.org/10.1016/j.cageo.2012.07.001
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref50
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref50
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref50
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref51
https://doi.org/10.1016/j.compgeo.2007.05.007
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref54
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref54
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref54
https://doi.org/10.1155/2016/6708183
https://doi.org/10.1155/2016/6708183
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref55
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref55
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref55
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref55
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref55
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref56
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref56
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref56
https://doi.org/10.1007/s11069-017-3044-7
https://doi.org/10.1007/s11069-017-3044-7
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref58
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref58
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref58
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref59
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref59
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref59
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref59
https://doi.org/10.1016/j.tust.2019.04.014
https://doi.org/10.1016/j.tust.2019.04.014
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref62
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref62
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref62
https://doi.org/10.1016/j.tust.2011.11.002
https://doi.org/10.1016/j.tust.2011.11.002
https://doi.org/10.1016/j.tust.2013.05.002
https://doi.org/10.1016/j.ijrmms.2014.09.012
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref67
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref67
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref67
https://doi.org/10.1007/s11771-016-3393-5
https://doi.org/10.1007/s11771-016-3393-5
https://doi.org/10.1007/s41062-017-0114-3
https://doi.org/10.1007/s40098-017-0253-7
https://doi.org/10.1016/j.tust.2018.04.016
https://doi.org/10.1007/s00366-017-0520-3
https://doi.org/10.1016/j.tust.2018.05.023
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref75
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref75
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref75
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref76
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref76
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref76
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref76
https://doi.org/10.1007/s12665-012-2214-x
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref78
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref78
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref78
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref78
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref80
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref80
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref80
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref80
https://doi.org/10.7763/IJMLC.2013.V3.280
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref82
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref82
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref82
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref82
https://doi.org/10.1016/j.scitotenv.2014.01.001
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref84
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref84
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref84
https://doi.org/10.1007/s00521-017-3141-2
https://doi.org/10.1007/s00521-017-3141-2
https://doi.org/10.1016/s0926-5805(03)00018-9
https://doi.org/10.1016/s0926-5805(03)00018-9
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref87
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref87
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref87
https://doi.org/10.1016/j.tust.2019.04.013
https://doi.org/10.1016/j.tust.2019.04.013


W. Zhang et al. Geoscience Frontiers 11 (2020) 1095–1106
Sitharam, T.G., Pijush, Samui, Anbazhagan, P., 2008. Spatial variability of rock depth in
Bangalore using geostatistical, neural network and support vector machine models.
Geotech. Geol. Eng. 26, 503–517.

Smola, A., Sch€olkopf, B., 1998. A Tutorial on Support Vector Regression. NeuroCOLT
Tech. Rep.NC-TR-98-030. Royal Holloway Coll., Univ., London, UK.

Su, G.S., Zhang, Y., Chen, G.Q., 2010. Identify rockburst grades for jinping hydropower
station using Gaussian II process for binary classification. In: Proceedings of 2010
International Conference on Computer, Mechatronics, Control and Electronic
Engineering (CMCE 2010), vol. 2, pp. 364–367. Changchun, China (in Chinese).

Suwansawat, S., Einstein, H.H., 2006. Artificial neural networks for predicting the
maximum surface settlement caused by EPB shield tunneling. Tunn. Undergr. Space
Technol. 21, 133–150.

Timofeev, R., 2004. Classification and Regression Trees (CART) Theory and Applications.
M.S. thesis, Humboldt University, Berlin.

Tsekouras, G.J., 2004. Application of Artificial Neural Networks’ Method in Tunneling
Problems. Diploma Thesis. School of Civil Engineering, National Technical University
of Athens.

Tsekouras, G.J., Koukoulis, J., Mastorakis, N.E., 2010. An optimized neural network for
predicting settlements during tunneling excavation. WSEAS Trans. Syst. 9,
1153–1167.

Tso, G.K.F., Yau, K.K.W., 2007. Predicting electricity energy consumption: a comparison
of regression analysis, decision tree and neural networks. Energy 32 (9), 1761–1768.

