
Automation in Construction 127 (2021) 103701

Available online 17 April 2021
0926-5805/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Reinforcement learning based process optimization and strategy
development in conventional tunneling

Georg H. Erharter a,*, Tom F. Hansen b, Zhongqiang Liu b, Thomas Marcher a

a Graz University of Technology, Institute for Rock Mechanics and Tunnelling, Rechbauerstraße 12, Graz, Austria
b Norwegian Geotechnical Institute, Oslo, Norway

A R T I C L E I N F O

Keywords:
Conventional tunneling
Reinforcement learning
Tunnel excavation strategy
Machine learning
Excavation sequences

A B S T R A C T

Reinforcement learning (RL) - a branch of machine learning - refers to the process of an agent learning to achieve
a certain goal by interaction with its environment. The process of conventional tunneling shows many similar-
ities, where a geotechnician (agent) tries to achieve a breakthrough (goal) by excavating the rockmass (envi-
ronment) in an optimum way.

In this paper we present a novel RL based framework for strategy development for conventional tunneling. We
developed a virtual environment with the goal of a tunnel breakthrough and with a deep Q-network as the
agent’s architecture. It can choose from different excavation sequences to reach that goal and learns to do so in
an economical and safe way by getting feedback from a specially designed reward system. Result analyses show
that the optimal policies have great similarities to current practices of sequential tunneling and the framework
has the potential to discover new tunneling strategies.

1. Introduction

Digitalization in tunneling is an ongoing process including topics like
Artificial Intelligence (AI) technology [1], Building Information
Modelling [2] or embedded strain measurements in shotcrete lining [3].
Machine Learning (ML) applications in particular have so far mostly
focused on classification tasks based on supervised ML: e.g. [4–6] apply
artificial neural networks (ANN) for rockmass behavior classification of
tunnel boring machine (TBM) data; [7] use supervised learning methods
for automatic work progress identification in NATM (New Austrian
Tunneling Method) tunneling; see [8–11] for state-of-the-art reviews on
this topic. Applications of unsupervised ML are fewer in number and
often related to the search for less dependency on labelled datasets or
more objectiveness (e.g. [12,13]).

By the time of this writing reinforcement learning (RL) is mostly a
matter of research, but already shows mature problem-solvers for game
like scenarios [14,15]. Currently, there is a transition from academia to
real-world prototypes, with RL-examples like the optimization of a
manufacturing process [16], for real-time steering of hydrocarbon
drilling [17,18], in optimization of power grids [19] and control systems
in general, for AUVs [20], and in robotics and other autonomous vehi-
cles. To our knowledge, however, there is no published application of RL

to geotechnics in general or tunneling in particular.
Today’s conventional tunneling – sometimes referred to as “drill and

blast tunneling” or “sequential excavation method” – is the classical way
of tunnel construction and is the product of more than a century of
engineering experience [21]. Great flexibility to adapt to changing
ground conditions is one of the main benefits of this type of tunneling,
but technical and economic success of the excavation is dependent on
the experience of the involved engineers and workers. Albeit experience
is undoubtedly valuable, depending on it sometimes goes along with
simple repetition of “proven ways” or even negligence of innovation.
Furthermore, developments in conventional tunneling often have a
strong connection to their nation of origin (e.g. Austria: New Austrian
Tunnelling Method [22], Norway: Norwegian Tunneling Method [23],
Italy: New Italian Tunneling Method [24,25], etc.) which raises concerns
about biased researchers and engineers. The goal of this study is to take a
first step in the direction of a conceptual RL-model for optimum decision
making in conventional tunneling that is as free as possible of conser-
vatism and national biases. Furthermore, as shown in the development
of the RL-agent AlphaGO [15], RL systems have the potential to find new
solutions to old problems and thus discover unimagined strategies.

In this paper we present a novel RL based framework for construction
process optimization and strategy development for conventional

* Corresponding author.
E-mail address: erharter@tugraz.at (G.H. Erharter).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2021.103701
Received 1 December 2020; Received in revised form 29 March 2021; Accepted 2 April 2021

mailto:erharter@tugraz.at
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2021.103701
https://doi.org/10.1016/j.autcon.2021.103701
https://doi.org/10.1016/j.autcon.2021.103701
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2021.103701&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Automation in Construction 127 (2021) 103701

2

tunneling. Such models can act as decision support for the geotechnical
engineer, engineering geologist, geotechnician etc. (hereafter “geo-
technician” is used) (design choices, progress-planning) and in the long
run such models work towards full automation in underground con-
struction. Hence, the model is a first attempt to automate decisions made
by the geotechnician on face in underground construction.

In the next section (2) we frame the process of conventional
tunneling as a RL problem and provide details on how these two disci-
plines can connect. Section 3 is the main methodological section that
presents the geotechnical scenario at the background of this RL simu-
lation as well as the agent and the environment. In Section 4 we describe
the training process and in Section 5 we show experiences gathered
during the training and testing of agents. A conclusion and implications
for the vision of “digital tunneling” is given in Section 6 and we present
an outlook in the last Section 7. A reference to the Python based code for
this paper, is given in the appendix.

2. Conventional tunneling as a reinforcement learning problem

The process of reinforcement learning (RL) is typically depicted as a
closed loop where an agent takes different actions, to influence an
environment which responds by sending an updated state as well as a
reward signal to the agent (e.g. [26]). To apply RL, the learning problem
must undergo the Markov property, i.e. we only need to know the cur-
rent state of the system, to make a decision [27]. Therefore, the state
must include information about all aspects of the past agent–environ-
ment interaction that make a difference for the future. This can be said to
be true for tunnel excavation where we only need to know the state of
the rockmass and the excavation-process to decide on how to proceed.

Tunnel construction follows several cyclic and sequential processes,
some of which can be framed as loops and therefore translated to RL
problems. The most outstanding loop in conventional tunneling is the
excavation of an underground opening with a sequential construction
process of: blasting, mucking and rock support installation [28]
(“excavation loop” in Fig. 1). While the components of this excavation

loop are themselves often sequential processes (e.g. blasting sequence,
support installation etc.), the excavation loop specifically is based on a
sequence of geotechnical decisions belonging to a bigger cycle which we
refer to as the excavation sequence decision – loop. Looking at the bigger
picture, excavation sequence decisions are one part of the whole con-
struction phase of a tunnel and therefore part of the whole tunnel life
cycle (Fig. 1).

