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Ranking REACH registered neutral, ionizable and ionic organic 
chemicals based on their aquatic persistency and mobility 
H. P. H. Arp,*a T. N. Brown,b U. Berger c and S. E. Hale a 

The contaminants that have the greatest chances of appearing in drinking water are those that are mobile enough in the 
aquatic environment to enter drinking water sources and persistent enough to survive treatment processes. Herein a 
screening procedure to rank neutral, ionizable and ionic organic compounds for being persistent and mobile organic 
compounds (PMOCs) was developed and applied to the list of industrial substances registered under the EU REACH 
legislation as of December 2014. This comprised 5155 identifiable, unique organic structures. The minimum cut-off criteria 
considered for PMOC classification herein are a freshwaterhalf-life > 40 days, which is consistent with the REACH definition 
of freshwater persistency, and a log DOC < 4.5 between pH 4-10 (where DOC is the organic carbon-water distribution 
coefficient). Experimental data were given the highest priority, followed by data from an array of available quantitative 
structure-activity relationships (QSARs), and as a third resort, an original Iterative Fragment Selection (IFS) QSAR. In total, 
52% of the unique REACH structures made the minimum criteria to be considered a PMOC, and 21% achieved the highest 
PMOC ranking (half-life > 40 days, log DOC < 1.0 between pH 4-10). Only 9% of neutral substances received the highest PMOC 
ranking, compared to 30% of ionizable compounds and 44% of ionic compounds. Predicted hydrolysis products for all REACH 
parents (contributing 5043 additional structures) were found to have higher PMOC rankings than their parents, due to 
increased mobility but not persistence. The fewest experimental data available were for ionic compounds; therefore, their 
ranking is more uncertain than neutral and ionizable compounds. The most sensitive parameter for the PMOC ranking was 
freshwater persistency, which was also the parameter that QSARs performed the most poorly at predicting. Several 
prioritized drinking water contaminants in the EU and USA, and other contaminants of concern, were identified as PMOCs. 
This identification and ranking procedure for PMOCs can be part of a strategy to better identify contaminants that pose a 
threat to drinking water sources. 

1. Introduction 
Ensuring that drinking water resources are secure from 
unwanted and toxic chemicals is a central goal of human health 
protection and human rights.1-3 An under-investigated threat to 

drinking water resources is the plethora of new chemicals that 
are appearing on the market, as the chemical industry continues 
to innovate new, useful products and technologies. Some of 
these new and existing substances may possess certain intrinsic, 
physico-chemical properties that make them readily able to 
contaminate drinking water sources, , if they are used in a way 
that leads to substantial environmental emissions.4 If the same 
substances are toxic, this could lead to serious health 
consequences. The intrinsic properties that enable a chemical 
to potentially contaminate drinking water resources are its 
aquatic persistency (P) and mobility (M). Organic compounds 
(OC) that have substantial P and M characteristics, so called 
PMOCs, can transport through river banks, groundwater 
aquifers, and other natural and urban barriers to reach sources 
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Environmental Impact 
A procedure to identify and rank organic substances for their ability to be persistent and mobile in the aquatic environment was 
developed and applied to REACH registered substances and their hydrolysis products. This is the first general screening approach 
to identify organic substances that may appear in drinking water based on substance properties and molecular structure. This 
procedure could be used for other chemical inventories, or proposed substances, as part of efforts to identify emerging or 
unknown drinking water contaminants. Several of the REACH registered substances identified as persistent and mobile in this 
study are known drinking water contaminants, though there are also many others that have not yet been investigated in drinking 
water resources. 
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of drinking water. When PMOCs first appear in drinking water, 
it is difficult for them to be removed. These compounds can 
recirculate within the drinking water cycle, particularly in urban 
and drought-prone areas where waste water is recycled to 
drinking water. Drinking water treatment processes can only be 
a partial help, as compounds with substantial P and M 
properties may also survive treatment technologies like 
ozonation, chlorination, filtration by activated carbon, or even 
reverse osmosis.5-7 Therefore, any contamination of drinking 
water with PMOCs can be long-lasting. 
 
A central focus of the European Union's (EU) drinking water 
directive (Council directive 98/83/EC) is to prevent drinking 
water contamination that may adversely affect human health. 
The current focus of the EU's chemical regulation and in 
particular the REACH legislation (Regulation EC No 1907/2006), 
on the other hand, has not been to prevent drinking water 
contamination, but rather to have better control of substances 
exhibiting environmental persistency (P), bioaccumulation (B), 
and toxicity (T), so-called PBT substances.8 This is largely 
because of the growing concern over the past five decades 9, 10 
that  PBT substances like DDT and PCB can have on human 
health and the environment. A PMOC that meets the REACH 
criteria for toxicity can be considered a PMT-type substance.11 
PBT and PMT substances bear some similarity. Both can 
accumulate in the environment, such that the risk of exposure 
to humans and ecosystems can increase with emissions. The key 
difference is the route of exposure. PBT substances accumulate 
predominantly through the food chain, in contrast to 
PMOC/PMT compounds, which recirculate and may accumulate 
through water cycles, including drinking water cycles. Further, 
as bioaccumulation and mobility are not inherently exclusive, a 
subset of PBT substances would be also PMT substances. 
Screening approaches to predict or identify PBT compounds 
from lists of existing substances have been applied,8, 12, 13 and 
human exposure models that include drinking water as an 
exposure pathway have been developed,14-16 but to our 
knowledge no similar screening tools have been implemented 
specifically to identify PMOC/PMT substances. 
 
Mobility in the aquatic environment is associated with 
substances having a very high water solubility (Swater, µg/L) or 
substances having very low capacity for sorption to soils and 
other natural media. Sorption in this manner is typically 
quantified with an organic carbon-water partition coefficient 
(Koc), defined as the ratio of a substance sorbed to natural soil 
or sediment organic carbon (µg/kg) vs that in surrounding water 
(µg/L) at equilibrium; for ionizable substances it is quantified 
with the pH-dependent organic carbon-water distribution 
coefficient (Doc), which accounts for the total sum of neutral and 
charged species sorbed and dissolved. In general, the lower the 
Koc/Doc value, the more readily a substance can reach the 
aquatic environment, without sorbing substantially to surfaces. 
 
One essential difficulty in conducting risk assessments for highly 
mobile substances is that, particularly for the most mobile 
substances, we often lack analytical approaches to measure 

them.7 Standard gas-chromatographic and liquid-
chromatographic techniques are poor at analysing substances 
with a Koc/ Doc value < 1 (i.e. substances that have a higher 
concentration in water than soil organic carbon at equilibrium). 
This lack of analytical methods has recently been referred to as 
the "analytical gap".7 Techniques to measure these substances 
are few, though new methods are emerging. Therefore, many 
of these chemicals may already be in drinking water, going 
unnoticed.7  
 
In this current study, we present a screening procedure that can 
be used to identify and rank existing and future PMOCs for their 
potential ability to permeate drinking water sources. The 
screening approach was designed specifically to be compatible 
with existing definitions and chemical properties used in the EU 
REACH legislation, to facilitate identification of PMOCs using 
substances properties included during the REACH registration 
process. This included the definition of persistent and very 
persistent in fresh- or estuarine water as presented in Annex XIII 
of REACH, and the qualitative description of mobility in Annex II 
of REACH (i.e. "MOBILITY: The potential of the substance or the 
appropriate constituents of a preparation, if released to the 
environment, to transport to groundwater or far from the site 
of release"). In this study we did not explicitly consider the 
definition toxicity in REACH, to identify PMT substances, in part 
because a study of PMOCs in the environment is of relevance in 
its own right; however, a sub-goal of this study is to compare 
identified PMOCs with previously identified PBT substances. 
 
This screening approach can be used to help industry, 
environmental chemists and water regulators identify what 
chemicals have a potential to be rapidly distributed in the 
aquatic environment (i.e. pose a potential hazard). Most PBT 
screening studies heretofore have focussed primarily on neutral 
compounds.8 In this study, it was essential to include ionizable 
and ionic species as well, due to their propensity to be mobile, 
despite the low accuracy of prediction tools currently available 
for ionic compounds. In addition, we also performed this 
assessment on predicted hydrolysis products of the REACH 
registered substances, so that not only the parent compounds 
are considered but environmental transformation products as 
well. 

2. Methods 
2.1. REACH List 

The publically available list of REACH registered substances 
(https://echa.europa.eu/information-on-chemicals/registered-
substances) was accessed on 19 December 2014, which at that 
time contained 14076 substance entries. Of these, 7313 had a 
unique Chemical Abstracts Services (CAS) number, 1172 had 
replicate CAS numbers, 5455 had a European Community (EC) 
number but no CAS, and 136 entries had neither a CAS nor EC 
number. Only the 7313 compounds with unique CAS numbers 
were considered (corresponding to 8485 individual substance 
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entries), as these were the easiest to link to available chemical 
property databases. 
 
2.2. SMILES codes 

For the 7313 unique CAS entries, SMILES codes (SMILES = 
simplified molecular input line-entry system)17, 18 were obtained 
from various databases that linked CAS to SMILES. These 
included Chemaxon (https://www.chemaxon.com/), 
QSARToolbox v3.3 (http://echa.europa.eu/support/oecd-qsar-
toolbox), PubChem (https://pubchem.ncbi.nlm.nih.gov/) and 
ChemSpider (www.chemspider.com/); all websites and 
databases were accessed January - March 2015. If none of the 
above databases contained a structure, SMILES were obtained 
manually from the structures presented in the REACH dossier. 
The SMILES from multiple sources listed above were compared, 
when available. Discrepancies were flagged, and the best 
SMILES was manually chosen or reformulated to have a net 
charge of zero and be in "dative bond" notation (e.g. a nitro 
group is often represented as [O-][N+]=O, but N(=O)=O in a 
neutral dative bond structure). Some of the aforementioned 
databases may provide SMILES without a charge of zero, such 
as by not adding the counter-ions (in the case of salts), or 
presenting the acidic / basic form of a neutral species despite 
the CAS being for the neutral species. Alternatively, some 
SMILES sources ignored charges when there should be one. To 
ensure a net charge of zero and the correct notation, counter-
ions were manually added when they were missing. As an 
example, for chemicals like magnesium acetate, some 
databases would remove the counter-ion "CC(=O)[O-]", some 
like QSARToolbox would remove the charge to make it look 
neutral " CC(=O)O", but the correct structure used here (and 
most typically used by PubChem) was CC(=O)[O-].CC(=O)[O-
].[Mg+2] (the "." in the SMILES means that the structures are 
not connected by covalent bonds). 
 
2.3. Organic Compound Definition  

Herein organic compounds are defined as those containing a C-
H, C-C, Si-C bond, or 2 carbons along with any combination of 
the elements H, C, O, N, P, S, F, Cl, Br and I.  Organic compounds 
that contained one or more B atom were classified as 
organoboranes, those that contained one or more Si atoms 
were classified as organosilanes and those containing another 
element than listed above were classified as organometallics. 
Compounds containing a single C in combination with one or 
more of the elements H, O, N, Si, P, S, F, Cl, Br and I were 
categorized as pseudo-organics, and were included in the 
screening as well. Other types of REACH registered substances 
either lacked a clear chemical structure (e.g. reaction products, 
natural products, complex mixtures) or contained other 
combinations of atoms than those listed above (i.e. completely 
inorganic structures), and were therefore not considered. 
Following this classification, there were 5530 unique organic 
and pseudo-organic substances with CAS numbers remaining. 
  
A closer examination of these 5530 organic substances, 
however, revealed there were only 5155 unique REACH 

registered organic compound (REACH OC) structures, after 
accounting for reoccurring structures across different CAS 
numbers and CAS entries containing multiple organic 
structures. Reoccurring structures across different CAS 
numbers included common pseudo-organic counter-ions (e.g. 
carbonate occurred in 34 CAS entries). CAS entries could 
contain more than one organic structure due to mixtures with 
organic cations or anions (e.g. 126-97-6 (2-
hydroxyethyl)ammonium mercaptoacetate), or at times blends 
of neutral molecules (e.g. 1319-77-3 refers to a mixture of three 
neutral isomers of cresol).  
 
2.4. Classification by Charge and Ionizability  

Whether structures were neutral, ionizable or ionic was 
classified as follows. First, a simple reading of the SMILES code 
in dative bond notation was used to categorise the ionic charge 
of the substance. Substances were initially classified as a "single 
anion" or "single cation" if one "-" or "+" was present in the 
SMILES, respectively. Otherwise, if multiple "-" or "+" were 
present, the substance was classified as a "multiple anion" or 
"multiple cation", respectively. If both "-" and "+" were 
provided in the same structure, the compound was classified as 
a "zwitterion". If no charges were present the compound was 
initially considered "neutral". 
 