Vapnik, V.N., 1995. Introduction: Four Periods in the Research of the Learning Problem.
The Nature of Statistical Learning Theory. Springer.

Wang, F., Gou, B., Qin, Y., 2013. Modeling tunneling-induced ground surface settlement
development using a wavelet smooth relevance vector machine. Comput. Geotech.
54, 125–132.

Wang, Q., Lin, J., Ji, J., Fang, H., 2014. Reliability Analysis of Geotechnical Engineering
Problems Based on an RBF Metamodeling Technique. Crc Press-Taylor and Francis
Group, Boca Raton.

Wong, T.T., 2015. Performance evaluation of classification algorithms by k-fold and
leave-one-out cross validation. Pattern Recognit. 48 (9), 2839–2846.

Wu, Q.D., Yan, B., Zhang, C., Wang, L., Ning, G., Yu, B., 2014. Displacement prediction of
tunnel surrounding rock: a comparison of support vector machine and artificial
neural network. Math. Probl. Eng. 351496, 6.

Xiang, Y., Goh, A.T.C., Zhang, W., Zhang, R., 2018. A multivariate adaptive regression
splines model for estimation of maximum wall deflections induced by braced
excavation. Geomech. Eng. 14 (4), 315–324. https://doi.org/10.12989/
gae.2018.14.4.315.

Xie, Q., Peng, K., 2019. Space-time distribution laws of tunnel excavation damaged zones
(EDZs) in deep mines and EDZ prediction modeling by random forest regression. Adv.
Civ. Eng. 1–13. https://doi.org/10.1155/2019/6505984.

Xu, M., Watanachaturaporn, P., Varshney, P.K., Arora, M.K., 2005. Decision tree
regression for soft classification of remote sensing data. Remote Sens. Environ. 97 (3),
322–336.

Yao, B.Z., Yang, C.Y., Yu, B., Jia, F.F., Yu, B., 2010. Applying support vector machines to
predict tunnel surrounding rock displacement. Appl. Mech. Mater. 29–32,
1717–1721.

Yap, B.W., Ong, S.H., Husain, N.H.M., 2011. Using data mining to improve assessment of
credit worthiness via credit scoring models. Expert Syst. Appl. 38, 13274–13283.

Yoo, C., Kim, J.-M., 2007. Tunneling Performance Prediction Using an Integrated GIS and
Neural Network. Computers and Geotechnics 34 (1), 19–30.

Yu, J., Chen, H.M., Yu, J., Chen, H.M., 2009. Artificial neural network’s application in
intelligent prediction of surface settlement induced by foundation pit excavation.
IEEE Comput. Soc., Los Alamitos 1, 303–305.

Yun, Y.F., Fan, Y.H., Sun, Y., 2011. Back-analysis of mechanical parameters of tunnel
surrounding rock by BP neural network method. J. Shenyang Jianzhu Univ. (Nat.
Sci.) vol. 2 (27), 292–296.

Zhang, P., Chen, R.P., Wu, H.N., 2019b. Real-time analysis and regulation of EPB shield
steering using Random Forest. Autom. ConStruct. 106. https://doi.org/10.1016/
j.autcon.2019.102860.

Zhang, W.G., Goh, A.T.C., 2013. Multivariate adaptive regression splines for analysis of
geotechnical engineering systems. Comput. Geotech. 48, 82–95.

Zhang, W.G., Goh, A.T.C., 2014. Multivariate adaptive regression splines model for
reliability assessment of serviceability limit state of twin caverns. Geomech. Eng. 7
(4), 431–458.

Zhang, W.G., Goh, A.T.C., 2016a. Multivariate adaptive regression splines and neural
network models for prediction of pile drivability. Geosci. Front. 7, 45–52.

Zhang, W.G., Goh, A.T.C., 2016b. Evaluating seismic liquefaction potential using
multivariate adaptive regression splines and logistic regression. Geomech. Eng. 10
(3), 269–284. https://doi.org/10.12989/gae.2016.10.3.269.

Zhang, W.G., Goh, A.T.C., Xuan, F., 2015. A simple prediction model for wall deflection
caused by braced excavation in clays. Comput. Geotech. 63, 67–72.