The focus of this study is to create a simulation of a simplified version
of the process that governs the general excavation sequence decisions
and frame it as a RL-loop. This process can be translated to a RL-loop/
Markov decision process [27] consisting of the following components:

▪ the decision making geotechnician is the agent
▪ processes like “top heading excavation”, “bench excavation”,

“installation of face support” etc. are the actions
▪ the rockmass itself and the construction site with all its pro-

cesses are the environment (here described at each timestep by
the state of the environment and the reward-system)

▪ the sum of all delays (planned and unplanned) and complica-
tions throughout the course of the excavation which result from
the geotechnician’s actions are the reward

▪ the current state of the excavation including information about
the past and recent rockmass conditions as well as the already
installed support are the state

Fig. 2 is a graphical representation of this process which we refer to
as “TunnRL” (Tunnel automation with Reinforcement Learning). The
individual components of this loop in the above given list as well as in
Fig. 1 and Fig. 2 are only for explanatory purpose and do not claim to be
complete. We give detailed lists of the possible actions in Section 3.2.1
and explain the exact content of the state and the rewards in the Sections
3.3.1 and 3.3.2 respectively.

Fig. 1. Schematic diagram of cyclical and sequential processes in conventional tunnel excavation. The size of loops represents a qualitative hierarchy with smaller
loops being components of bigger loops. The excavation sequence decision – loop is given in bold, as this will be the main focus of this paper.

G.H. Erharter et al.

Automation in Construction 127 (2021) 103701

3

2.1. Simplifications

As shown in Fig. 1, conventional tunneling is a complex process that
consists of several subprocesses which again have subprocesses etc.
Attempting to formulate this whole system as a RL problem with all
involved details is out of the scope of an initial study which should serve
as the basis for future research. Additionally, it must also be considered
that RL is still at the very beginning of practical applications. Conse-
quently, we had to take several simplifications of conventional tunneling
to reduce the general complexity of the simulation and the size of the
state - and action space. Still, we consider modelling the major decision-
loop and the actions and rewards, not to be too far from a realistic tunnel
approach, and will contribute with important insights to the use of RL in
the optimization of the conventional tunnel cycle.

Some important simplifications in comparison to reality were made
in this study:

▪ Available partial excavation methods are restricted to either
top heading - or a combined bench and invert excavation
(described as “bench excavation” hereafter) with a specific
tunnel geometry.

▪ Already excavated parts are considered to be stable and the
process of tunnel lining installation is not dealt with in the
simulation.

▪ If installed, support ahead of the face always consists of 10 m
long face anchors. The supported area ahead is stable and
excavation within that stable area cannot lead to failure. No
other types of rock support are considered, such as radial bolts
and shotcrete.

▪ We evaluate if stable conditions are at hand in the excavation
area by the face pressure equation for open face tunneling after
[29] (see Eq. (3) in Section 3.3.2). We chose this analytical
solution as it is a computationally efficient way for a stability
assessment that tells if stability is given or not at a certain
ground type. Although this is only one aspect of the tunnel
stability considerations, we see this approach as sufficient for
the present initial study.

▪ The stability assessment considers the cross-sectional area only
and no longitudinal effects.

▪ Rockmass quality is reduced to few mechanical values repre-
senting “favorable” or “unfavorable” rockmass conditions.

▪ There are only two available advance lengths (i.e. the length of
one blasting round/round of excavation) with 2 and 4 m each.

▪ Information from probe drilling or deformation monitoring is
not simulated and used in the decision process. That means that
the agent has no information about the rockmass ahead of the
face or no information about eventual deformation behind the
face.

3. A simulation of conventional tunneling

As the main goal of this study is to train a RL agent to execute an
excavation sequence as efficiently as possible, we designed a simulation
of such a scenario. The simulation consists of a longitudinal tunnel
section of a specific length (tl), where two different types of ground
conditions can occur – one favorable and one unfavorable. Before the
excavation, the agent is unaware of the distribution of ground types and
the distribution of the ground types is only revealed by the excavation
itself. The ultimate goal of the agent is to achieve a breakthrough of both
the top heading and the bench of the tunnel or in other words, the po-
sition of the top heading excavation (posth) and the position of the bench
excavation (posbi) must be greater than, or equal to tl. During the exca-
vation the agent can choose from different actions, e.g. top heading
excavation with 2 m advance length, bench excavation with 4 m
advance length and installation of face support etc.

3.1. Geotechnical scenario

For this study’s simulation we have chosen the following tunneling
scenario: The total length of the tunnel (tl) is 200 m, as this does not lead
to an excessively large state space in the RL model (see Section 3.3.1) but
is still a realistic length. The tunnel’s cross section has a total area of
91.31m2 and a height of 10 m with 58.56m2 and 32.75m2 being the
areas of the top heading - and the bench and invert excavation respec-
tively (see Fig. 3). From these areas, equivalent diameters (D, i.e. the
diameter of a circle with that area) of 8.41 m and 6.46 m can be
computed for both parts of the excavation.

There is a penalty if the distance between the top heading’s- and the
bench’s tunnel face is too big. This distance (distmax) is set to be 50 m and
the idea behind this is, that in many real projects – especially in soil
conditions and long tunnels -, the top heading cannot be driven indefi-
nitely long ahead of the bench, because of safety reasons, necessities to

Fig. 2. Simplified schematic plot of components of drill and blast tunneling (grey) as a reinforcement learning process - TunnRL.

Fig. 3. Tunnel cross section of the given simulation.

G.H. Erharter et al.

Automation in Construction 127 (2021) 103701

4

have a fast final ring closure, excavate cross cuts or general construction
logistics.

We defined two ground types (gt) for the simulation and the relevant
ground properties are given in Table 1. Both are considered to be of
homogeneous, isotropic and continuous nature and one can imagine
them as a type of hard soil/soft rock (HSSR) material [30,31]. With the
chosen parameters, gt1 represents “unfavorable” ground conditions and
gt2 represents “favorable” ground conditions. The condition for a gt to
be favorable/unfavorable is based on the ground properties in combi-
nation with the given tunnel geometry (see above) as evaluated by the
chosen stability assessment criterion (see Section 3.3.2). The simulated
tunnel is situated above the groundwater table and the permeability is
set to 10− 5 m/s for both gt.