Next, the pH dependence of each structure, between a pH 
range from 4 to 10, was considered by estimating acidic and 
basic pKa values (of A-H and BH+ moieties in the molecule, 
respectively) using the following commercial QSAR packages: 
JChem for Office along the Protonation Calculator Plugin from 
Chemaxon (www.chemaxon.com), Insights for Excel 2.3 by 
accelrys® (www.accelrys.com), the ADMET Predictor 7.1 
software by Simulations-plus (www.simulations-plus.com/) and 
the SPARC v6.0 standalone calculator from Archem 
(www.archemcalc.com/sparc/). All versions were purchased in 
January 2015, and used by April 2015. Compounds initially 
classified as "neutral" were re-classified as "ionizable" and 
acidic if only "acidic" pKa values were determined (by all 
packages) and the lowest pKa was < 12; or they were re-
classified as "ionizable" and "basic" if only basic pKa values were 
determined (by all packages) and the highest pKa  was > 2. For 
clarity, throughout this paper the pKa for organic bases refers to 
the conjugated acid structure (i.e. pKBH+ values for BH+ 
moieties, such as in the protonated amine R-NH3+). Compounds 
initially classified as "single cation" were re-classified as 
ionizable and basic if they had a basic pKa > 2. Similarly, 
compounds classified as "single anion" were re-classified as 
ionizable and acidic if they had pKa < 12. Otherwise, the 
classification of "neutral", “single anion" or "single cation" was 
retained. Compounds were considered amphoteric if both an 
acidic pKa < 12 and basic pKa > 2 was predicted by any one or a 
combination of the above software packages. Substances 
classified as "multiple cation", "multiple anion" and "zwitterion" 
were not reclassified, though it was noted if they were 
predicted to behave as acidic, basic or amphoteric compounds 
within the pH range from 4 to 10. Note that we did not use 
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experimental pKa values for this classification, as the databases 
available during the time of this study (see below) did not 
consistently identify if the substances were acidic, basic or 
amphiprotic. Substances where no pKa was available were also 
not re-classified.  
 
2.5 Persistency Criteria  

In Annex XIII of REACH, a substance is considered to be 
persistent in fresh or estuarine water if its degradation half-life 
is > 40 days and very persistent if it is > 60 days. Note that this 
half-life should ideally refer to 12 °C based on the new PBT 
guidance in REACH.19 If half-lives at this temperature were not 
available, data and models for 20 – 25 °C were used and not 
corrected further. As persistency estimates can be uncertain, 
we also considered half-lives of > 20 days to be "potentially 
persistent". Results from biodegradation screening tests from 
Organization for Economic Co-operation and Development 
technical guidance (OECD TG) 301 A-F, OECD 302 B-C and OECD 
310, were also taken into consideration, where a result of 
"readily biodegradable" was considered not-persistent (results 
of "inherently biodegradable" were not considered to err on the 
side of caution). Four persistency scores (P-scores) were 
chosen: P1 (freshwater half-life < 20 days or at least one OECD 
TG result of "readily biodegradable"), P2 (20 d < freshwater half-
life < 40d), P3 (40 d < freshwater half-life < 60 d) and P4 (60 d < 
freshwater half-life). 
 
There are many different pathways that can influence 
persistency in surface freshwater. Of these, only four were 
considered due to data availability: aerobic biotransformation 
in water, hydrolysis, phototransformation, and volatilization 
from surface water under still conditions.  For the first three of 
these processes, experimental or estimated half-lives were 
collected directly, according to the data prioritization section 
presented below. Volatilization half-lives, on the other hand, 
were estimated from the following equation, which applies to 
completely still conditions: 
 

t1/2,volatilization = 0.69/(vaw * h)    (1) 
 
Where h is the depth of the water (here assumed as 1 m) and 
vaw is the air-water exchange velocity.20 As explained in the 
Electronic Supporting Information (ESI)-Section S1, vaw can be 
estimated by the Henry's Law constant, Kaw, and compound 
specific diffusivities in air and water. If Kaw is not available it can 
be estimated using Kaw=v.p./(Swater,LRT), where v.p. is the sub-
cooled liquid vapour pressure (Pa), Swater,L the subcooled liquid 
water solubility (mmol/L), R the ideal gas constant and T the 
temperature. 
 
Because phototransformation and volatilization are only 
relevant for surface waters, a separate P score was assigned for 
surface water (PS-score) and ground water (PG-score). For the 
PG-score, the shortest half-life from aerobic biotransformation 
and hydrolysis was considered, exclusively. If a PG-score could 
not be provided (i.e. when predictive Quantitative Structure-

Activity Relationships (QSARs) provided only blank output for 
both biotransformation and hydrolysis), a PS-score was not 
calculated, as it was considered presumptuous to derive a P-
score without this information. If a PG-score was present, the 
PS-score was based on the shortest half-life or lowest P-score 
from all four processes. Therefore, surface water half-lives will 
be equal to or less than ground water half-lives, and therefore 
PS-scores are equal to or less than PG-scores. Other potential 
transformation processes for non-aquatic environments (e.g. 
transformation in soil or sediment) were not considered as part 
of this assessment. The experimental databases and QSARs 
used to assess persistency, and how data were prioritized 
amongst these sources, are described in Section 2.8. 
 
2.6 Mobility Criteria 

There is no formal mobility criterion in REACH. As a suggestion, 
a recent guidance document from the German Federal 
Environment Agency11 favoured use of KOC as the best 
parameter to describe mobility, as it was found to be the most 
sensitive parameter to describe breakthrough of a neutral 
substance through a wastewater treatment plant (WWTP); such 
a breakthrough event can be considered an indicator of mobility 
in drinking water cycles. This report suggested a threshold log 
Koc of 4.5 as the mobility criterion, or alternatively an Swater of 
0.15 mg/L. Though it can be argued that these are very 
conservative thresholds for mobility (0.15 mg/L is a solubility 
that is hard to measure), it was recommended as the baseline 
threshold to account for extremely persistent or non-
degradable substances eventually reaching drinking water 
sources over long time frames. Favouring the use of these 
criterion, both Swater and Koc are required during REACH 
registration. Swater has to be reported based on Annex VII for 
most substances manufactured or imported in quantities 
greater than 1 to 10 tonnes/y. Information on log Koc can be 
obtained by information mandated in Annex VIII and IX, for 
certain types of substances manufactured or imported in 
quantities greater than 10 to 100 tonnes/y. 
 
This cutoffof log Koc < 4.5 only applies to compounds whose 
ionization state does not change with  pH. For ionizable 
compounds and ionic compounds, the pH dependent Doc needs 
to be considered, which is dependent on the substance pKa, i.e..  
 
Doc = (1/(1+10^(pH – pKa)))Koc     (monoprotic acids) (2) 
Doc = (1 – 1/(1+10^(pH – pKa)))Koc   (monoprotic bases) (3) 
 
Similarly, the pH dependency of Swater,L (mmol/L) can also be 
related to pH: 
 
log Swater,L = log Swater,L(neutral) + log(1 + 10pH-pKa)  

(monoprotic acids)    (4) 
log Swater,L = log Swater,L(neutral) + log(1 + 10pKa-pH)  

(monoprotic bases)     (5) 
 
The mobility cut-off values ionizable compounds were applied 
between the pH range of 4 to 10, meaning that either the lowest 
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log DOC value or maximum Swater (=Swater,L x M.W (g/mol)) within 
this pH range was used as a conservative assumption. It follows 
that i) monoprotic compounds with a pKa > 12 (or pKBH+ < 2) 
would not have pH dependent Doc or Swater values in this range; 
ii) for monoprotic acids the Doc or Swater values at pH 10 were 
used, and iii) for monoprotic bases the Doc or Swater at pH 4 were 
used. For complex amphiprotic and polyprotic compounds, the 
QSAR predicted minimum DOC or maximum Swater at pH 4, 5, 6, 
7, 8, 9 and 10 was used (as described in more detail section 
2.8.4), unless pH dependant experimental data was available. 
 
For charged ionic and ionizable molecules there are other 
interactions that can decrease mobility in the environment that 
are not accounted for with DOC or Swater alone, such as cationic 
or anionic exchange interactions to minerals and other 
surfaces21-23 or precipitation with counter-ions. Thus, in the 
absence of accounting for such additional interactions, basing 
mobility on pH dependent Doc or Swater represents a maximum 
assumption for mobility. Further, for neutral compounds that 
are solid at room temperature, data sources do not always 
specify if Swater is referring to the solubility of solid crystals 
Swater,S, or the liquid state Swater,L. Swater,L is more relevant for 
environmental fate models, and can be derived from  Swater,S by 
accounting for the enthalpy of fusion20 or the fugacity ratio.24 
As Swater,L is larger than Swater,S, it can be considered a maximum 
and more environmentally-relevant solubility; hence it was 
used preferentially here, when the choice was provided.  
  
If no experimental or estimated log Koc or Swater data were 
available, the Karickhoff single-parameter linear-free energy 
relationships was used to give an estimation of Koc, based on the 
octanol-water partition coefficient, Kow:25  
 
log Koc = log Kow – 0.21      (6) 
 
It is noted that estimated Swater values were here always given 
priority over experimental and estimated Kow values 
extrapolated to Koc, as equation 6 is known to be weakly 
performing for highly polar (mobile) molecules,20, 26-28 and is 
irrelevant for ionic substances.21-23 On the other hand, Kow 
would be more appropriate than Swater for large neutral 
molecules, particularly because these are generally in the solid 
state at room temperature, and Swater data may be based on 
Swater,S whereas Kow by definition refers to the subcooled liquid 
state.20 Further theoretical corrections from the solid to the 
subcooled liquid state become more inaccurate the higher the 
melting point.24 Thus, to account for these instances when Kow 
values extrapolated to Koc are more appropriate than Swater, a 
secondary mobility assessment was derived based on this 
consideration as part of the sensitivity analysis (described 
below). 
 
The following classification for the mobility score (M-score) was 
used, spanning from M1 (the lowest) to M5 (the highest). It  is 
based on the lowest log KOC (or DOC value if ionizable), or 
maximum Swater, between a pH of 4-10 and temperature 
between 12 and 25°C: M1 (log Koc ≥ 4.5 or Swater ≤ 150 µg/L), M2 

(3 ≤ log Koc < 4.5 or 50 mg/L ≥ Swater >150 µg/L), M3 (2 ≤ log Koc 
< 3 or 1 g/L ≥ Swater > 50 mg/L), M4 (1 ≤ log Koc < 2 or 10 g/L ≥ 
Swater > 1 g/L) and M5 (log Koc < 1 or Swater > 10 g/L). In the case 
of equivalent data quality (see below), log KOC was favoured 
over Swater, and data closer to 12°C was favoured over data 
closer 25 °C (to reflect REACH guidance of being representative 
of average environmental conditions).19 The experimental 
databases and QSARs used to obtain mobility data, and how 
data were prioritized amongst these sources, are described in 
Section 2.8. 
 
2.7. PMOC Scoring 

An integrated PMOC scoring system was implemented to 
combine the P-score and M-score, as shown in Figure 1. The 
basis of the PMOC score is that compounds with the lowest 
mobility and persistency categories (M1 and P1) have the 
lowest probability of being a PMOC, while scores of M5 and P5 
are for those compounds that have the highest chance of being 
a PMOC and permeating a drinking water resource if emitted 
into the environment. Compounds which have either P1, M1, or 
a combination of P2 and M2 are considered non-PMOC 
structures, belonging to one of three categories: immobile 
persistent organic compounds ("immobile POC") that have a P-
score of 3 or 4 and an M-score of 1, unstable mobile organic 
compounds ("unstable MOC") that have an P-score of 1 and an 
M-score of 5, and "transient" substances for all other 
combinations. Compounds that are considered PMOCs are 
ranked with a score from 1 to 5 and assigned a colour code for 
clarity. 

 

 
Figure 1. Depiction of the PMOC scoring system considering persistency (P) based on 
half-lives in freshwater and mobility (M) based on either the minimum log DOC, minimum 
log KOC,  or maximum Swater value (where log DOC or log KOC, is prioritized over Swater) over 
a pH range from 4 to 10. Data for 12°C or the closest temperature possible is used. 

2.8. Data Prioritization. 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5  



ARTICLE Journal Name 

Please do not adjust margins 

Please do not adjust margins 

An underlying concern of any classification system based on 
chemical properties is the availability and the quality of the 
required chemical property data. Further, as chemical property 
data of varying quality can originate from many sources, a 
protocol needs to be in place that prioritizes how to choose 
amongst these sources. The data source prioritization system 
used here is presented in Table 1. Only data available from the 
highest priority were used, without further consideration of 
data from lower priority sources. If multiple data occurred at 
the same priority level, these data were typically averaged. A 
description of each of these data sources is described in the 
following subsections. 
 