Zhang, W.G., Zhang, R.H., Wang, W., Zhang, F., Goh, A.T.C., 2019c. A Multivariate
Adaptive Regression Splines model for determining horizontal wall deflection
envelope for braced excavations in clays. Tunn. Undergr. Space Technol. 84,
461–471.

Zhang, L., Zhou, W., Jiao, L., 2004. Wavelet support vector machine. IEEE Trans. Syst.
Man Cybern. Part B (Cybern.) 34, 34–39.

Zhang, W.G., Zhang, Y.M., Goh, A.T.C., 2017b. Multivariate adaptive regression splines
for inverse analysis of soil and wall properties in braced excavation. Tunn. Undergr.
Space Technol. 64, 24–33.

Zhang, W.G., Wu, C.Z., Li, Y.Q., Wang, L., Samui, P., 2019d. Assessment of pile drivability
using random forest regression and multivariate adaptive regression splines. Georisk.
https://doi.org/10.1080/17499518.2019.1674340.
1105
Zhang, W.G., Zhang, R.H., Goh, A.T.C., 2017c. Multivariate adaptive regression splines
approach to estimate lateral wall deflection profiles caused by braced excavations in
clays. Geotech. Geol. Eng. 36 (2), 1349–1363.

Zhang, W.G., Zhang, R.H., Goh, A.T.C., 2018. MARS inverse analysis of soil and wall
properties for braced excavations in clays. Geomech. Eng. 16 (6), 577–588. https://
doi.org/10.12989/gae.2018.16.6.577.

Zhang, C., Li, J.Z., He, Y., 2019a. Application of optimized grey discrete Verhulst-BP
neural network model in settlement prediction of foundation pit. Environ. Earth Sci.
78 (15), 15. https://doi.org/10.1007/s12665-019-8458-y.

Zhang, L., Wu, X., Ji, W., AbouRizk, S.M., 2017a. Intelligent approach to estimation of
tunnel-induced ground settlement using wavelet packet and support vector machines.
J. Comput. Civ. Eng. 31 (2). https://doi.org/10.1061/(asce)cp.1943-5487.0000621.

Zheng, G., Yang, P., Zhou, H., Zeng, C., Yang, X., He, X., Yu, X., 2019. Evaluation of the
earthquake induced uplift displacement of tunnels using multivariate adaptive
regression splines. Comput. Geotech. 113 https://doi.org/10.1016/
j.compgeo.2019.103099.

Zhou, J., Li, X., Shi, X., 2012. Long-term prediction model of rockburst in underground
openings using heuristic algorithms and support vector machines. Saf. Sci. 50 (4),
629–644. https://doi.org/10.1016/j.ssci.2011.08.065.

Zhou, J., Shi, X.Z., Du, K., Qiu, X.Y., Li, X.B., Mitri, H.S., 2017. Feasibility of random-
forest approach for prediction of ground settlements induced by the construction of a
shield-driven tunnel. Int. J. Geomech. 17 (6). https://doi.org/10.1061/(asce)
gm.1943-5622.0000817.

Zhou, J., Li, X., Mitri, H.S., 2016a. Classification of rockburst in underground projects:
comparison of ten supervised learning methods. J. Comput. Civ. Eng. 30 (5). https://
doi.org/10.1061/(asce)cp.1943-5487.0000553.

Zhou, J., Li, X., Mitri, H.S., 2018. Evaluation method of rockburst: state-of-the-art
literature review. Tunn. Undergr. Space Technol. 81, 632–659. https://doi.org/
10.1016/j.tust.2018.08.029.

Zhou, Y., Li, S., Zhou, C., Luo, H., 2019. Intelligent approach based on random forest for
safety risk prediction of deep foundation pit in subway stations. J. Comput. Civ. Eng.
33 (1) https://doi.org/10.1061/(asce)cp.1943-5487.0000796.

Zhou, J., Shi, X., Li, X., 2016b. Utilizing gradient boosted machine for the prediction of
damage to residential structures owing to blasting vibrations of open pit mining.
J. Vib. Control 22 (19), 3986–3997. https://doi.org/10.1177/1077546314568172.