Choosing the given properties to define the gt, is closely connected to
the way the stability assessment of the excavation is done (see Eq. (3) in
Section 3.3.2). The permeability of 10− 5 justifies the use of Eq. (3) for a
stability assessment as according to [32] conditions are considered to be
drained when the permeability is above 10− 7 to 10− 6 m/s. Nevertheless,
if ground types with lower permeability/undrained conditions are to be
used for the simulation, appropriate solutions for stability assessments
must be chosen. Implementing more sophisticated stability assessments
that take phenomena like ground water conditions into account is
desirable but must be done with care as this heavily influences the
overall performance of the tunneling simulation and the RL itself. The
outlook and discussion of stability assessments in Section 7 goes into
more detail on this topic.

Using random walks with barriers [33], we created unique, 210 m
long geological sections with a decimeter resolution (see Section 3.3.1
for why the sections are 210 and not 200 m long). We created a ground
type-vector (gt-vector) of 2100 datapoints by scaling the random walk
between 0 and 1, rounding to full numbers and using 0 as gt1 and 1 as
gt2 (see Fig. 4 bottom row). To transform the gt-vector to a full
geological section with one row for the top heading and one for the
bench excavation, the vector is horizontally duplicated to an array of 2
× 2100 datapoints. + 1 is then added to the array so that the number 1
represents gt1, number 2 gt2 and number 0 represents the unexcavated
part of the tunnel. The top row of Fig. 4 shows a visualization of such an
array, where posth and posbi are at 165 and 125 m respectively.

Given the complexity of simulating the process of conventional
tunneling (see Section 2), we chose not to complicate the scenario by
introducing more gt. However, increasing the number of gt can easily be
done with the above described random walk based approach. For
example, if it was necessary to simulate four gt then the values of the
random walk must be split into four within the boundaries: gt1 < 0.25,
0.25 ≤ gt2 < 0.5, 0.5 ≤ gt3 < 0.75 and 0.75 ≥ gt4.

3.2. Agent

Translating the above described geotechnical scenario to RL, the
geotechnician who observes the state of the construction and rockmass
behavior and makes decisions based on this information, now becomes
the “RL agent”. Due to the state-complexity of the problem, we chose a
deep Q-network (DQN) as the RL agent. Deep Q-learning is a deep
reinforcement learning technique that extends the capabilities of clas-
sical Q-learning [34,35] by replacing the value iteration in the Q-table
with the function approximator of deep artificial neural networks
(ANN). Although applications of ANNs for geotechnical purposes are

still often seen as complementary to conventional computational models
[36,37], in this case the use of ANNs allows for applications in complex
and continuous states spaces while classical Q-learning is confined to
discrete states.

DQN algorithms are off-policy, model free RL techniques following
the Bellman equation (Eq. (1) after [14]) where the optimal action-value
function Q*(s,a) is based on a state s and after having taken an action a.
The best action is chosen by maximizing the expected value of r +
γQ*(s′,a′) where r is the reward, γ is the discount factor that determines
how important the future reward is to the algorithm (see also Table 2), s′
is the state at the next time step and a′ are all possible actions [14].

Q*(s, a) = Es′

[

r+ γmax
a′

Q*(s
′

, a′

) |s, a
]

(1)

[14] have shown that the DQN algorithm can be used for a wide range of
different RL problems and albeit there are improvements to deep Q-
learning we chose the original implementation as we see it as well suited
to establish a baseline for further developments in geotechnical RL. Our
implementation is based on the DQN after [14] and the custom DQN
implementation from [38]. The main deviations of the network archi-
tecture in comparison to [14,38] are due to the shape of the input and
output data with the input being an 2 × 2100 × 2 array and the output a
vector of length 8. The number of hidden layers and the decreasing
kernel size from the top to the bottom convolutional layers is in accor-
dance with [14] as is the size of the kernel’s stride which is half the size
of the kernel itself. While [14] used 32, 64 and 64 filters for each of the
three hidden layers respectively, we used 32, 64 and 32 filters for these
layers, as we observed that the agent’s performance did not suffer from
this decrease, while the computational speed increased. In accordance
with these authors we used rectified linear units (ReLU) [39] activation
functions. ReLU activation functions have been widely adopted for
ANNs within the past decade as they have shown to achieve a better
performance than previously used activation functions like the sigmoid
(see [40]). As given in [14] the general DQN’s ANN architecture is that
of a deep convolutional neural network [41] whose hierarchical struc-
ture mimics the effect of receptive fields and is inspired by [42]. Like
[14] we did not perform systematic hyperparameter tuning by random
search or similar techniques (see e.g. [43]) due to the big computational
effort of the simulation. Hyperparameters were thus optimized manually
throughout the course of the development of the RL-simulation. We
nevertheless point out that the given DQN architecture as well as the
used hyperparameters still have room for improvement (see outlook in
Section 7).

Table 2 lists all hyperparameters for our DQN implementation. As we
use the same terminology as [14] the reader is referred to this paper for
more information on the individual parameters.

We implemented the DQN using the tensorflow [44] based Python
library Keras [45]. Training was done on a NVIDIA GeForce RTX 2080
Ti.

From input to output, the agent’s architecture goes as follows and a
graphical representation is given in Fig. 5 (with adaptions of architec-
ture from [14] as described in the section ahead):

▪ The input consists of an array with the shape 2 × 2100 × 2 (see
Section 3.3.1).

▪ One convolutional layer, with 32 filters, a kernel size of 1 × 16
and a stride of 1 and 8 applying a ReLU activation function [39]

▪ One convolutional layer, with 64 filters, a kernel size of 1 × 8
and a stride of 1 and 4 applying a ReLU activation function

▪ One convolutional layer, with 32 filters, a kernel size of 1 × 4
and a stride of 1 and 2 applying a ReLU activation function

▪ One fully connected layer with 256 neurons applying a ReLU
activation function

▪ One fully connected layer with 8 neurons (one per action) as the
output layer which applies a linear activation

Table 1
The mechanical parameters and permeability of the two ground types, where gt1
represents weak rock and gt2 stronger rock.