Table 1. Data source prioritization for P and M scoring 

Priority Source 
1st REACH dossier experimental data  
2nd Peer-reviewed experimental databases and PP-LFERs (using 

experimental input data) 
3rd EPI Suite experimental database 
4th Estimated from available QSARs: 

P – EPISuite (Biowin, Hydrowin), QSARToolbox 
M - SPARC, EPISuite, Chemaxon, Insight for Excel, ADMET 

5th IFS PMOC QSAR 

 
2.8.1. REACH dossier experimental data.  
Experimental data in REACH dossiers that were reported as 
being of high quality was prioritized above other data, to 
address the subgoal of this PMOC screening study to make it as 
consistent with the REACH registration process as possible. It is 
noted, however, that reporting in REACH does not consistently 
require peer-review, but it does reflect how REACH 
registrants/industry themselves have characterized the 
substances they registered; therefore, prioritizing these data 
was chosen more out of practical and applied reasons than that 
of scientific rigour. It should be noted that a recent study has 
found that REACH dossiers are often lacking in experimental 
data, and rely on estimation methods.29 To access the dossiers 
in a practical manner, the eChemPortal database available from 
ECHA and OECD (ww.echemportal.org, last accessed for this 
study in March 2015) was used. The eChemPortal allows for 
users to enter search criteria for a given chemical property from 
a variety of databases, including REACH dossiers, and provides 
an output as CSV or Microsoft Excel tables. Chemical property 
data from the eChemPortal utilized here include aerobic 
biodegradation test results (301 A-F, OECD 302 B-C and OECD 
310, in addition to half-life data), hydrolysis half-lives, 
phototransformation rates in water, Kaw, Swater, vapour 
pressure, pKa, Kow, and Koc, with the latter typically measured 
using adsorption studies (EC C18; OECD 106, 2000a) or  HPLC 
studies (EC C19; OECD 121, 2001a).11 
 
When accessing eChemPortal, the search filters were set to 
experimental data with a reliability score of 1 (reliable without 
restrictions) or 2 (reliable with restrictions), and accepted 
without further scrutiny. Half-life data given with the operators 

">" and "<" were only used if there was no ambiguity in relation 
to the P-Score of 3, meaning that only half-lives given as < 40 
days or > 40 days could be used, but not e.g. < 50 days or > 30 
days. For mobility, all operators were interpreted as "=", due to 
the comparative rarity in which data was presented as ">" and 
"<" and because approximate data would be less likely to 
influence the M-score, which are based on differences of a 
factor 10. Cases of high standard deviations were flagged for 
manual follow-up, and data suspected as being erroneous were 
either deleted or corrected on a case-by-case basis (e.g. by log 
normalizing). An identified shortcoming of using the 
eChemPortal database to export REACH dossier data, 
particularly for pKa, was that data were not consistently log 
normalized and empty data cells in the exported CSV files 
generally meant the experimental data were in the "comments" 
section of online dossiers (these data were manually 
transferred when spotted). There were also instances where 
data in the online dossiers were not present in eChemPortal at 
the time of data extraction. 
 
2.8.2. Peer-reviewed experimental data and PP-LFERs.  
Peer-reviewed experimental databases and compilations were 
taken as the next level of priority. This literature search focused 
on databases, rather than on reports for individual structures 
(due to time limitations). Parameters for which peer-reviewed 
databases could be obtained include pKa,30, 31 vapour 
pressure,31, 32 Kaw,33-35 and Kow.36-40  
 
Additionally, at this level of priority, poly-parameter linear-free 
energy relationships (PP-LFERs) were used for Koc28 and Kaw41, as 
defined in the following equations: 
 
log Koc = 0.02 + 1.20V - 0.98S  - 0.42A – 3.34B + 0.54L   (7) 
log Kaw = -1.27 + 0.82E + 2.74S + 3.90A +4.81B - 0.21L   (8) 
 
Where V the McGowan molecular volume, S is the 
polarizability/dipolarizability descriptor, A is the H-bond basicity 
descriptor, B the H-Bond acidity descriptor, L is the hexadecane-
water partition coefficient, and E is the excess molar refraction. 
Note that L, V and E are proxies for non-specific interactions 
(London dispersion, cavity formation), and S, A and B for 
specific/polar interactions. It is important to emphasize that 
these PP-LFER descriptors should all be determined 
experimentally, as estimation methods are considered dubious, 
particularly for very-polar compounds,27 with the exception of 
the L parameter.42 PP-LFER descriptors were compiled from the 
Helmholtz Centre for Environmental Research - Linear Solvation 
Energy Relationship (UFZ LSER) database during March 2015.43  
 
No peer-reviewed data-bases for biodegradation, hydrolysis or 
phototransformation could be found for this work. 
 
2.8.3. EPI Suite experimental database 

The data source considered as the third priority was the 
experimental database published by the U.S. EPA’s EPISuite44, 45 
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(Estimations Programs Interface), which contained 
experimental Kaw, Swater and Kow data. 
 
2.8.4. QSAR property data 

Finally, if no experimental data were available, it was necessary 
to use QSARs. The eChemPortal database and REACH dossiers 
provide QSAR output of properties related to persistency and 
mobility. However, in this study, we ignored these data and 
conducted original QSAR analysis. The reasons for doing this 
were that a) QSARs generally only require SMILES structure as 
input, and can be done in batch mode for a large set of 
chemicals; b) the QSAR data presented in the REACH dossiers 
are from highly-variable sources, so accounting for accuracy and 
consistency across substances is difficult; and c) for half-life data 
there were very few QSAR predictions available through 
eChemPortal (e.g. for aerobic biodegradation only half-lifes for 
21 compounds were predicted using QSARs with high reliability 
scores).  
 
Regarding persistency, QSARToolbox (v 3.3, available from 
http://www.qsartoolbox.org/) was used to run the EPISuite's 
BIOWIN (output from BIOWIN 1 through 6), EPISuite's 
HYDROWIN, and the LMC hydrolysis model. Biodegradation 
half-lives were estimated from BIOWIN output using the 
method presented in Arnot et al. (2005).46 This method presents 
several alternative models to derive half-lives, here the 
geometric average of these models plus one geometric 
standard deviation was used, to err on the side of being 
conservative. Estimated hydrolysis P-scores were derived for 
both Hydrowin and LMC estimates. The Hydrowin P-score was 
based on a combination of Hydrowin half-life categories (e.g. 0 
to 1 day, 1 to 10 days, >100 days) and half-lives under basic and 
acidic conditions from pH 6.5 to 7.4, without further scaling to 
account for a pH range of 4 to 10, due to the perceived 
uncertainty of the method. The LMC hydrolysis model output of 
categories "very slow", "slow" and "moderate" were given a 
score of P4, P3 and P2, respectively. If both Hydrowin and LMC 
gave two different P-scores, the lowest of the two was used. For 
volatilization rates, vapour pressure and Kaw data were obtained 
by EPISuite (MPBPWIN, HENRYWIN Bond Method and Group 
Method) (at STP) as well as SPARC (at 12 °C). No suitable QSAR 
for phototransformation rates could be identified at the time of 
the study. 
 
For mobility, ChemAxon, Insights for Excel, ADMET and SPARC 
were used to predicted pKa (as mentioned above), as well as pH 
dependent Swater and Kow/Dow values. SPARC was the only one of 
these for which Swater and Dow could be predicted at 12 and 25 
°C. In addition, EPISuite44, 45 (via QSARToolbox) was also used to 
predict the Swater and Kow for neutral compounds (EPIsuite was 
not used for ionic compounds, as it appeared to automatically 
convert charged atoms to neutral, simply by deleting the 
charge, resulting in unreasonable predictions). 
 
2.8.5. IFS QSAR estimations 

It was anticipated at the beginning of this study that there 
would be some substances for which no experimental data exist 
and for which QSARs would not be able to predict the needed 
parameters for the P-score and M-score. Therefore, in order to 
include all REACH OC structures, original group contribution 
QSARs were designed to estimate approximate rankings for 
persistence and mobility.  
 
This was done using experimentally based M-scores (n = 1320) 
following the Iterative Fragment Selection (IFS) method,47 
which automatically generates and selects fragments 
(functional groups) that are used in a multiple linear regression 
(MLR) model. Calibration (n=663) and validation (n=657) 
datasets were automatically selected and the prediction 
accuracy was quantified. For the PG- and PS-scores the IFS 
results were poor, and a custom method was designed. In brief, 
for compounds with experimentally based PG- and PS-scores (n 
= 834 and n = 824, respectively), fragments corresponding to all 
atoms and all bonded atom pairs were defined. To this pool of 
fragments was added more complex functional groups known 
to be important for persistency. Then the fragments were all 
added to an MLR model, and finally the fragments with the most 
uncertainty in their regression coefficients were iteratively 
removed until all remaining fragments had acceptable 
uncertainty. In both cases a subset of molecules were used for 
the calibration of the QSARs (PG: n=396; PS: n=390), while the 
remainder were used for validation (PG: n=438; PS: n=434). The 
resulting group contribution QSARs were then compared with 
the validation set, and the resulting accuracy in prediction was 
quantified. These three QSARs for M-, PG- and PS-scores are 
hereafter referred to as the IFS QSAR. 
 
For the M score, the validation check of the IFS QSAR gave a 
moderate Pearson correlation coefficient (r2) of 0.4; but there 
was an apparent separation of the M1 and M4-5 predicted 
values. Therefore, the IFS QSAR was used to predict if the M 
score was low (M1), medium (M2-3) or high (M4-5). The final 
model predicted these scores correctly 78.6% in the training set 
(n=663 compounds) and 71.7% in the validation set (n=657 
compounds).  
 
For the P score, the IFS approach did not work well, and gave 
weak r2 of 0.05, with no good separation between P1 and P4 
compounds. There are likely many reasons why the IFS 
approach did not work as well for P as for M, with main ones 
being that processes underlying the P score are quite 
heterogeneous (hydrolysis, biotransformation, 
photransformation, etc.), whereas the underlying data for the 
M score (KOW, KOC, Swater) are correlated. A second reason is the 
general availability of experimental M data compared to P data. 
Thus, instead P-scores were divided into two groups: low (P 
score 1-2) and high (P score 3-4). For groundwater, the final 
model predicted these scores at 78.3% in the training set (n = 
396) and 69.2% in the validation set (n = 438). For surface water, 
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the final model predicted these scores at 78.2% in the training 
set (n = 390) and 69.4% in the validation set (n = 434).  
 
More details about the IFS QSAR calibration and validation is 
presented in the ESI-Section S2. 
 
2.9. Hydrolysis products 

As compounds tend to get more mobile following oxidative 
transformation reactions, like aerobic biotransformation and 
hydrolysis, it was also of relevance to consider such 
transformation products as part of this study. Here the LMC 
hydrolysis model in the QSAR toolbox was used to predict the 
hydrolysis structures of the reaction products. P-scores and M-
scores for each of these reaction products were derived as 
above, which generally implied using the available QSARs or IFS 
QSAR, except for cases when a reaction product happened to 
be the same as a parent REACH OC with available experimental 
data. 
 
2.10. Sensitivity analysis 

The P-score and M-score are dependent on many variables and 
assumptions, including a) the general definition, parameters 
and cut-off values of the P-score and M-score, b) the 
prioritization of data sources and c) the accuracy of the 
underlying data in the prioritized data sources. Regarding a), 
half-life cut-off values of the P-score were based on REACH 
definitions, so it was not considered necessary to test the role 
of this cut-off. However, it was considered important to 
compare PMOC scores derived with PS and PG values. 
Therefore, PMOC-scores derived with PG-scores will primarily 
be presented, and compared with those derived with PS-scores 
as part of the sensitivity analysis. The influence on the M-score 
when prioritizing Kow derived Koc values using eq 6, instead of 

Swater when both data were available, was also investigated in 
the sensitivity analysis. Regarding b) we did not investigate 
changing the priority of the data prioritization sources (Table 1), 
as these were considered appropriate for making an 
assessment tool compatible with the REACH registration, and 
further the goals of this study were not primarily to validate if 
the peer-review of literature corresponds to those in non-peer 
reviewed databases (though this would be an interesting 
follow-up study). Regarding c) the accuracy of using QSARs was 
investigated, by seeing how much they deviated from 
experimental values from REACH registration dossiers and the 
peer-reviewed literature.  
 
The endpoint parameters used in the sensitivity analysis was the 
number of structures obtaining a PMOC scores of 4.5 to 5 (the 
highest ranked PMOCs, see Figure 1), and the number of 
compounds that are not considered PMOCs. 

3. Results and Discussion 
Information about the 5155 unique REACH OC structures and 
their predicted hydrolysis structures, including CAS, Name, 
Molecular Weight, SMILES code, charge, ionization state, pKa, 
substance property data and all other key information for 
conducting the PMOC scoring is present in the ESI-Part S2 as a 
Microsoft Excel file. Identities of specific substances are only 
provided in this text when needed for clarity. 
 

3.1. Classification of Organic Structures in REACH 

The distribution of the 5155 REACH OCs into different 
compound classes (organic, organoborane, organometallic, 
organosilane, pseudo-organic), charge categories (neutral, 
ionizable, cationic, anionic and zwitterionic) and ionizability 

Table 2. Number and distribution of REACH registered organic, organoborane, organometallic, organosilane and pseudoorganic structures (as of December 2014), as well as predicted 
hydrolysis products, in terms of their charge and ionizability categories. 