Zhu, Y.Q., Jing, S.T., Zhang, Q., 1996. Application of time series analysis method to
measured displacement in tunneling. Chin. J. Rock Mech. Eng. 15, 353–359 (in
Chinese with English abstract).

Dr. Wengang Zhang is currently full professor in School of Civil
Engineering, Chongqing University, China. He obtained his
BEng and MEng degrees in Hohai University, China, as well as
PhD in Nanyang Technological University, Singapore. He joined
Chongqing University in May 2016 and later in 2017 he was
awarded the “1000 Plan Professorship for Young Talents”. His
research interests focus on assessment of influences on the built
environment induced by underground construction, in circum-
stances of complicated geological and geophysical conditions,
as well as the big data and machine learning in geotechnics and
geoengineering. He is now the members of the ISSMGE TC304
(Reliability), TC309 (Machine Learning), and TC219 (System
Performance of Geotechnical Structures). Dr. Zhang has pub-
lished more than 52 SCI indexed journal papers and the citation
is over 1200. His paper “Multivariate adaptive regression

splines and neural network models for prediction of pile driv-
ability” is highly cited paper and “Multivariate adaptive
regression splines for analysis of geotechnical engineering sys-
tems” won him Sloan outstanding paper award.
Miss Runhong Zhang is presently a PhD candidate of Chongqing
University, China. She obtained her BEng in Civil Engineering at
Northwest A & F University, China, June 2016. She studied as
an exchange student in Nanyang Technological University,
Singapore, in Oct. 2018 to Apr. 2019, under the support of the
project “Effect of deep excavations on the adjacent built-up
environment and reliability analysis”. Her research interest in-
volves numerical modelling for braced excavation and reli-
ability analysis, and she is also interested in stability evaluation
of braced excavation, inverse analysis, spatial variability of soil
properties. She is familiar with finite element analysis software
Plaxis, and she has some experience on modeling braced exca-
vation system adjacent to slopes, tunnels and passive piles. she
has published several international research papers about the
effect of deep excavations on the adjacent built-up environment

and reliability analysis.

http://refhub.elsevier.com/S1674-9871(19)30236-1/sref89
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref89
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref89
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref89
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref90
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref90
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref90
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref92
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref92
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref92
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref92
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref92
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref93
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref93
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref93
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref93
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref95
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref95
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref96
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref96
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref96
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref97
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref97
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref97
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref97
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref98
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref98
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref98
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref99
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref99
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref100
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref100
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref100
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref100
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref101
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref101
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref101
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref102
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref102
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref102
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref1
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref1
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref1
https://doi.org/10.12989/gae.2018.14.4.315
https://doi.org/10.12989/gae.2018.14.4.315
https://doi.org/10.1155/2019/6505984
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref105
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref105
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref105
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref105
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref106
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref106
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref106
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref106
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref106
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref107
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref107
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref107
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref2
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref2
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref2
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref108
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref108
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref108
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref108
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref3
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref3
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref3
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref3
https://doi.org/10.1016/j.autcon.2019.102860
https://doi.org/10.1016/j.autcon.2019.102860
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref109
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref109
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref109
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref110
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref110
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref110
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref110
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref111
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref111
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref111
https://doi.org/10.12989/gae.2016.10.3.269
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref113
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref113
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref113
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref121
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref121
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref121
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref121
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref121
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref114
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref114
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref114
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref116
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref116
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref116
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref116
https://doi.org/10.1080/17499518.2019.1674340
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref117
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref117
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref117
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref117
https://doi.org/10.12989/gae.2018.16.6.577
https://doi.org/10.12989/gae.2018.16.6.577
https://doi.org/10.1007/s12665-019-8458-y
https://doi.org/10.1061/(asce)cp.1943-5487.0000621
https://doi.org/10.1016/j.compgeo.2019.103099
https://doi.org/10.1016/j.compgeo.2019.103099
https://doi.org/10.1016/j.ssci.2011.08.065
https://doi.org/10.1061/(asce)gm.1943-5622.0000817
https://doi.org/10.1061/(asce)gm.1943-5622.0000817
https://doi.org/10.1061/(asce)cp.1943-5487.0000553
https://doi.org/10.1061/(asce)cp.1943-5487.0000553
https://doi.org/10.1016/j.tust.2018.08.029
https://doi.org/10.1016/j.tust.2018.08.029
https://doi.org/10.1061/(asce)cp.1943-5487.0000796
https://doi.org/10.1177/1077546314568172
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref133
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref133
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref133
http://refhub.elsevier.com/S1674-9871(19)30236-1/sref133