Ground
type

Specific weight
[kN/m3]

Cohesion
[kPa]

Friction
angle [◦]

Permeability
[m/s]

gt1 24 23 20 10− 5

gt2 25 40 30 10− 5

G.H. Erharter et al.

Automation in Construction 127 (2021) 103701

5

The output of the third convolutional layer is flattened/vectorized
before it is fed into the dense layer and we used the mean squared error
as a loss function.

3.2.1. Actions
The agent can choose from 8 different actions (Table 3). Possible

actions are either top heading – or bench excavation with advance
lengths of either 2 or 4 m. In each step the simulation carries out the
following operations:

▪ the agent chooses and executes one of the 8 actions of Table 3
and the respective length of the generated geological section is
revealed

▪ it is calculated/checked if the new position of the excavation
face is within a stable area or not (details in Section 3.3.2)

As given in Section 2.1, the support ahead of the face has the effect on
the simulation that, there cannot be unstable conditions as long as the
excavation face is within the supported area. Because of technical rea-
sons - mostly related to the reward system (see Table 4) - each action is
assigned an “action code” (a). An a < 200 denotes top heading exca-
vation and a ≥ 200 bench excavation.

The choice of actions of Table 3 is based on practical engineering
experience on the one hand and technical limitations of the RL agent on
the other hand. On the practical side, especially the advance length is

Fig. 4. Top row: an exemplary unique geological section, where brown indicates weak (gt1) and blue stronger rock (gt2). The positions of the top heading and bench
are at 165.0 m and 125.0 m respectively. Bottom row: the random walk that is used to generate the geological section. Values above 0.5 are converted to gt2 and
below to gt1. Note that the x-axis is the tunnel length in decimeters which corresponds to the number of datapoints of the random walk.

Table 2
Used hyperparameters for the DQN agent. Except for the exploration
decay (see Section 3.2.1) all are identical in their meaning as the
extended data Table 1 in [14].

Hyperparameter Value

Replay memory size 100,000
Replay start size 1000
Minibatch size 64
Discount (γ) 0.99
Target network update frequency 10
Initial exploration (ε) 1
Final exploration (ε) 0.05
Learning rate 0.00025
Gradient momentum 0.95
Exploration decay (εd) 0.99997

Fig. 5. Schematic representation of the DQN agent’s ANN architecture. Note the visualization of rockmass-matrix and the support-matrix to the left. The numbers
below each layer are the respective shape of the layer’s weights. Dashed connection lines between layers are only for illustrational purposes. Symbols at the output
layer represent the eight possible actions (ordered as in Table 3) that are chosen via Q-values by the agent.

Table 3
The eight possible actions the agent can choose from.

Action code (a) Excavation Advance length [m] Face support

110 top heading 2 no
112 top heading 2 yes
150 top heading 4 no
152 top heading 4 yes
200 bench 2 no
202 bench 2 yes
220 bench 4 no
222 bench 4 yes

G.H. Erharter et al.

Automation in Construction 127 (2021) 103701

6

highly influential on the stability of the excavation with longer advance
lengths being more prone to failures than short ones (e.g. advance
lengths in the Austrian standard ÖNORM B2203–1 [46]: 1.0, 1.3, 1.7,
2.2, 3.0 and 4.0 m). After experimenting with advances lengths based on
the standards in the beginning, we experienced that a big number of
actions leads to a deterioration of the performance/confuses the agent in
this model setup. This is also in accordance with other studies which
have found that special measures/adaptations of the agent are necessary
if the action space becomes increasingly complex [47,48]. The final set
of actions in Table 3 therefore aims at giving the agent realistic options
to choose from while also keeping the number of actions small (see the
outlook in Section 7 for a discussion on increasing the number of
actions).

During an episode, the actions are chosen based on an “ε-greedy
action selection process”, (see also “exploration vs. exploitation trade-
off”, e.g. [26]). ε is the exploration rate and is initially set to 1 (see
“initial exploration in Table 2). Before every move, a number (r) is
drawn from a random uniform distribution in the range between 0 and
1. r governs the probability for a move to be a random action (if r ≤ ε) or
to be based on the agent’s prior experience (if r > ε). Throughout
training ε will decay following Eq. (2), where the new ε for the next
episode (εi+1) is computed by the previous ε (εi) times a constant – the
epsilon decay (εd).

εi+1 = εi*εd (2)

This process guarantees that the agent can explore the environment
in the beginning and shifts towards more exploitation of its knowledge
towards the end of training. We set the minimum ε to 0.05 below which
there is no more decay and ε will be kept constant (see “final explora-
tion” in Table 2).

3.3. Environment

As the DQN agent is the RL pendant to the real life geotechnician, the
environment is the RL representation of the rockmass and of logistical
processes of the construction site (state) as well as the feedback that is
received for better or worse excavation performance (reward). Based on
the agent’s actions, its main tasks are to update and yield the current
state of the construction-site and to provide feedback.

3.3.1. States
The state that is observed by the DQN agent (see Section 3.2) is a

hypermatrix of the shape 2 × 2100 × 2 which represents a geological
section and a section that shows where support is already installed. The
hypermatrix is structured in the following way (see Fig. 6): 2 rows for
top heading and bench respectively; 2100 columns for the total length of
the tunnel in decimeters plus an additional area beyond the break-
through (see below); 2 channels for the geological section and the sec-
tion with the installed support respectively. The values of the
hypermatrix – originally ranging from 0 to 2 (see Section 3.1) - are then
scaled between 0 and 1. In the channel of the geological section,

0 therefore translates to “not yet excavated area” and 0.5 and 1 represent
gt1 and gt2 respectively (see Table 1 and Section 3.1). In the channel of
the already installed support, 0 means “no installed support” and 1
means “installed support”.

There are 2 terminal states in the simulation (i.e. states that lead to
abortion of the simulation after their occurrence):

▪ A breakthrough is achieved if and only if both posth and posbi
are ≥ tl. In this case a breakthrough reward is given (see next
section) and the simulation is finished.

▪ The second terminal state is a timeout which is set to 200 ac-
tions; i.e. the agent must achieve a breakthrough within less
than 200 actions or otherwise the simulation is aborted, and a
negative breakthrough reward is given.