REACH OC with 
CAS 

Substance entries 
Unique 

structures 
Not pH 

dependent 
Acids Bases Amphiprotic 

Including 
hydrolysis 
products 

n (and %) charge type       
neutral (pH 4-10) 2673 (48.3 %) 2601 (50.5 %) 2601 (50.5 %) - - - 4158 (40.8 %) 
ionizable 2283 (41.3 %) 2119 (41.1 %) - 760 (14.7 %) 742 (14.4 %) 599 (11.6 %) 5559 (54.5 %) 
ionic 574 (10.4 %) 435 (8.4 %) 111 (2.2 %) 33 (0.6 %) 17 (0.3 %) 265 (5.1 %) 481 (4.7 %) 
single anions 185 (3.3 %) 145 (2.8 %) 44 (0.9 %) 0 (0.0 %) 4 (0.1 %) 94 (1.8 %) 145 (1.4 %) 
multiple anions 220 (4.0 %) 145 (2.8 %) 5 (0.1 %) 28 (0.5 %) 3 (0.1 %) 108 (2.1 %) 145 (1.4 %) 
single cations 106 (1.9 %) 85 (1.6 %) 59 (1.1 %) 3 (0.1 %) 0 (0.0 %) 18 (0.3 %) 105 (1.0 %) 
multiple cations 22 (0.4 %) 19 (0.4 %) 3 (0.1 %) 2 (0.0 %) 10 (0.2 %) 4 (0.1 %) 24 (0.2 %) 
zwitterions 41 (0.7 %) 41 (0.8 %) 0 (0.0 %) 0 (0.0 %) 0 (0.0 %) 41 (0.8 %) 62 (0.6 %)         
n (and %) organic type       
organic compounds 5175 (93.6 %) 4850 (94.1 %) 2491 (48.3 %) 777 (15.1 %) 716 (13.9 %) 839 (16.3 %) 9852 (96.6 %) 
organoborates 17 (0.3 %) 16 (0.3 %) 10 (0.2 %) 3 (0.1 %) 2 (0.0 %) 1 (0.0 %) 16 (0.2 %) 
organometallics 97 (1.8 %) 97 (1.9 %) 71 (1.4 %) 0 (0.0 %) 8 (0.2 %) 18 (0.3 %) 97 (1.0 %) 
organosilanes 160 (2.9 %) 160 (3.1 %) 126 (2.4 %) 5 (0.1 %) 28 (0.5 %) 1 (0.0 %) 172 (1.7 %) 
pseudoorganics 81 (1.5 %) 32 (0.6 %) 14 (0.3 %) 8 (0.2 %) 5 (0.1 %) 5 (0.1 %) 61 (0.6 %)         
n (and %) total 5530 (100.0 %) 5155 (100.0 %) 2712 (100.0 %) 793 (100.0 %) 759 (100.0 %) 864 (100.0 %) 10198 (100.0 %) 
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categories (acids, bases and amphiprotic) is presented in Table 
2.  
 
Around half (50.5 %) of the unique structures were neutral 
organic compounds, whereas 41.1 % were ionizable and the 
remaining 8.4 % classified as ionic. Describing these compounds 
based on pH dependency (pH 4-10), showed that 52.7% were 
not pH dependant, 15.3% were acidic, 14.8 % were basic, and 
16.7% were amphiprotic. 
 
Franco et al. (2010)48 performed a similar analysis, using a 
different methodology, on a random sample of 1510 
compounds of the pre-registered REACH list in 2010. That study 
found a similar distribution of neutral compounds (51%) and 
bases (14%), but disproportionately more acids (27%) 
compared to the amphiprotics (8%). The different distribution 
of acids and amphiprotics is likely related to how the list was 
established, and the methodology used. 
 
Regarding types of organic compounds, a total of 5.9% of the 
unique substances were not "pure" organic compounds, but 
consisted of organoboranes (16 structures), organometallics (97 
structures), organosilanes (160 structures) and pseudo-organics 
(81 substances, but just 32 unique structures, mainly due to the 
dominance of carbonate in 34 compounds, and cyanide in 7 
compounds, typically as alkali or metal salts).  
 
3.2. Availability of P and M data 

The number of unique REACH OC structures (out of 5155) for 
which experimental REACH dossier data (via eChemPortal) 
could be found to make the P- and M-scores is presented in 
Table 3. This only covered roughly 20% of the substances, with 
1015 substance-specific Koc/Doc values, 457 pKa values, 612 
hydrolysis half-life values and 888 substances with 
biodegradability test or half-life data. This indicates that 
experimental data in the REACH dossiers themselves (with 
reliability score 1 and 2) are sufficient for conducting the 
proposed PMOC assessment on only a minority of REACH OC 
structures. Table 3 also presents available data from other 
experimental databases in cases experimental data could not be 
found in the REACH dossier data, according to the 2nd and 3rd 
priority of source data in Table 1. This includes 311 substance-
specific Koc/Doc values (mostly from PP-LFER predictions), 656 
Swater data (mostly from the database in EPI suite) and 141 pKa 
values.30, 31  
 
Regarding persistency parameters, some experimental data 
could be found for the parameters used to assess volatilization 
rates: Kaw (for 976 structures) and vapour pressure (for 1704 
structures). Regarding other persistency parameters for 
hydrolysis, phototransformation and biodegradation, only data 
from the REACH dossiers were available at the time of the study, 
as no tabulated peer-review of half-lives could be found. 
 
The availability of the experimental data in the REACH dossiers 
was related to the REACH registration requirements. For 
instance, substances classified as intermediates or that have 

Table 3. The number of REACH OC structures for which experimental and QSAR data was used for conducting the PMOC scoring. The distribution of available data across neutral, 
ionizable and ionic substances is also presented.  

Source Priority 1 
eChemPortal 

experimental data 

Priority 2&3 
Other experimental data 

not in eChemPortal 

Total  
Experimental 

Priority 4 
QSAR data  

All 
Data 

  (n) (n) (n) (n) (n) 
Mobility          
pKa 457 141 598 1198 1796 
Koc / Doc 1015 311 1326 0a) 1326 
Kow 841 281 1122 4020 5142 
Swater,L 864 657 1521 3614 5135 
Persistence      
Kaw 464 512 976 3839 4815 
v.p. 1201 503 1704 3164 4868 
hydrolysis 612 0 612 1331 1943 
phototransformation 85 0 85 0 85 
biodegradation 888 0 888 3772 4660 
Distribution           
(neutral/ionizable/ionic) (% / % / % ) (% / % / % ) (% / % / % ) (% / % / % ) (% / % / % ) 
Mobility         
pKa  16 / 71 / 13 15 / 82 / 3 16 / 73 / 11 0 / 96 / 4 5 / 89 / 6 
Koc / Doc 60 / 35 / 5 76 / 24 / 0 63 / 32 / 4 49 / 42 / 9 52 / 39 / 8 
Kow 52 / 42 / 5 69 / 31 / 0 57 / 39 / 4 49 / 42 / 9 51 / 41 / 8 
Swater,L 66 / 33 / 1 58 / 42 / 0 63 / 37 / 1 46 / 43 / 11 51 / 41 / 8 
Persistence      
Kaw 67 / 32 / 0 74 / 26 / 0 71 / 29 / 0 49 / 46 / 6 53 / 42 / 5 
v.p. 64 / 36 / 0 79 / 21 / 0 68 / 31 / 0 45 / 48 / 7 53 / 42 / 4 
hydrolysis 65 / 25 / 10  65 / 25 / 10 67 / 33 / 1 66 / 30 / 4 
phototransformation 40 / 40 / 20  40 / 40 / 20  40 / 40 / 20 
biodegradation 63 / 31 / 6   63 / 31 / 6 54 / 45 / 1 56 / 42 / 2 

a) QSARs for Koc not considered, as these were generally based on Kow and converted to Koc based on eq 6. 
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volumes less than 10 ton/year have reduced reporting 
requirements.19 Further, QSARs can be used in specified cases 
during REACH registration, meaning experimental data 
reporting is not always a requirement.49  
 
In this study, the selected P and M QSARs were able to give 
predictions for the majority of structures where no 
experimental data were found. Regarding mobility, 
experimental data and QSARs combined could provide a basis 
to evaluate mobility for all but 12 out of the 5155 unique REACH 
OCs. These 12 structures were all organometallics and 
organoboranes.  
 
The selected QSARs could also provide a way to estimate a P-
score for most of the compounds where no experimental data 
were available. This was particularly the case for volatilization 
(Kaw could be predicted for 3839 structures for which no 
experimental data were available), and biodegradation (for 
3772 compounds for which no experimental data existed), 
followed by hydrolysis (1331 compounds).  
 
Unlike the M-score, the P-score could not be derived for a 
substantial amount of substances (i.e. 420), due to lack of 
experimental or estimated data of both biodegradation and 
hydrolysis half-lives. The majority of these were ionic 
compounds (280 structures), and the remainder were ionizable 
(139 structures) or pseudoorganic (1 structure, carbon 
monoxide).  
 
When looking at the distribution of experimental parameters 
for mobility between neutral, ionizable and ionic substances, it 
is also apparent from Table 3 that most data were found for 
neutral compounds, followed by ionizable and ionic. As a 
starting point to this discussion, it is important to recall the 
distribution of these three structure categories is 50.5%, 41.1% 
and 8.4%, (see Table 2). Table 3 shows that for Koc/Doc 63% of 
experimental data were for neutral compounds, 32% for 
ionizable compounds and 4% for ionic compounds; clearly, 
neutral compounds are more likely to have experimental Koc/ 
Doc data than ionic compounds. It is noted that all of the data 
for the ionic compounds came from REACH dossier sources. In 
this case Koc/ Doc largely originated from studies using OECD test 
guideline 106. Looking at other parameters, only 1% of the 
experimental data for Swater and 0% for Kaw were for ionic 
substances (the latter being less surprising as ionic substances 
do not volatilize from water in an ionic state).  
 
QSARs helped provide data for many of the ionic substances. 
However, QSAR predictions for such ionic compounds have to 
be taken with some scepticism, as the low availability in general 
of experimental data we could obtain is indicative that they are 
generally not abundant in QSAR calibration data sets. It could 
also not be found how accurately ion-solvation interactions and 
ionic precipitation reactions are accounted for in the selected 
QSARs. An initial cause for concern was that 6% and 7% of the 
QSAR predictions for Kaw and v.p., respectively, were for ionic 
substances. At first glance this is surprising as ionic molecules 

should not volatilize from water. However, a closer look at this 
data shows that 97% of the Kaw values for ionic compounds are 
< 10-10, which for practical purposes is equivalent to negligible 
volatilization. A partial explanation is that the QSARs may 
account for some of the ionic substances becoming neutral at 
extreme pH. It was observed that Insights and ADMET almost 
always gave Swater output for ionic compounds (>99% of them), 
ChemAxon often (66%), SPARC occasionally (2%). The general 
relative standard deviations of maximum Swater (pH 4 – 10) 
across QSARs for a given ionic substance ranged between 62% 
– 300% (ESI-Part S2), showing reproducibility within a factor 3 
from each other, which is surprisingly consistent. The majority 
of these ionic substances (73%) had an average maximum Swater 
corresponding with an M-score 5, as may be expected due to 
the general high solubility of ionic substances. For log Dow, 
ADMET and Insights gave predictions for over 99% of ionic 
compounds, ChemAxon 97%, and SPARC just 48%. The 
agreement of compound-specific Dow values, however, was not 
as strong as for Swater, with the standard deviations ranging from 
0 to 17  orders of magnitude across QSARs (for methyl sulphate 
and  tripotassium propylsilanetriolate, respectively) with an 
average of 2.5 orders of magnitude; indicating that the QSARs 
differ more in how they account for ionic interactions with 
octanol than water. Most of the predicted minimum log Dow 
(between pH 4-10) for ionic compounds corresponded with an 
M-score of 5 (86%). Hence, despite the lack of consistency 
across QSARs, they in aggregate agree that ionic substances are 
mobile. 
 
For assessing the hydrolysis and biodegradation of ionic 
substances, a more representative portion of experimental data 
were available: 10% of experimental hydrolysis half-lives were 
for ionic compounds, and 6 % of biodegradation data were for 
ionic compounds. Yet, in contrast, the QSAR models used for 
persistency (BIOWIN and LMC) generally did not offer output 
for such substances (i.e. only 1% of QSAR-derived hydrolysis 
half-lives and biodegradation half-lives were for ionic 
structures). For these QSARs, most ionic substances were not 
included within their chemical applicability domain. 
 
A comparison of QSAR and experimental data is presented in 
the next section. Compounds for which no QSAR data were 
available were evaluated with the original IFS QSAR for P and 
M-scores, as presented in section 3.4. 
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3.3. Performance of utilized QSARs 

An overview of the comparison between obtained experimental 
data and the QSAR models used in this study is presented in 
Table 4. The data are presented ias the deviation in log 
normalized values of the experimental and estimated value: 
 
QSAR deviation = log (experimental value) – log (QSAR value) 
             (9) 
 
Average QSAR deviations were compared before and after 
removing "consistent outliers", these are referred to as the "raw 
average" and "filtered average", respectively. Consistent 
outliers were arbitrarily defined in this study as those in which 
all tested QSAR predictions provided data that deviated from 
the experimental value by two-orders of magnitude (with the 
exception of 3 out of 4 predictive QSARs being sufficient in the 
case of pKa, and 6 out of 7 predictive QSARs in the case of Swater, 
to account for SPARC not providing data for as many 

compounds as the other QSARs at the time of running the 
models). Also shown in Table 4 is the number of compounds for 
which both experimental and QSAR data were available, and the 
number of compounds for which deviations were more than 2, 
4 and 6 orders of magnitude.  
 