W. Zhang et al. Geoscience Frontiers 11 (2020) 1095–1106
Mr. Chongzhi Wu is a presently Master Student of Chongqing
University, China. His research interest involves the application
of machine learning methods in geotechnical engineering, and
he is interested in probabilistic programming and Bayesian
inference as well as sparse modeling. He is familiar with Python
and MATLAB, and he has some experience on feature engi-
neering, data mining and data visualization. He has published
several research papers about the application of machine
learning methods in geotechnical engineering.
Prof. Goh ATC is Associate professor in the School of Civil and
Environmental Engineering at Nanyang Technological Univer-
sity, Singapore. Prof. Goh received his PhD and BEng in Monash
University, Australia. He is a registered Professional Engineer in
Singapore. His teaching, research and professional practice have
covered many aspects of geotechnical engineering including
soft computing, finite element analysis, earth retaining struc-
tures, pile foundations and slope stability.
Prof. Suzanne Lacasse is member of the U.S. National Academy
of Engineers, the Canadian Academy of Engineers, the French
Academy of Sciences–Section Technologies, the Norwegian
Academy of Engineering and Sciences, the Norwegian Engi-
neering Academy, the Norwegian Academy of Sciences and
Letters, and the Royal Norwegian Society of Sciences and
Technology. She gave the 37th Terzaghi Lecture of the Amer-
ican Society of Civil Engineers on "Offshore geotechnical engi-
neering" in 2001, the 8th Terzaghi Oration of the ISSMGE on
"Slope stability" in 2013 and the 55th Rankine Lecture of the
Institution of Civil Engineers, British Geotechnical Society on
"Hazard and risk assessment in geotechnical practice" in London
in 2015.
1106
Dr. Zhongqiang Liu received his Doctoral degree in Tongji
University. He is now working in Norwegian Geotechnical
Institute (NGI) as Senior adviser. Dr. Liu serves for ISSMGE
TC309 (Machine learning) as the Chairman. His research topic
covers Risk, Slope stability and Climate adaptation.
Prof. Hanlong Liu received his Bachelor degree at Zhejiang
University, Master and Doctoral degrees at Hohai University. He
then continued his postdoc research at Hong Kong University of
Science and Technology from Nov. 1994 to Oct. 1995 and Port
and Harbour Research Institute, Japan from Mar 1996 to May
1997. Prof. Liu consolidated his research efforts through aca-
demic visiting to Delft University of Technology, Netherlands,
Nanyang Technology University, Singapore and University of
Science and Technology at Lille, France. He was promoted to
full professor in Hohai University in 1997. He serves for the
following technical committees and academic organizations:
Chairman of ISSMGE TC303, Committee member of Land
Reclamation Technique (TC217) and Executive Director of
Chinese Institute of Rock Mechanics and Geotechnical
Engineering.


	State-of-the-art review of soft computing applications in underground excavations
	1. Introduction
	2. Overview of SCMs
	2.1. ANN
	2.2. DT
	2.3. CART
	2.4. MARS
	2.5. SVM
	2.6. RF
	2.7. XGBoost
	2.8. Main features, advantages, disadvantages of SCMs

	3. Case study and performance comparison
	3.1. Database
	3.2. Performance indicators
	3.3. Calculation and results
	3.4. Feature importance analysis

	4. Discussion and conclusions
	Declaration of conflict of interest
	Acknowledgements
	Appendix A. Supplementary data
	References