The environment is designed in a way that once posth or posbi are ≥ tl,
the position of this part of the excavation is not updated anymore even if
it is further excavated. We introduced the “timeout” as we observed in
the experimental phase of the study that the agent sometimes reaches a
breakthrough with the top heading or the bench but keeps on excavating
in the already excavated part of the tunnel. On the one hand this causes
the episode to be infinitely long, and on the other hand this leads to
excessively large negative penalties which negatively affect the training
process.

We set the total length of the sections to 210 m (i.e. tunnellength +
maximum possible length of face support) to give the agent the freedom
to use actions that install face support even for the last few blasts. From a
“real world tunneling” perspective this does not make sense and in the
simulation, this would lead to additional penalties, however, the goal is
that the agent learns things like this and is not forced to do so.

3.3.2. Reward system
Rewards have the purpose to tell the agent if its actions are beneficial

for the total reward. The ultimate goal of the agent is to maximize the
return (i.e. sum of the rewards throughout the episode – here: excavate
the whole tunnel). During an episode, a reward (also called penalty in
case of a negative reward) is given for each individual move that the
agent takes [26]. The action is chosen to maximize the expected return
of discounted rewards.

Reward systems in RL can vary greatly depending on the given task.
While [14], who trained their DQN to play classical Atari 2600 games,
took a modified version of the original games’ scoring systems as a
means to deal with the reward in each timestep, [15] only gave a reward
of +1 or − 1 at the end of the game depending on whether or not the
agent has won the respective Go-match.

In our tunneling simulation, we designed a hierarchical point system
that values (i.e. rewards/penalizes) either a state or an action. The
rewarding/penalizing is done based on a list of conditions, that is
worked through from top to bottom after every step of an episode and
the agent is given the first reward where the condition is fulfilled. Except
for the reward for achieving a breakthrough, all rewards are negative (i.

Fig. 6. 3D visualization of the 2 × 2100 × 2 hypermatrix that represents the state of the simulation.

G.H. Erharter et al.

Automation in Construction 127 (2021) 103701

7

e. penalties) and from top to bottom the penalties are sorted from biggest
to smallest. It is therefore possible that multiple conditions are fulfilled
in one state, but only the most severe penalty is given. Table 4 shows the
list of rewards and their respective conditions.

We designed the list of rewards based on practical engineering
experience and requirements arising from training a completely unex-
perienced agent. For example, we penalize face instabilities higher than
a too far distance between top heading and bench excavation, as the
immediate safety hazard of an unstable face is bigger. In contrast to that,
an even bigger penalty (i.e. -6 points) is triggered if the agent would try
to do bench excavation ahead of the top heading excavation. A geo-
technician in real world tunneling would know from the start that doing
so brings numerous technical-, logistical- and safety problems, but an
untrained RL-agent does not.

During the experiments for this study we tried to design the reward
system in a way that it is the sum of all penalties that would be fulfilled
in a given state and not a hierarchical system. However, doing this was
not beneficial for training and seemed to confuse the agent as it
apparently did not know what it was punished for. For example, a
combination of the penalty for a too far distance between top heading
and bench (i.e. -3) plus the penalty for using face support (i.e. -2) would
sum up to − 5 which is the same penalty as the one for unstable face
conditions.

As given in Section 2.1, the evaluation to check if a newly excavated
face is stable or not, is done based on the face pressure equation for open
face tunneling from [29] (Eq. (3)). In Eq. (3), pf is the required pressure
to achieve stable face conditions, where a pf < 0 indicates stable con-
ditions and a pf ≥ 0 indicates unstable conditions, respectively the
amount of pressure that is necessary to stabilize the face. γR is the
ground’s unit weight, D the (equivalent) tunnel diameter (see chapter
3.1), d the advance length (describing the unsupported area of the un-
lined wall), c′ the effective cohesion and φ′ the effective friction angle.

pf = γRD*

⎛

⎜
⎜
⎜
⎝

2 + 3*
(

d
D

)6*tanφ′

18*tanφ′ − 0.05

⎞

⎟
⎟
⎟
⎠

−
c′

tanφ′ (3)

4. Training

In RL, one episode is the whole succession of states in between an
initial and a terminal state [26]. In other words, an episode is one whole
match of a game, or in this simulation, one whole sequence of actions
that ultimately should lead to a breakthrough of the tunnel.

We started training with an ε of 1 (i.e. “initial exploration” in
Table 2) to promote exploration in the initial phase of training. The
exploration decay of 0.99997 (see Table 2) that decreases ε following Eq.
(2) was determined by trial and error. A smaller exploration decay (i.e.
faster reaching of the final exploration) has shown to increase in-
stabilities in the training process at an early stage which are presenting
themselves in spontaneous increases of the loss and decreases of the
reward. With the given exploration decay, the final exploration is
reached after 99,858 episodes of training. After this point ε is kept at a
constant value of 0.05. Training does not need to be aborted after
reaching the final exploration. In the current simulation, we aimed at
training the agents for 120,000 episodes to observe one full epsilon
decay and some episodes beyond that to check for stable conditions in
different rockmasses, as illustrated in Fig. 7 (except for cases where
training became unstable at some point; see next section). A copy of the
agent is saved after every 1000 episodes.

To observe how big the differences are between individual training
runs, we trained several identical DQN agents in the above described
environment. After every episode, 21 parameters are saved to monitor
the training progress. Below, the parameters that are mentioned in the
paper are given (see the code “A_utilities.py” in Appendix 1 for a list of
all recorded parameters):

▪ number of the current episode
▪ cumulative reward of the episode
▪ current value of ε
▪ the number of face instabilities of the whole episode
▪ average loss of the DQN agent throughout the episode
▪ number of moves/blasts that were required to finish the

episode/to reach a terminal state
▪ 8 counters for how many times each of the actions of Table 3

were used; the goal of these counters is to see if the agent favors
some actions over others and to detect “strategy changes”

5. Experiments

In this section we present five training paths of exemplary agents and
discuss the different strategies they found to deal with the given task. In
Fig. 7, recordings of the agents’ training are given which shows that each
agent has found a unique solution, and all training paths are substan-
tially different from one another.