For pKa, all models gave an average QSAR deviation near 0.0, 
though with large standard deviations of up to two orders of 
magnitude. When the consistent outliers were removed (33 
structures), the standard deviations were reduced to an order 
of magnitude. SPARC and ADMET were the best performing 
models, with filtered average QSAR deviations of -0.1 ± 1.1 and 
0.1 ± 1.2, respectively. Based on this, pKa values from SPARC 
were used when experimental data were not available, and 
average pKa values from the other models were used when 
SPARC data were not available. These results can be compared 
with Liao et al. (2009),30 which compared 9 QSARs for their 
ability to predict pKa for 197 pharmaceutical substances. This 
study included earlier versions of SPARC, ADMET, ChemAxon 
(based on the Marvin program), and Insights for Excel (based on 

Table 4. The performance of the QSAR models used in this study compared to the obtained experimental data for mobility and volatilization parameters. Values in bold represent 
the best performing non-PP-LFER model 

Parameter 
(# consistent 

outliers)a) 

QSAR deviation = 
log (experimental value) 
– log (estimated value) 

 

SPARC ADMET Chemaxon Insights EPISuite 
(Bond 

method) 

PP-LFER 

pKa filtered average ± s.d. -0.1 ± 1.1 0.1 ± 1.2 -0.1 ± 1.3 -0.1 ± 1.4     
(33) raw average ± s.d. 0.0 ± 1.9 0.1 ± 1.9 0.0 ± 2.1 -0.1 ± 1.9   

 
n outliers of  

log >2 / >4 / >6 38/17/8 52/22/11 52/25/11 63/22/7   
 n 318 380 370 322   
 

log Kow (-) filtered average ± s.d. 0.0 ± 1.0 0.0 ± 0.9 0.2 ± 1.3 0.1 ± 1.2 -0.1 ± 1.2 0.0 ± 0.3 
(41) raw average ± s.d. -0.2 ± 1.6 -0.2 ± 1.3 0.0 ± 1.7 -0.1 ± 1.5 -0.2 ± 1.6 0.0 ± 0.5 

 

n outliers of  
log >2 / >4 / >6 69 / 29 / 13 61 / 28 / 4 87 / 30 / 13 69 / 25 / 7 82 / 34 / 10 2 / 1 / 0 

 n 705 745 745 745 744 204 
 

log Swater (mg/L) filtered average ± s.d. 0.0 ± 1.2 0.1 ± 0.7 0.0 ± 0.9 0.2 ± 1.1 0.0 ± 1.0  
(24) raw average ± s.d. 0.1 ± 1.4 0.2 ± 0.9 0.1 ± 1.3 0.3 ± 1.4 0.1 ± 1.3  

 
n outliers of  

log >2 / >4 / >6 61 / 19 / 8 39 / 10 / 1 61 / 20 / 7 91 / 21 / 8 77 / 23 / 10  
 n 905 949 949 949 949  
 

log Kaw (-) filtered average ± s.d. 0.5 ± 2.9    0.3 ± 2.5 0.5 ± 0.9 
(17) raw average ± s.d. 0.5 ± 2.9    0.3 ± 2.6 0.5 ± 0.9 

 

n outliers of  
log >2 / >4 / >6 115 / 45 / 28    134 / 52 / 29 18 / 5 / 0 

 n 876    907 370 
 

log v.p. (Pa) filtered average ± s.d. 0.1 ± 0.9    0.1 ± 1.7  
(133) raw average ± s.d. 0.6 ± 2.6    0.4 ± 2.6  

 
n outliers of  

log >2 / >4 / >6 197 / 94 / 57    217 / 99 / 63  
  n 1508       1598   

a) Consistent outliers were defined as those in which all tested QSAR predictions were off by two-orders of magnitude (or 3 out of 4 predictive QSARs in the case of pKa, 
and 6 out of 7 predictive QSARs in the case of water solubility, to account for SPARC not providing data for as many compound classes as the other QSARSs at the time 
of running the models). 
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Pipeline pilot protocols), and reported mean absolute 
deviations of 0.65, 0.66, 0.87 and 0.77, respectively. These were 
substantially smaller than our mean absolute deviations for a 
larger, non-pharmaceutical data set of >300 compounds of 
1.64, 1.64, 1.72 and 1.55, respectively. There was also 
differences in the number of compounds in which QSAR 
deviations were more than a factor 2, which in Liao et al.'s case 
were 12, 18, 22 and 24, respectively, and in our case 38, 52, 52 
and 63, respectively. In other words, all tested QSARs seem to 
predict pKa values of most substances well, though a minority of 
substances are poorly predicted by a substantial margin. A 
deeper investigation into the reasons for these deviations 
would make for an interesting follow-up study, but is outside 
the scope of the current manuscript. 
 
Kow and Swater predictions were in general better than for pKa, 
with average deviations being close to 0 for all models (within 
0.2 log units), and standard deviations ranging from ±0.9 to ±1.6 
across the different QSAR models without removing consistent 
outliers, and from ±0.7 and ±1.2 when removing consistent 
outliers. ADMET was the best performing of all QSARs, having 
the fewest number of outliers greater than two orders of 
magnitude (61 out of 745 for Kow, and 39 out of 949 for Swater), 
and the smallest standard deviations both before and after 
removing consistent outliers (with the former being -0.2 ± 1.3 
for Kow and 0.2 ± 0.9 for Swater). As a comparison, the PP-LFER 
approach using experimental substance descriptors data were 
much better performing than any of the QSARs, predicting log 
Kow at 0.0 ± 0.5 when not removing any consistent outliers. This 
validates the higher prioritization of this PP-LFER prediction 
over QSAR estimates (Table 1). 
 
The implications of this is that QSAR data for the mobility 
parameters are in general only accurate within an order of 
magnitude for neutral compounds. However, in some cases, 
and in particular for ionizable compounds with predicted pKa 
values, derived DOC and Swater can be off by two orders of 
magnitude or more. Therefore, considering the M-score is 
based largely on factor 10 increments, compounds with 
predicted mobility descriptors have an M-score accuracy of 
approximately plus/minus 1 to 2 (unless the Doc or Swater are 
substantially below or above the range considered in the 
scoring system). This is explored in more detail as part of the 
sensitivity analysis (section 3.8). 

 
Regarding volatilization, only two QSARs from the ones selected 
could predict Kaw and vapour pressure: SPARC and EPISuite. 
Both performed relatively similarly for the REACH OC data, with 
SPARC and EPISuite predicting experimental log Kaw values with 
deviations 0.5 ± 2.9 and 0.3 ± 2.6, respectively (for circa 900 
compounds). There was a large number of extreme outliers that 
influenced the statistics, with 45 and 52 compounds deviating 
by more than 4 orders of magnitude for SPARC and EPISuite, 
respectively. 
 
Performance for the biodegradation and hydrolysis QSARs is 
presented in Table 5. The performance of hydrolysis half-life 
predictions using Hydrowin was poor, with average estimations 
of log half-lives deviating by -0.9 ± 2.0, implying that on average 
Hydrowin overestimated the persistency by nearly a factor 10, 
though with uncertainties of a factor 100 (for the 253 
compounds in the validation data set). To some extent, this is 
due to the pH dependence of hydrolysis, which is very difficult 
to adequately account for in a hydrolysis QSAR model (see e.g. 
the help files for EPISuite HYDROWIN). For biodegradation, the 
QSAR approach performed well, with average estimations of log 
half-lives deviating by -0.2 ± 1.1 (for the only 29 compounds in 
the validation data set). In addition, it was investigated if the 
biodegradation QSARs could predict the OECD biodegradation 
test (301 A-F, 302 B-C and 310) results of "readily 
biodegradable", by comparing this experimental outcome with 
QSAR predicted half-lives of < 20 days. Note that when multiple 
OECD tests were performed and only one reported "readily 
biodegradable", this was considered as a "readily 
biodegradable". As presented in Table 5, the occurrence of an 
OECD test result of "readily biodegradable" was correctly 
predicted 80% of the time, and not "readily biodegradable" was 
correctly predicted 64% of the time, giving an overall efficiency 
of 72% for 1714 substances. When a predicted half-life of 40 
days is chosen, then the agreement between OECD "readily 
biodegradable" increases to 94%, but predictions for not 
"readily biodegradable" decrease to 40%, giving an overall 
efficiency of 64%. The longer the half-life threshold for 
persistence, the more OECD "readily biodegradable" results will 
be predicted correctly, but the overall efficiency will decrease. 
In conclusion, the QSAR approach used for biodegradation is 

Table 5. The performance of the QSAR models used in this study compared to the obtained experimental data for mobility and volitilization parameters. 

Hydrolysis Hydrowin deviation  

 Average Δ log(t1/2) ± s.d. -0.9 ± 2.0 n = 253 
 n outliers of log >2 / >4 / >6  42 / 16 / 6  

Biodegradaton BIOWIN & Arnot et al. (2005) deviation  
 Average Δ log(t1/2) ± s.d. -0.2 ± 1.1 n = 29 

 n outliers of  log >2 / >4 / >6  2 / 0 / 0  
 Comparison with OECD biodegradation tests  
 Correctly predicted "readily biodegradable" as < 20 days  81% n = 776 
 Correctly predicted "not readily biodegradable" as > 20 days half-life 64% n = 938 

  Total correct (overall efficiency) 72% n = 1714 
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more successful than that for hydrolysis. However, more 
experimental data and further work on the development of 
QSARs for both processes is needed for better accuracy. 
 
Owing to the fact that much of the data came from the REACH 
dossiers, it cannot be ruled out that many of the extreme 
outliers are due to low quality experimental data or bad 
reporting of experimental data in the dossiers (e.g. unit 
reporting errors), as presumably the scrutiny of reporting is not 
as stringent in the REACH dossiers as in the peer-reviewed 
literature. This is especially the case for persistency data, as 
half-lives are not as straightforward to measure or report as 
mobility parameters. A follow-up study investigating the cause 
of outliers would be of interest, as these could provide 
information on the quality of the data in the REACH dossiers. In 
cases where QSARs make consistently poor predictions of high 
quality data for a particular class of chemical, this could 
introduce opportunities to improve these QSARs. As an example 
of this, consider perfluorinated polar compounds, many of 
which would generally qualify as PMOCs. Popular QSARs 
originally deviated in their predictions for their mobility 
parameters by several orders of magnitude.50, 51 Once the cause 
of this was identified,50 modified QSARs were suggested to 
better account for the mobility of perfluorinated substances. 50, 

51   
 
3.4. IFS QSAR 

Of the 5155 REACH OC structures identified, there were 
approximately 432 compounds for which either no P-score (429 
structures), M-score (12 structures) or both (9 structures) could 
be derived with experimental data or QSAR output. The 
majority (289 structures) were considered ionic. For the 
structures for which P could not be predicted a majority of them 
had an M-score of 5 (313 structures), indicating they are 

generally quite mobile. The IFS QSAR approach was used to 
estimate ranges P-scores (P1-2 and P3-4) and M-scores (M1, 
M2-3 and M4-5). These results were combined to make PMOC 
score ranges of 4.5–5 (corresponding to P3-4 and M4-5), 3-4 
(corresponding to P3-4 and M2-3), and 1-2 (all other 
combinations) all other compounds a PMOC score of 1-2. None 
of the compounds were considered non-PMOCs to err on the 
side of caution. 
 
3.5. Hydrolysis products 

The LMC hydrolysis model generated in total 5527 unique 
hydrolysis structures, of which 484 were identical to parent 
REACH OC structures, and 5043 were not identical to other 
compounds on the REACH list (Table 2). The majority of the 
unique hydrolysis products were ionizable (3440 structures, or 
68.2%), a marked increase from the parent REACH OC data set 
(37.3%). Very few of the new hydrolysis products were 
identified as ionic (46 structures, or 0.9%), a marked decrease 
from the distribution of ionic compounds in the parent data set 
(8.4 %). None of these ionic hydrolysis products were anionic 
(over the pH range of 4 – 10), but were either cationic or 
zwitterionic. This new distribution is to some extent based on 
what types of structures the LMC model makes predictions for, 
and its algorithms for making predictions; however, one can 
interpret this as being due to hydrolysis reactions tending to 
produce ionizable or polar functional groups (typically -COOH or 
–OH groups) rather than permanent ions. 
 
For the majority of 5043 unique hydrolysis structures, their P 
and M score could be predicted using the available QSARs. The 
IFS QSAR was only needed for 26 unique hydrolysis structures, 
as few of the predicted hydrolysis products were ionic. 
 

 

Figure 2. Distribution of PMOC and non-PMOC categories for all structures considered in this study as pie charts, as well as the distribution of P vs M-scores following the 
PMOC scoring chart as presented in Figure 1 for a) the 5515 unique REACH OC structures considered and b) the 5043 unique hydrolysis structures. 
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3.6. The distribution of PMOC scores 

The distribution of M-scores, groundwater P-scores and 
groundwater PMOC-scores, for the parents and hydrolysis 
products, is presented in Figure 2 and Table 6. A corresponding 
figure for surface water is presented in the ESI-Section S3. In 
summary, the percent distribution of groundwater PG scores 
are 41% (P1), 17% (P2), 7% (P3) and 27% (P4), and 8% unknown 
(requiring IFS QSAR estimations). The distribution of 
groundwater PG scores for the hydrolysis products were nearly 
identical, at 41% (P1), 22% (P2), 7% (P3) and 28% (P4), with 1% 
unknown. This provides some indication that hydrolysis 
products have an equal distribution of persistency as the parent 
REACH OC. For the surface water PS scores, the distribution is 
55% (P1), 12% (P2), 5% (P3) and 21% (P4); reflecting the general 
expectation that compounds are less persistent in surface water 
by accounting for volatilization and phototransformation. If 
there was more phototransformation data, or a 
phototransformation QSAR, the distribution towards low PS-
scores would be even greater. 
 
Regarding mobility, the distribution was 9% (M1), 16% (M2), 
16% (M3), 15% (M4) and 45% (M5), implying that almost half of 
the compounds have the highest chosen mobility ranking. 
Looking at the hydrolysis products, the chemicals have become 
considerably more mobile, at 1% (M1), 5% (M2), 6% (M3), 9% 
(M4) and 76% (M5). This is as expected as hydrolysis (and other 
forms of transformation) tend to lead to oxidative reactions that 
add polar and ionizable functional groups, which generally 
increase the solubility of a substance. 
 

As evident from Table 6, 52% of the parent REACH OC structures 
were considered PMOCs, with their score distribution being 8% 
(PMOC-score 1-2), 24% (PMOC-score 3-4) and 21% (PMOC-
score 4.5-5). The remaining compounds were not considered 
PMOCs, but rather immobile POCs (4%), unstable MOCs (26%) 
or transient (18%). Looking at the predicted hydrolysis products, 
there is an increase in PMOCs to 56%, and in particularly for the 
highest ranked PMOCs to 28% (PMOC-score 4.5-5), as well as an 
increase in unstable MOCs (38%). This change can be accounted 
for mainly by the hydrolysis products being more mobile than 
parent products, as just explained. 
 
Ionic substances tend to have higher PMOC scores than 
ionizable and neutral substances. Only 9% of neutral 
compounds received PMOC-score 4.5-5, compared to 30% of 
the ionizable compounds and 47% of the ionic ones. The 
opposite trend can be seen for compounds that are not PMOCs, 
which covers 62% of the neutral compounds, 37% of the 
ionizable compounds, and only 18% of the ionic ones. 
Therefore, ionic compounds have the largest chance of being 
PMOCs; though it should be recalled that their parameters were 
derived with QSAR data for mobility (which ignore ion-
interactions with soil and mineral surfaces) or commonly the IFS 
QSAR for persistence, so their PMOC scores are the most 
uncertain. 
 
3.7. Sensitivity analysis 

The purpose of the sensitivity analysis was to test the role of the 
assumptions made in the PMOC scoring system. A major 
assumption is that the QSARs give accurate predictions. Based 
on the comparison of QSAR estimations and experimental 

Table 6. Distribution of groundwater PMOC scores and PMOC categories across different types of neutral, ionizable and ionic REACH registered organic compounds, as well as predicted 
hydrolysis products. The IFS QSAR output is integrated in the PMOC scoring.  

PMOC-score All Neutral Ionizable Ionic 
Single 
anion 

Single 
cation 

Multiple 
anion 

Multiple 
cation Zwitterion 

Hydrolysis 
Products 

Immobile POC 197 104 92 1 0 0 1 0 0 62 

Transient 944 832 99 13 3 5 0 0 5 211 

Unstable MOC 1325 666 594 65 23 10 14 2 16 1933 

PMOC 1-2 397 214 117 66 9 41 7 7 2 197 

PMOC 3-4 1216 554 577 85 35 12 23 5 10 1211 

PMOC 4.5-5 1076 231 640 205 75 17 100 5 8 1429 

Sum 5155 2601 2119 435 145 85 145 19 41 5043 

Immobile POC 4% 4% 4% 0% 0% 0% 1% 0% 0% 1% 

Transient 18% 32% 5% 3% 2% 6% 0% 0% 12% 4% 

Unstable MOC 26% 26% 28% 15% 16% 12% 10% 11% 39% 38% 

PMOC 1-2 8% 8% 6% 15% 6% 48% 5% 37% 5% 4% 

PMOC 3-4 24% 21% 27% 20% 24% 14% 16% 26% 24% 24% 

PMOC 4.5-5 21% 9% 30% 47% 52% 20% 69% 26% 20% 28% 

Sum PMOCs 52% 38% 63% 82% 82% 82% 90% 89% 49% 56% 
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results, we can generally conclude that QSARs are on average 
within a factor 10 of reported experimental data most of the 
time (with the exception of the hydrolysis half-life QSAR, which 
is even more inaccurate). Therefore, the change in PMOC-
scores when increasing and decreasing QSAR predicted mobility 
parameters, Swater and Koc/Doc, and QSAR predicted half-lives, 
for biodegradation and hydrolysis, by a factor 10 was carried 
out. Other assumptions tested in the sensitivity analysis were a) 
comparing what happens when the P score is based on PS 
(surface water) rather than PG (ground water), and b) 
investigating what happens when Koc values estimated from Kow 
data were prioritized over Swater data (see eq 6 and related 
discussion)  for the M-score. The endpoint of this sensitivity 
analysis is presented in Figure 3, showing the change in the 
number of substances receiving a PMOC-score 4.5-5 (panel A) 
or non-PMOCs (panel B). 
 
As is evident, of all the tested considerations, the most sensitive 
parameter was the use of QSAR estimations for persistency half-
lives. Decreasing the predicted half-lives by an order of 
magnitude decreased the number of PMOC-score 4.5-5 
compounds from 849 to 202, while increasing the predicted 
half-lives, increased the number of PMOC-score 4.5-5 
compounds from 849 to 1824. By comparison, changing the 
mobility QSAR estimations to be a factor 10 less mobile only 
reduced the number of PMOC-score 4.5-5 compounds from 849 
to 710, while increasing by a factor 10 increased the number 
structures from 849 to 999. A similar trend can be seen in the 
number of non-PMOC compounds (originally 2466), in that a 
change in predicted persistency half-lives changed the number 
of non-PMOCs to 4169 (decreased half-life) or 1733 (increased 
half-life). The influence of varying mobility QSAR estimations by 
a factor 10 was comparatively minor, changing the number of 
non-PMOCs to 2374 (decreased mobility) or 2580 (increased 

mobility). This is largely related to how the score itself was 
constructed (Figure 1). The difference between P4 and P2 cut-
offs are only a factor 3, whereas the cut-offs for the M-score 
span nearly 5 orders of magnitude. Therefore, changing a P half-
life by an order of magnitude would be expected to have a huge 
effect, with the exception of compounds with predicted half-
lives that are more than a factor 10 from the 40 day cut-off (P-
score 3, see Figure 1), i.e. those with predicted half-lives  > 400 
days or < 4 days.  
 
Comparing the number of PMOC-score 4.5-5 structures when 
using PS scores instead of PG scores, the number of compounds 
with PMOC-score 4.5-5 dropped, because volatilization and 
photo-transformation is included. However, this only had a 
minor influence compared to the accuracy of the P-score, 
causing a mere decrease by 157 structures with P-score 4.5-5, 
and an increase of 576 non-PMOC structures. 
 
Finally, prioritizing Kow/Dow QSAR predictions over Swater 
predictions only had a minor impact on the number of 
structures, with 36 less compounds with P-score 4.5-5 occurring 
when prioritizing Kow/Dow (and 165 more non-PMOCs). 
However, this change resulted in re-scoring of several PMOCs. 
Therefore, in the ESI, we present two data sets of PMOC scores 
of REACH OC structures, those when Swater is prioritized over 
Kow/Dow, and those when Kow/Dow is prioritized over Swater. The 
small difference in the sensitivity analysis is accounted for by 
the pH dependent Swater being correlated with Kow/Dow to some 
extent. When applying this PMOC scoring system in future for 
other data sets, we recommend to choose either Swater or 
Kow/Dow based on which of these two parameters has the best 
data quality for a specific substance. 
 

 

 

Figure 3. Sensitivity of the output parameters "# of REACH OC structures with PMOC score 4-5 -5" (Panel A) and "# of REACH OC structures not considered PMOCs" (Panel B), 
when deviating QSAR predictions for persistency half-lives (P-QSAR) and mobility parameters (M-QSAR)  by an order of magnitude in either direction, as well as using the PS-
score rather than the PG-score for persistence, or prioritizing Kow over Swater data to derive the mobility-score. 
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An earlier screening study to identify candidates for PBT 
substances from a large data set of substances reported that 
"uncertainty in persistence data contributes most to the 
uncertainty in the number of potential PBT chemicals". 8 This is 
indeed the case for PMOCs as well. The lack of good persistency 
data and estimation models has also been brought up in other 
contexts, such as the fate of ionizable substances in diverse 
water matrices52 and "benign by design" approaches in green 
chemistry.53 This study therefore joins these research efforts in 
underscoring the need for more research, experimental data 
and better tools for estimating the aquatic persistency of 
existing and proposed substances.  
 
3.8. PMOCs that fall into other hazardous chemical categories 
 
The ability of a substance to be both mobile in the aquatic 
environment and bioaccumulative in the food chain is not 
mutually exclusive. There are well-known examples of 
substances that are highly mobile as well as bioaccumulative  
(e.g. perfluorinated acids54). A screening study for PBT 
substances across diverse lists (including the European 
Inventory of Existing Commercial Chemical Substances, SMILES 
CAS database and European List of Notified Chemical 
Substances) identified 29 registered REACH OC and 1180 pre-
registered substances (as of May 2013) that met the PBT 
criteria.   33 of these identified PBT substances appeared on the 
REACH OC data set used here (from December 2014). Nine of 
these PBT received a PMOC score from 4 to 5 (ESI-Part 2).  
 
Some of the identified PMOC substances are already considered 
by the European Chemicals Agency (ECHA) as Substances of 
Very High Concern (SVHC). For instance, at the time of writing 
(as of March 12, 2017), in accordance with Article 59(10) of the 
REACH Regulation, ECHA has listed 189 SVHC on the Candidate 
List for Authorization (https://echa.europa.eu/candidate-list-
table). Of these, 62 substances were on the REACH OC structure 
list used here, and 23 of these were considered PMOCs, with 17 
receiving a PMOC-score from 4 to 5 (only one of which because 
it was a PBT, anthracene, the remainder were because they 
were carcinogens or toxic for reproduction) (ESI-part 2). 
 
Zarfl and Matthies (2013)55 carried out a screening of the 
registered REACH list from 2012 to see which substances 
satisfied proposed criteria for long-range transport potential 
(LRTP) (e.g. half-life in air > 2 days, or other LRTP criteria from 
previous studies56, 57) and in addition satisfied the criteria for 
being PB substances according to REACH. From this list, 289 
substances were identified as LRTP and PB, and 268 of them are 
still on the registered REACH list of December 2014. Of these 
268 LRTP and PB substances, 104 are considered PMOCs and 57 
have PMOC-score from 4 to 5 (ESI-part 2). 
 
Finally, it was also investigated which of the identified PMOCs 
were listed as drinking water contaminants. The US EPA's 2012 
edition of their drinking water standards58 lists 173 organic 
compounds (with a CAS number) as drinking water 
contaminants. 71 of them are considered in this study as REACH 

OC. Of these, 25 were considered non-PMOCs (23 because of 
short half-lives, e.g. hexane, and 2 because of low mobility, 
(bis(2-ethylhexyl) adipate and bis(2-ethylhexyl) phthalate)). 
These non-PMOCs are expected to only pose a threat to 
drinking water sources if the emission event is close by, due to 
their short half-lives or reduced mobility. The remaining 46 
were considered PMOCs, with 27 receiving a PMOC score of 4-
5. The organic compounds mentioned as contaminants in the 
EU drinking water directive1 were all considered PMOCs (i.e. 
tetrachloroethene with a PMOC score 4, trichloroethene with a 
PMOC score 4, vinyl chloride PMOC score 3, and chloroform 
with a PMOC score 4.5).  
 
In summary, many PMOCs can also meet PBT and LRTP criteria. 
Substances classified as all three deserve special attention, as 
environments and humans can be exposed to these substances 
through multiple, long-distance exposure routes. 

4. Environmental Implications 
From this screening procedure to identify and rank REACH OCs 
for being PMOCs, several issues related to data quality were 
raised. The most central one is the need for high quality, 
experimental persistence data and better estimation models. 
Therefore, all estimations of persistency presented here should 
be treated with some degree of scepticism. Further, mobility 
estimations for ionic substances are highly uncertain, due to the 
lack of experimental data and explicit modelling approaches 
that account for ionic exchange, complexation and precipitation 
reactions in the aquatic environment and sub-surface. We 
therefore encourage future research in this direction, not only 
to improve the identification of PMOCs, but as previously 
mentioned to improve similar screening procedures for PBT 
substances, LRTP substances and "green" chemical 
alternatives.53, 59 
 
It could be argued that the inclusion of ionic substances in this 
PMOC screening was premature, and that only neutral 
compounds should have been considered, until more 
experimental data and better quality QSARs are available. 
However, the result of the screening show that only a minority 
(9%) of neutral compounds received the highest rank (PMOC-
score 4.5-5), whereas a large portion of ionic compounds 
received the highest PMOC score (47%). This implies that not 
including them would be tantamount to ignoring a substantial 
number of PMOCs. This also implies that more experimental 
data and methods are needed to both measure ionic substances 
in the environment, and characterize their mobility and 
persistency.  
 
It is hoped that models to predict persistency and mobility will 
improve over time. Regarding persistency, unfortunately, 
examples of substantial improvement in the recent literature 
could not be found. For mobility, however, there are more signs 
of progress. More experimental data and models for the 
mobility of ionic compounds are emerging.21-23  Further, 
between the time we completed the PMOC scoring and wrote 
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this manuscript, the UFZ LSER database has undergone a 
substantial upgrade with new experimental data being added, 
along with a SMILES based Koc predictor.43 In addition to this, 
more substances have been registered in REACH, and more 
experimental data for these substances were reported. Thus, a 
repeat of this screening procedure in future is warranted, to 
account for the new substances, new data and updated 
QSAR/PP-LFER mobility models.  
 