Comparing the five agents to one another, all of them were able to
increase the cumulative reward per episode above 200 within 10,000
episodes (Fig. 7 first row). After around 30,000 episodes, first differ-
ences arise where first the cumulative reward of agent 2 and then of
agent 3 started to stagnate. The reward of agent 1 stagnates at around
80,000 episodes. The cumulative rewards of the agents 4 and 5 kept on
increasing, whereas agent 5 became instable after around 75,000 epi-
sodes and agent 4 reached the maximum reward at the end of the
120,000 training episodes.

Right from the start, all agents started to use long advance lengths as
a means to decrease the number of blasts/moves per episode as this is an
effective way to maximize the achievable reward (Fig. 7 second row).
Where the agents 1, 4 and 5 all took a similar strategy that aims at
continuously minimizing the blasts/moves per episode throughout the
whole training, agents 2 and 3 reached a minimum of around 120 blasts/
moves per episode after around 30,000 episodes. This correlates well
with the stagnating rewards after 30,000 episodes of agents 2 and 3 as
described above.

The biggest differences in training paths can be observed with

Table 4
Rewards that the agent receives from the environment in response to its actions.

Reward
(points)

Description Condition

tl * 3 reward for achieving breakthrough posth ≥ tl and posbi ≥ tl
tl * 3 * -1 penalty for a timeout if number of moves in current

episode is >200
− 6 penalty for using the wrong

excavation sequence, i.e. the bench
is driven further ahead than the top
heading

posbi > posth

− 5 penalty for unstable tunnel face
conditions determined from face
pressure pf as evaluated by Eq. (3)
(see below)

pf ≥ 0

− 4 penalty for changing from top
heading to bench excavation or vice
versa, as this usually involves a
delay of the excavation due to
logistics

if current a ≥ 200 and prev. a
< 200 or if current a < 200
and prev. a ≥ 200

− 3 penalty for a too far distance
between top heading and bench (see
Section 3.1)

if posth – posbi > distmax

(initially set to 50 m)

− 2 penalty for using face support as this
consumes additional time and
resources

if a = 112; a = 152; a = 202; a
= 222

− 1 penalty for every other move that
does not meet any of the above
conditions

no other condition is fulfilled

G.H. Erharter et al.

Automation in Construction 127 (2021) 103701

8

respect to face instabilities, where only the agents 2 and 3 started to
actively decrease the number of face instabilities (Fig. 7 third row) early
in the training process (within 10,000 episodes). In contrast to that, the
number of face instabilities increased within the first 10,000 episodes
for the other agents and then only decreased slowly throughout the rest
of the training. The best performing agent 4 shows a remarkable trend of
stagnating face instabilities until around 80,000 episodes, followed by a

decrease towards the end of training.
While the goal was to let all agents train for 120,000 episodes, the

training process of the agents 2 and 5 became unstable after around
75,000 and 85,000 episodes respectively, which led to the abortion of
training after it could be observed that the agent would not recover from
this. A solution would be to take a version of the agent that was saved
before instability occurred and continue training with that, but we left

Fig. 7. Different training paths for five exemplary agents over 120,000 episodes. The first row shows cumulative rewards per episode; the second row the average
number of blasts/moves that were required to complete each episode; the third row the average number of face instabilities per episode; the fourth row shows the
average loss per episode. Transparent colors in the background show the raw data records and the solid lines in the foreground a 500-episode sliding window average.

Fig. 8. Histogram for the performance of an agent who plays 10,000 episodes with completely random moves (i.e. ε = 1).

G.H. Erharter et al.

Automation in Construction 127 (2021) 103701

9

the agents 2 and 5 as they are for explanatory purposes.
Before discussing the performance of the agents, we first establish a

baseline for the minimum performance that an agent must reach by
letting an agent play with completely random moves (i.e. ε = 1) for
10,000 episodes. In these 10,000 random episodes the agent reached a

▪ minimum/maximum/median reward of − 544/255/-13 points,
▪ minimum/maximum/median number of 0/27/8 instabilities

per episode,
▪ minimum/maximum/median number of 124/197/145 blasts/

moves per episode.

Histograms for the 10,000 random episodes are given in Fig. 8.
The maximum rewards, minimum number of face instabilities and

minimum number of blasts/moves that the five agents of Fig. 7 needed
are given in Table 5. We computed these numbers based on sliding
window averages of 500 episodes as to avoid individual episodes that
performed extraordinarily well. Albeit substantial differences can be
seen in these statistics, it can generally be observed that all maximum
rewards of the agents are above the maximum rewards of the randomly
played episodes and therefore training was generally a success.

In these five agents, two groups can be observed, where the agents 2
and 3 reached their maximum performance between episodes 40,000
and 60,000 and the agents 1, 4 and 5 reached their maximum perfor-
mance between episodes 80,000 and 120,000. Although the first group
has reached their peak performance sooner, the achieved reward is
generally lower than that of the second group (see description of training
paths above).

We conclude this section by presenting the strategy that the best
performing agent 4 has found after 119,000 episodes – at its peak per-
formance (in terms of highest reward and low instabilities). We tested
the saved agent’s checkpoint for 10,000 episodes with a fixed ε of 0.05
which corresponds to the ε at that stage of training and is in accordance
to [14] who recommend an ε > 0 also for testing, as this helps the agent
to deal with unexpected situations. The histograms of Fig. 9 show the
same test statistics as given for the random moves in Fig. 8.

The strategy that the agent adopted is focused on long advance
lengths without face support, in alternation with long advance lengths
with face support. By doing so the agent avoids face instabilities, while
also minimizing the required support (see Table 4 for the respective
rewards/penalties). The boxplot of Fig. 10 illustrates this, as it can be
observed that the majority of actions is 4 m long advance lengths.
Furthermore, the agent focuses on long advance lengths without face
support in both excavation types (top heading and bench) which shows
that it tries to avoid excessive use of support measures, thus showing a
tendency towards economical optimization. It can also be seen that the
agent still uses small advance lengths sometimes and, in this case, favors
the actions without face support as it has realized that the small advance
lengths do not lead to face instabilities in the given conditions.