The NORMAN list of emerging substances and pollutants in the 
environment (downloaded from http://www.norman-
network.net/ on June 18, 2015) contains 969 substances of 
which 213 were on the REACH OC list, 104 were considered 
PMOCs and 66 of these had PMOC-score from 4 to 5 (ESI-part 
2). Therefore, many of these PMOC substances are known to be 
in the environment already (where they could be potentially 
impacting drinking water resources). It would be interesting to 
explore the reasons why some of the other PMOC substances, 
particularly those with high PMOC scores, are not on the 
NORMAN list. 
 
One of these reasons is that it is currently difficult to screen for 
highly mobile compounds in the aquatic environment,  
particularly highly mobile ionic compounds, due to the lack of 
analytical techniques.7 The list of highest ranked PMOCs 
amongst the REACH OCs could be useful in identifying unknown 
contaminants appearing in drinking water, either as part of 
targeted or non-targeted sampling campaigns. As an example, 
recently the REACH OC substance trifluoromethane sulfonic 
acid was identified in drinking water sources for the first time,60 
this substance was included in this study and received a PMOC 
score of 5. Regarding the likelihood of the occurrence of other 
highly ranked PMOCs from the REACH OC list of substances, and 
their hydrolysis products, appearing in raw water sources, it 
should be emphasized that the PMOC score itself just presents 
the hazard or potential of a substance to be in raw water. 
However, risk equals hazard times exposure, whereby exposure 
considerations would be the amount of substance used, what it 
is used for and its environmental emissions. In a follow up study 
to this one, we will propose a way forward to address exposure 
considerations. Future research efforts should also include 
toxicity, in order to develop PMT screening approaches.11, 61 
 
 
This is the first general screening approach to identify PMOC 
substances that may appear in drinking water for a large data 
set of existing substances. The results of this study, or the 
approach used to rank PMOCs presented here, could be used 
for other chemical inventories, or proposed substances, as part 
of efforts to better anticipate or identify drinking water 
contaminants, and protect our drinking water sources.  
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Section S1. Volatilization half-life calculations 
 

1) Volatilization – Though volatilization half-lives are not commonly reported properties for 
compounds in the REACH dossier or elsewhere, volatilization half-lives can be estimated based 
on molecular properties as well as assumptions regarding the air and water flow conditions. 
The most conservative assumption in terms of persistency is to assume no turbulence in the 
water phase (including waves) and that atmosphere contains no wind. In this conservative 
case, volatilization can be estimated using the following model, based on pages 914-916 in 
Schwarzenbach et al (2013)1: 

  

t1/2,volatilization = 0.69/(vaw * h)   (V1) 

 

Where t1/2,volatilization, vaw is the air-water exchange velocity and h the depth of the water.  The 
vaw term is determined by the following equation:  

 

1/vaw = 1/vw  + 1/(va * Kaw)   (V2) 

 

Where vw is the mass transfer velocity of a substance in water, the va is the mass transfer 
velocity of a substance in air and Kaw is the dimensionless Henry's Law constant (adjusted for 
12 °C, if possible based on data availability). The term va at 0 m/s windspeed is calculated as 

 

  va = (Da/Dwater a)0.67 + vwater a   (V3) 

Where Da is the diffusion coefficient of the compound in air (Da = 0.26 * (MW/18)-0.5, where 
MW is the molecular weight), Dwater a is the diffusion coefficient of water vapours in air (0.26 
cm2/s), and vwater a is the velocity of water vapors in air at 0 m/s wind speed (0.3 cm/s). 

The term vw at 0 m/s windspeed is calculated as 

 vw = (Scw/600)0.67 + vCO2 w    (V4) 
 
Where Scw is the Schmidt number of the compound in water (Scw = 
0.00893/(0.0000192*(MW/18)-0.5 at 0 m/s wind speed) and vCO2 w is the mass transfer 
velocity of CO2 in water (0.00065 cm/s). 
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Section S2. IFS QSARs for the P and M scores 

The following text is a basic description of the multiple-linear regressions of individual molecular 
fragments and experimentally determined P and M scores, as used to calibrate the final IFS QSAR 
model to estimate P and M categories. Substances that were categorized as P and M were given a 
PMOC score of 4/5 (due to model uncertainty), substances with P and intM or intP and M were given 
a score of 2/4 (due to model uncertainty), and all other substances were given a score of 1. 

Interpretation of the intercepts: For the M Score, the intercept is close to the maximum M Score of 
5 (4.41). This means that for very small molecules, with no fragments present in the QSAR, a 
prediction of “mobile” will be given by default. As more atoms are added the possibility of becoming 
immobile increases depending on the functional groups added. For both of the P Scores the intercept 
is close to the minimum score of 1 (1.20 and 1.16). This means that very small molecules with no 
fragments in the QSAR would be non-persistent by default, and as functional groups are added the 
possibility of becoming persistent increases. These results are intuitive and are consistent with other 
QSARs previously developed.2,3 

Interpretation of the fragments: As discussed in previous papers, interpretation of the fragments is 
not always straight forward.2,4 This is because fragments are often overlapping and the contributions 
from each fragment need to be properly summed to compare between different QSARs. For some 
complex fragments comparison between different QSARs may not be possible. As an example, the 
effect of an aliphatic substituted chlorine and an aromatic substituted chlorine are compared for the 
M and P(G) scores.: 

M score aliphatic Cl: 

fragment #16: -0.14 (any chlorine atom) 

total effect from each aliphatic Cl: -0.14 

M score aromatic Cl: 

fragment #16: -0.14 (any chlorine atom) 

fragment #15: +0.11 (aromatic carbon with any functional group attached) 

total effect from each aromatic Cl: -0.03 

In general chlorine atoms slightly decrease the M score, however, specific substitution patterns on 
aromatic rings also play a role. Fragment #21 adds an additional -0.24 for a specific chlorine 
substitution pattern. Other more general fragments (9,10,25,34,36,39) have positive or negative 
regression coefficients for general aromatic substitution patterns, which could include chlorine 
atoms. It is also debatable if the effect of fragment #18 should be included in this comparison (any 
carbon atom, -0.15). The overall effect of a C-Cl group will include this additional -0.15 contribution, 
but comparing vs. an unsubstituted carbon or comparing aromatic vs. aliphatic substitution it does 
not make sense to include this contribution as the effect will cancel out. 

P(G) score aliphatic Cl: 

fragment #3: +2.49 (any aliphatic atom) 

fragment #43: -1.79 (any chlorine atom) 

total effect from each aliphatic Cl: +0.7 
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P(G) score aromatic Cl: 

fragment #3: +2.49 (any aliphatic atom) 

fragment #5: +1.45 (aromatic carbon - chlorine bond) 

fragment #43: -1.79 (any chlorine atom) 

total effect from each aromatic Cl: +2.15 

 

Accounting for the total effect of a C-Cl group is more complicated than the M score. To include the 
carbon atom these additional factors need to be included: 

 

P(G) score aliphatic C of C-Cl group: 

fragment #3: +2.49 (any aliphatic atom) 

fragment #10: +0.65 (any carbon atom) 

fragment #38: -1.19 (any bond between atoms) 

total effect from each aliphatic Cl: +0.7 +1.95 = 2.65  

P(G) score aromatic C of c-Cl group: 

fragment #2: +2.51 (any aromatic atom) 

fragment #10: +0.65 (any carbon atom) 

fragment #38: -1.19 (any bond between atoms) 

total effect from each aromatic Cl: +2.15 +1.97 = 4.12 

 

A more relevant comparison may be the effect of replacing one aliphatic or aromatic hydrogen with 
one chlorine: 

 

P(G) score remove one aliphatic hydrogen: 

fragment #29: -(-0.57) (bond between hydrogen and an aliphatic carbon) 

fragment #40: -(-1.45) (any hydrogen atom) 

total effect from each aliphatic Cl: +0.7 +2.02 = 2.72  

P(G) score remove one aromatic hydrogen: 

fragment #8: -(+0.68) (bond between hydrogen and an aromatic carbon) 

fragment #40: -(-1.45) (any hydrogen atom) 

total effect from each aromatic Cl: +2.15 +0.77 = 2.92 
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This calculation may be even more complex if the type of aliphatic carbon is changed by removing a 
hydrogen, for example if the carbon becomes a quaternary carbon (fragment #16) an additional 
+0.27 contribution is gained, or if the carbon was a methyl group (fragment #22) then the 
contribution of -0.15 is lost. 

Interpretation of regression coefficients: In general the regression coefficients of M score seem 
reasonable. However, the P(G) and P(S) scores have both large positive and large negative regression 
coefficients that tend to balance out to give a score in the range 1-4. This is a common sign of over-
fitting, and the prediction results may be especially unstable as the regression models are 
extrapolated outside of their training domain. The predictions from these QSARs should be treated 
with careful skepticism. 

S2.1 PMOC QSAR Validation Statistics 

Table S1: M Score Training Dataset Results Summary 

 Predicted 
Mobile 

Predicted 
Intermediate 

Predicted 
Not Mobile 

Expected Mobile 148 22 0 
Expected Intermediate 67 300 33 
Expected Not Mobile 0 20 73 

 

Table S2: M Score Validation Dataset Results Summary 

 Predicted 
Mobile 

Predicted 
Intermediate 

Predicted 
Not Mobile 

Expected Mobile 109 26 3 
Expected Intermediate 90 302 43 
Expected Not Mobile 5 19 60 

 

Table S3: M Score Training and Validation Summary Statistics 

 
Training 
Dataset 

Validation 
Dataset 

% Mobile Predictions Correct 68.8 53.4 
% False Positivesa 31.2 46.6 

% Intermediate Predictions Correct 87.7 87 
% Intermediate False Negativesb 6.4 7.5 

% Not Mobile Predictions Correct 68.9 56.6 
% Not Mobile False Negativesc 0 2.8 

% Total Correct 78.6 71.7 
a Mobile predictions for chemicals expected to be intermediate or not mobile. 
b Intermediate predictions for chemicals expected to be mobile. Remainder are intermediate predictions for 
chemicals expected to be not mobile. 
c Not mobile predictions for chemicals expected to be mobile. Remainder are not mobile predictions for 
chemicals expected to be intermediate. 
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Table S4: P(G) Score Training Dataset Results Summary 

 Predicted 
Persistent 

Predicted 
Labile 

Expected Persistent 79 34 
Expected Labile 52 231 

Table S5: P(G) Score Validation Dataset Results Summary 

 Predicted 
Persistent 

Predicted 
Labile 

Expected Persistent 67 66 
Expected Labile 69 236 

 

Table S6: P(G) Score Training and Validation Summary Statistics 

 
Training 
Dataset 

Validation 
Dataset 

% Persistent Predictions Correct 60.3 49.3 
% False Positivesa 39.7 50.7 

% Labile Predictions Correct 87.2 78.1 
% False Negativesb 12.8 21.9 

% Total Correct 78.3 69.2 
a Persistent predictions for chemicals expected to be labile. 
b Labile predictions for chemicals expected to be persistent. 
 
Table S7: P(S) Score Training Dataset Results Summary 

 Predicted 
Persistent 

Predicted 
Labile 

Expected Persistent 67 36 
Expected Labile 49 238 

Table S8: P(S) Score Validation Dataset Results Summary 

 Predicted 
Persistent 

Predicted 
Labile 

Expected Persistent 63 63 
Expected Labile 70 238 

 

Table S9: P(S) Score Training and Validation Summary Statistics 

 
Training 
Dataset 

Validation 
Dataset 

% Persistent Predictions Correct 57.8 47.4 
% False Positivesa 42.2 52.6 

% Labile Predictions Correct 86.9 79.1 
% False Negativesb 13.1 20.9 

% Total Correct 78.2 69.4 
a Persistent predictions for chemicals expected to be labile. 
b Labile predictions for chemicals expected to be persistent. 
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S2.2 IFS QSAR Regression coefficients for the selected fragments 

Table S10: M Score QSAR fragments and coefficients 

# Description SMARTS code Regression 
Coefficient 

Std. 
Err. 