In Fig. 11 an example of one episode for the agent 4 is visualized. The
time-distance diagram in the top row of this figure shows that the agent
has learned to optimize the excavation process by minimizing changes
between top heading and bench excavation which would be associated

with unwanted delays in “real life” tunneling (e.g. building and
removing of access ramps). As given in Section 2.1, installed support
ahead of the current face always covers 10 m. With the maximum
advance length being set to 4 m it would be unnecessary and uneco-
nomical to install face support in two consecutive rounds. In the second
row of Fig. 11 it can be seen that within individual sequences of top
heading or bench excavation, the agent alternates between supported
and unsupported blasts which shows that it has successfully learned to
avoid excessive use of support ahead of the face.

6. Conclusion and implications for digital tunneling

Before drawing conclusions from the experiments, it should be
pointed out that in this initial study, the agent’s possibilities to find
creative and not yet imagined solutions to real world tunneling problems
are confined to the given set of actions and the taken simplifications (see
Section 2.1). We therefore see it as a success that the agent optimizes the
given scenario and finds strategies that are comparable to current
practices in tunneling. As given in the introduction, the current study
should serve as a base for future developments of RL in tunneling.
Consequently, optimizations that improve the current practices of “real
life” tunneling are to be expected from future studies.

In the experiments of the previous chapter, we can observe that the
agents have found policies that minimize the overall amount of neces-
sary blasts, minimize changes between top heading and bench excava-
tion, favor long over short advance lengths and minimize the use of face
support. These strategies show that the agents have learned to work in
an efficient and economically optimized way. We see similarities in this
RL-based tunneling strategy to real world tunneling paradigms like the
NATM [49] which uses partial excavation to minimize the necessary
support. Minimizing the number of changes between top heading or
bench excavation while at the same time not exceeding a too long dis-
tance between them is also part of NATM tunneling as this optimizes
construction site logistics on the one hand and safety requirements on
the other. The found strategies that rely on support ahead of the face
show similarities to the “Adeco” method [25] which uses heavy support
installation and long advance lengths to deal with the encountered
rockmass conditions. While adhering to safety requirements is impera-
tive, most “real life” tunneling methods work towards minimizing the
number of necessary blasts which is a policy that was found by all the
agents.

TunnRL (see Section 2) has shown that it is not only a functioning
environment/simulation of conventional tunneling, but also that a RL
agent can successfully interact with it and learn optimized and inno-
vative strategies that seem realistic compared to real world tunnel
excavation. At the same time, we see the challenges of computational
instabilities and trial and error approach in the process of developing
well-functioning models, highlighting this early stage in RL for
tunneling. Clearly both the reward system, the rockmass-environment
and the action-system has room for improvement. Still we see a signif-
icant potential in the TunnRL-concept: firstly, for an on-face decision
support system in a further developed and more realistic version, and
secondly as a first step to more advanced automation in underground

Table 5
Statistics of the training runs presented in Fig. 7. Values were computed from the 500-episode sliding window average and the episode of the respective value is given in
parenthesis behind it. Row-wise best performances are highlighted in grey.

G.H. Erharter et al.

Automation in Construction 127 (2021) 103701

10

construction. Where many of the developments of tunnel processes
today address the automation of small-scale processes in the tunnel or at
the excavation face, a further developed TunnRL could be part of the
main controlling mechanism that operates the overall tunnel construc-
tion site. Albeit the agents in this simulation were not able to find new
and undiscovered strategies of tunnel excavation (see previous chapter),
we see the fact that completely untrained agents are able to find
tunneling strategies which are comparable to “real world tunneling” as a
proof of concept that RL is successfully applicable to this kind of prob-
lem. The main goal of the study is therefore fulfilled, and future studies
will work towards giving the agent more capabilities and increasing the
environment’s realism. This will ultimately pave the way for an opti-
mized decision finding process in sequential tunneling.

7. Outlook

Albeit we designed TunnRL in a practice related context, there are
numerous improvements to make the framework more realistic and
more robust. As the present paper should be the first introduction of RL
into tunneling we refrained from over-complicating the simulation and
rather give an impetus for future studies that build upon this work. The
below given improvements are a non-exhaustive list of ideas that we
think are worth to be further explored.

Ever improving processing power will alleviate problems related to
computational cost over time. Nevertheless, all improvements must
consider that each step in the framework will be done millions of times
throughout the training and state of the art RL is by itself already
computationally heavy.

Improvements address either the agent or the environment:

▪ On the environment’s side, improvements could work towards
making the geotechnical scenario more realistic by involving
more ground types and other phenomena like groundwater and
in-situ stress conditions. The excavation geometry could
become more complex so that also other excavation shapes and
sequences such as full-face excavation, or a further division of
the top heading and bench excavation are possible.

▪ Closely related to the excavation geometry – and in our view
one of the main points that should be improved – is the stability
evaluation of the simulation. The reason why we used Eq. (3)
after [29] as a substitute for more sophisticated means of sta-
bility assessment (e.g. tunnel cross sectional analyses such as
analytical convergence confinement methods or 2D and 3D
finite element analysis) is that this analytical solutions is
computationally very efficient and does not prolongate the
training process too much. For example, 100,000 episodes of
the current framework with around 120 moves per episode
would require ~1.2e+7 FEM based stability assessments.
However, this reduction of the stability assessment is only us-
able for the ground conditions described in [29] and also ne-
glects other phenomena like the 3D stress state at the tunnel
face. Improvements could be to do the stability assessment
based on stand-up time concepts that also involve the rockmass
quality [50] or ideally 3D finite element analysis as given
above.

▪ Improvements for the agent on the one hand address the agent’s
performance by modifying the agent’s architecture itself. Sys-
tematic hyperparameter tuning was not conducted yet and may

Fig. 9. Histograms showing the performance of the agent 4 that was tested for 10,000 episodes in Fig. 7. Note the different scales of the x-axes in comparison to the
histograms of Fig. 8.

Fig. 10. Boxplot that shows how many times the agent 4 uses each action
throughout 10,000 test episodes. Bold black lines in the boxes represent median
values; the boxes confine the upper and lower quartiles and the whiskers show
min.-max. Values; “al” in the x-labels refers to “advance length”.

G.H. Erharter et al.