1 aromatic nitrogen with hydrogen [nX3H1+0] 1.04 0.25 
2 chloro-aldehyde [ClX1H0]-[CX3H0]=[OX1H0+0] 0.74 0.25 

3 carbon-nitrogen double bond attached 
to an alkyl chain [CX4H2]-[CX4H2]-[CX3H0]=[NX2H0+0] 0.63 0.24 

4 ethene group, one substituent on 
either side [CX3H1]=[CX3H1] 0.60 0.12 

5 ethyne group [CX2H0]#[CX2H0] 0.57 0.29 

6 aromatic nitro group, two 
unsubstituted neighbouring carbons 

[cX3H1]:[cX3H1]:[cX3H0;$(*-A)]-
[NX3H0+0](=[OX1H0+0])=[OX1H0+0] 0.52 0.20 

7 any oxygen atom 5 0.51 0.04 
8 aromatic methoxy group [CX4H3]-[OX2H0+0]-[cX3H0;$(*-A)] 0.48 0.12 

9 aromatic methyl group beside another 
aliphatic substituent 

[CX4H3]-[cX3H0;$(*-A)]:[cX3H0;$(*-
A)]:[cX3H1] 0.45 0.17 

10 aromatic secondary amine, para to 
another aliphatic substituent 

[NX3H1+0]-[cX3H0;$(*-
A)]:[cX3H1]:[cX3H1]:[cX3H0;$(*-

A)]:[cX3H1] 
0.36 0.08 

11 aliphatic ether with a neighbouring 
substitution [CX4H2]-[CX4H1]-[OX2H0+0] 0.26 0.05 

12 alcohol group attached to quaternary 
carbon [CX4H3]-[CX4H0]-[OX2H1+0] 0.23 0.11 

13 aliphatic ether [CX4H2]-[OX2H0+0] 0.21 0.03 
14 any nitrogen atom 6 0.11 0.04 

15 aromatic carbon with any aliphatic 
substituent [cX3H0;$(*-A)] 0.11 0.03 

16 any chlorine atom [ClX1H0] -0.14 0.06 

17 
two fused aromatic aromatic carbons 
with three neighboring unsubsituted 

positions 

[cX3H0;!$(*-a);!$(*~A)]:[cX3H0;!$(*-
a);!$(*~A)]:[cX3H1]:[cX3H1]:[cX3H1] -0.15 0.07 

18 any carbon atom 7 -0.15 0.01 
19 ester group [OX2H0+0]-[CX3H0]=[OX1H0+0] -0.22 0.06 

20 aromatic tertiary carbon with no 
ortho, meta or para substituents 

[CX4H0]-[cX3H0;$(*-
A)]:[cX3H1]:[cX3H1]:[cX3H1] -0.23 0.13 

21 aromatic chlorine with no ortho or 
meta substituents on one side [ClX1H0]-[cX3H0;$(*-A)]:[cX3H1]:[cX3H1] -0.24 0.11 

22 isopropyl group [CX4H3]-[CX4H1]-[CX4H3] -0.26 0.08 
23 any bromine atom [BrX1H0] -0.27 0.06 

24 aliphatic alcohol group with three 
neighbouring substituents [CX4H1]-[CX4H1]-[CX4H1]-[OX2H1+0] -0.27 0.07 

25 aromatic alkyl chain with aliphatic para 
substituent 

[CX4H2]-[cX3H0;$(*-
A)]:[cX3H1]:[cX3H1]:[cX3H0;$(*-A)] -0.27 0.10 

26 quaternary cabon with a methyl and 
an isopropyl attached 

[CX4H3]-[CX4H0]-[CX4H1](-[CX4H2])-
[CX4H2] -0.31 0.09 

27 n-butyl group (also counted for any 
longer chains) [CX4H2]-[CX4H2]-[CX4H2]-[CX4H3] -0.32 0.07 

28 silicon with no hydrogens attached [SiX4H0] -0.36 0.10 

29 linear alkyl chain with some 
substitutions 

[CX4H1]-[CX4H2]-[CX4H1]-[CX4H1]-
[CX4H2] -0.38 0.17 

30 terminal ethene group, aliphatic 
attachment [CX4H2]-[CX3H1]=[CX3H2] -0.38 0.14 
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31 any double bonded pair of aliphatic 
atoms in a ring [A!#1x2+0]=[A!#1x2+0] -0.42 0.15 

32 aromatic carbonyl group with no ortho 
or para substituents 

[OX1H0+0]=[CX3H0]-[cX3H0;$(*-
A)](:[cX3H1]:[cX3H1]):[cX3H1]:[cX3H1] -0.42 0.12 

33 any ether [OX2H0+0] -0.48 0.06 

34 aromatic ether with one ortho 
substituent and no meta substiuents 

[cX3H1]:[cX3H0;$(*-A)]:[cX3H0;$(*-A)](-
[OX2H0+0]):[cX3H1]:[cX3H1] -0.48 0.16 

35 ethene group, alkyl chain on one side 
and two substituents on the other [CX4H2]-[CX4H2]-[CX3H1]=[CX3H0] -0.53 0.22 

36 aromatic primary amine with a meta 
substituent 

[NX3H2+0]-[cX3H0;$(*-
A)]:[cX3H1]:[cX3H0;$(*-A)] -0.58 0.23 

37 trifluoro methyl group [FX1H0]-[CX4H0](-[FX1H0])-[FX1H0] -0.66 0.20 
38 sulfate group [OX1H0+0]=[SX4H0]=[OX1H0+0] -0.80 0.22 

39 aromatic nitro group with one ortho 
substituent 

[cX3H1]:[cX3H1]:[cX3H0;$(*-
A)]:[cX3H0;$(*-A)](:[cX3H1])-

[NX3H0+0](=[OX1H0+0])=[OX1H0+0] 
-0.93 0.32 

40 any nitro group [OX1H0+0]=[NX3H0+0]=[OX1H0+0] -1.51 0.16 
 intercept  4.41 0.07 

 

Table S11: P(G) Score QSAR fragments and coefficients 

# Description SMARTS code Regression 
Coefficient Std. Err. 

1 any boron 8 3.02 1.63 
2 any aromatic atom [a] 2.51 1.42 
3 any aliphatic atom [A] 2.49 1.30 
4 any fused aromatic carbon [cX3H0;!$(*-a);!$(*~A)] 2.18 0.74 
5 aromatic chlorine c-Cl 1.45 0.47 
6 siloxane (Si-O-Si) [SiX4]-[OX2H0]-[SiX4] 1.34 0.52 
7 sulfur with aromatic attachment S-c 0.75 0.86 
8 aromatic carbon - hydrogen bond c-9 0.68 0.73 
9 three neighbouring substituted aromatic carbons [cX3H1]:[cX3H1]:[cX3H1] 0.65 0.41 

10 any carbon 7 0.65 1.08 

11 any aliphatic nitrogen attached to an aromatic 
carbon c-N 0.54 0.40 

12 tertiary amine with any three carbon attachments 7-[NX3](-7)-7 0.50 0.48 
13 aromatic ether c-O 0.39 0.33 
14 phosphorus-oxygen single bond P-O 0.37 0.47 
15 aromatic-aliphatic carbon carbon bond c-C 0.35 0.41 
16 quaternary carbon [CX4H0] 0.27 0.15 
17 aliphatic ketone CC(=O)C 0.22 0.26 
18 aliphatic ester CC(=O)OC 0.15 0.17 

19 any aromatic attached group also double bonded 
to oxygen 

[cX3H0;$(*-A)]-
*=[OX1H0+0] 0.12 0.24 

20 non-terminal propyl chain [CX4H2]-[CX4H2]-[CX4H2] 0.10 0.08 
21 number of rings  0.07 0.06 
22 methyl [CX4H3] -0.15 0.11 
23 non-terminal ethyl chain [CX4H2]-[CX4H2] -0.15 0.10 

24 anhydrous phthalate group 
[OX1H0+0]=[CX3H0]-

[OX2H0+0]-
[CX3H0]=[OX1H0+0] 

-0.32 0.58 

25 aliphatic secondary amine C[NH]C -0.36 0.41 
26 aliphatic carbon-carbon bond C-C -0.45 0.25 
27 carbon-nitrogen double bond C=N -0.48 0.76 
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28 nitrogen-oxygen double bond O=N -0.52 0.50 
29 aliphatic carbon - hydrogen bond C-9 -0.57 0.36 
30 aliphatic ether COC -0.68 0.26 
31 aliphatic primary amine C[NH2] -0.79 0.59 
32 nitrogen-nitrogen single bond N-N -0.82 0.67 
33 any oxygen 5 -0.97 0.91 
34 any nitrogen 6 -1.02 0.88 
35 ortho unsubstituted aromatic carbons [cX3H1]:[cX3H1] -1.04 0.77 
36 alcohol group OH -1.04 0.37 
37 peroxy group O-O -1.06 0.39 
38 any bond *~* -1.19 0.57 
39 cabon-nitrogen aromatic bond c:n -1.24 0.77 
40 any hydrogen 9 -1.45 1.19 
41 carbon-oxygen aromatic bond c:o -1.65 0.81 
42 any bromine 10 -1.66 1.14 
43 any chlorine 11 -1.79 1.07 
44 any fluorine 12 -1.94 1.07 
45 carbon-carbon double bond C=C -1.95 0.79 
46 any sulfur 13 -1.99 1.02 
47 any silicon 14 -1.99 0.83 
48 carbon-carbon aromatic bond c:c -1.99 0.93 
49 carbonyl group C=O -2.10 0.66 
50 cyano group C#N -2.43 1.25 
51 phosphorus-oxygen double bond P=O -2.48 1.18 
52 any iodine 15 -2.52 2.07 
53 carbon-carbon triple bond C#C -3.23 1.61 

 intercept  1.20 0.19 
 

Table S12: P(S) Score QSAR fragments and coefficients 

# Description SMARTS code Regression 
Coefficient Std. Err. 

1 aromatic chlorine c-Cl 3.93 1.23 
2 any fused aromatic carbon [cX3H0;!$(*-a);!$(*~A)] 3.78 1.22 

3 single bond between two aromatic carbons 
(eg. biphenyl bridge) c-c 3.40 1.97 

4 sulfur with aromatic attachement S-c 2.70 1.24 
5 aromatic carbon - hydrogen bond c-9 2.30 1.02 
6 aromatic-aliphatic carbon carbon bond c-C 2.29 0.97 
7 aromatic ether c-O 1.88 0.93 

8 any aliphatic nitrogen attached to an 
aromatic carbon c-N 1.71 0.97 

9 any aliphatic atom [A] 1.49 1.02 
10 sulfur double bonded to carbon S=C 1.47 1.05 
11 any boron 8 1.25 1.40 
12 any aromatic atom [a] 1.09 1.59 

13 tertiary amine with any three carbon 
attachments 

7-[NX3](-7)-7 0.93 0.56 

14 aliphatic chlorine C-Cl 0.79 0.71 
15 aromatic primary or secondary amine c[NX3;H1,H2] 0.65 0.56 

16 three neighbouring unsubstituted aromatic 
carbons [cX3H1]:[cX3H1]:[cX3H1] 0.60 0.74 

17 any phosphorus 16 0.52 1.40 
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18 four neighbouring unsubstituted aromatic 
carbons [cX3H1]:[cX3H1]:[cX3H1]:[cX3H1] 0.45 0.92 

19 quaternary carbon [CX4H0] 0.37 0.28 
20 carbon-nirtogen double bond C=N 0.29 0.39 
21 sulfur single bonded to an aliphatic carbon S-C 0.22 0.44 
22 aliphatic ketone CC(=O)C 0.20 0.23 
23 aliphatic ester CC(=O)OC 0.16 0.14 
24 aliphatic alcohol C[OH] 0.16 0.38 
25 silicon with single bond to aliphatic carbon [Si]-C 0.16 0.37 
26 CH2 group [CX4H2] 0.06 0.09 
27 CH1 group [CX4H1] 0.05 0.18 
28 number of rings rings 0.02 0.06 
29 aliphatic tertiary amine CN(C)C -0.20 0.56 
30 any bond *~* -0.20 0.34 
31 cyano group C#N -0.21 0.42 
32 aliphic primary amine C[NH2] -0.22 0.45 

33 anhydrous phthalate group [OX1H0+0]=[CX3H0]-[OX2H0+0]-
[CX3H0]=[OX1H0+0] -0.29 0.54 

34 nitrogen-oxygen double bond O=N -0.34 0.39 
35 aliphic ether COC -0.37 0.21 
36 nitrogen-nitrogen single bond N-N -0.68 0.60 
37 alcohol O-9 -0.69 0.36 
38 carbonyl group C=O -0.77 0.27 
39 any oxygen 5 -0.79 0.87 
40 carbon-oxygen aromatic bond c:o -0.87 1.23 
41 cabon-nitrogen aromatic bond c:n -0.94 0.92 
42 peroxy group O-O -0.99 0.45 
43 any bromine 10 -1.00 0.99 
44 any nitrogen 6 -1.04 0.85 
45 ortho unsubstituted aromatic carbons [cX3H1]:[cX3H1] -1.14 0.83 
46 any carbon 7 -1.22 0.83 
47 any fluorine 12 -1.26 0.93 
48 any hydrogem 9 -1.33 0.89 
49 carbon-carbon aromatic bond c:c -1.52 1.04 
50 any iodine 15 -1.70 1.89 
51 any silicon 14 -1.82 1.17 
52 and sulfur 13 -1.90 1.02 
53 any chlorine 11 -2.16 1.15 
54 phosphorus-oxygen double bond P=O -2.47 1.25 

 intercept  1.16 0.19 
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Section S3. Distribution of PS, M and PMOC scores for surface water 
 

 

 

Figure S3A. Distribution of PMOC and non-PMOC categories in surface water for all structures 
considered in this study as pie charts, as well as the distribution of P vs M-scores following the PMOC 
scoring chart as presented in Figure 1 for the 5515 unique REACH OC structures considered. 
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Figure S3B. Distribution of PMOC and non-PMOC categories in surface water for all structures 
considered in this study as pie charts, as well as the distribution of P vs M-scores following the PMOC 
scoring chart as presented in Figure 1 for the 5043 unique hydrolysis structures. 
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