Automation in Construction 127 (2021) 103701

11

help to further improve the agent’s performance (e.g. grid− /
random search or even RL based hyperparameter optimization
[51]). From a geotechnical point of view though, interesting
improvements mainly concern an extension of the agent’s ca-
pabilities by introducing more possible actions. Whereas direct
improvements to the given framework would be more advance
lengths and types of tunnel support, other ideas are to involve
exploration ahead of the face by simulated measurement while
drilling [52] or geophysical exploration [53] to give the agent
an idea what might be in front of the current excavation face.
An idea in this regard is also to extend the agent to a multi-
agent framework as it was used successfully before [15]
where different agents have different tasks to fulfill.

Future studies will work towards a more realistic environment and
more complex agents in the TunnRL framework. Where TunnRL fits well
in the line of the current development of automation, the greatest po-
tential lies in the possibility to develop new and not yet considered
tunneling strategies for sequential tunnel excavation.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix

Appendix 1: Link to the GitHub repository where this paper’s code
can be found: https://github.com/geograz/Tunnel-automation-with-Re
inforcement-Learning-TunnRL-

References

[1] T. Marcher, G.H. Erharter, M. Winkler, Machine learning in tunnelling –
capabilities and challenges, Geomechanik Tunnelbau 13 (2020) 191–198, https://
doi.org/10.1002/geot.202000001.

[2] DAUB, BIM in Tunnelling: Digital Design, Building and Operation of Underground
Structures. http://www.daub-ita.de/fileadmin/documents/daub/gtcrec4/gtcre
c11v3_BIM_in_Tunnelling_05-2019.pdf, 2019 (accessed 9 October 2020).

[3] L. Wagner, A. Kluckner, C.M. Monsberger, P. Wolf, K. Prall, W. Schubert,
W. Lienhart, Direct and distributed strain measurements inside a Shotcrete lining:
concept and realisation, Rock Mech. Rock. Eng. 53 (2020) 641–652, https://doi.
org/10.1007/s00603-019-01923-4.

[4] G.H. Erharter, T. Marcher, C. Reinhold, Application of artificial neural networks for
underground construction – chances and challenges – insights from the BBT
exploratory tunnel Ahrental Pfons, Geomechanik Tunnelbau 12 (2019) 472–477,
https://doi.org/10.1002/geot.201900027.

[5] G.H. Erharter, T. Marcher, C. Reinhold, Comparison of artificial neural networks
for TBM data classification, in: Proceedings of the 14th International Congress on
Rock Mechanics and Rock Engineering (ISRM 2019), Foz de Iguassu, Brazil, 2019.

[6] G.H. Erharter, T. Marcher, C. Reinhold, Artificial neural network based online
rockmass behavior classification of TBM data, in: Information Technology in Geo-
Engineering, firstst ed. twentiethtwentieth, Springer, 2020, pp. 178–188.

[7] R. Wu, Y. Fujita, K. Soga, Integrating domain knowledge with deep learning
models: an interpretable AI system for automatic work progress identification of
NATM tunnels, Tunn. Undergr. Space Technol. 105 (2020) 103558, https://doi.
org/10.1016/j.tust.2020.103558.

[8] S.K. Shreyas, A. Dey, Application of soft computing techniques in tunnelling and
underground excavations: state of the art and future prospects, Innov. Infrastruct.
Solut. 4 (2019), https://doi.org/10.1007/s41062-019-0234-z.

[9] W. Zhang, R. Zhang, C. Wu, A.T.C. Goh, S. Lacasse, Z. Liu, H. Liu, State-of-the-art
review of soft computing applications in underground excavations, Geosci. Front.
11 (2020) 1095–1106, https://doi.org/10.1016/j.gsf.2019.12.003.

[10] S. Isam, Z. Wengang, Use of soft computing techniques for tunneling optimization
of tunnel boring machines, Underground Space (2020), https://doi.org/10.1016/j.
undsp.2019.12.001.

[11] B.B. Sheil, S.K. Suryasentana, M.A. Mooney, H. Zhu, Machine learning to inform
tunnelling operations: recent advances and future trends, Proc. Inst. Civ. Eng.
(2020) 1–18, https://doi.org/10.1680/jsmic.20.00011.

[12] Q. Zhang, Z. Liu, J. Tan, Prediction of geological conditions for a tunnel boring
machine using big operational data, Autom. Constr. 100 (2019) 73–83, https://doi.
org/10.1016/j.autcon.2018.12.022.

[13] G.H. Erharter, T. Marcher, MSAC: towards data driven system behavior
classification for TBM tunneling, Tunn. Undergr. Space Technol. 103 (2020)
103466, https://doi.org/10.1016/j.tust.2020.103466.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare,
A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (2015)
529–533, https://doi.org/10.1038/nature14236.

[15] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of go with deep

Fig. 11. Exemplary log of one episode. The x-axis shows the number of blasts/moves the agent needed to achieve breakthrough (i.e. 105): Top row: Time-distance
diagram showing the logged position of top heading excavation (solid line), bench excavation (dashed line) and the difference in between (grey area). Middle row:
Record of the actions (see Table 3 for the corresponding action codes). Bottom row: cumulative reward throughout the episode.

G.H. Erharter et al.

https://github.com/geograz/Tunnel-automation-with-Reinforcement-Learning-TunnRL-
https://github.com/geograz/Tunnel-automation-with-Reinforcement-Learning-TunnRL-
https://doi.org/10.1002/geot.202000001
https://doi.org/10.1002/geot.202000001
http://www.daub-ita.de/fileadmin/documents/daub/gtcrec4/gtcrec11v3_BIM_in_Tunnelling_05-2019.pdf
http://www.daub-ita.de/fileadmin/documents/daub/gtcrec4/gtcrec11v3_BIM_in_Tunnelling_05-2019.pdf
https://doi.org/10.1007/s00603-019-01923-4
https://doi.org/10.1007/s00603-019-01923-4
https://doi.org/10.1002/geot.201900027
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0025
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0025
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0025
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0030
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0030
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0030
https://doi.org/10.1016/j.tust.2020.103558
https://doi.org/10.1016/j.tust.2020.103558
https://doi.org/10.1007/s41062-019-0234-z
https://doi.org/10.1016/j.gsf.2019.12.003
https://doi.org/10.1016/j.undsp.2019.12.001
https://doi.org/10.1016/j.undsp.2019.12.001
https://doi.org/10.1680/jsmic.20.00011
https://doi.org/10.1016/j.autcon.2018.12.022
https://doi.org/10.1016/j.autcon.2018.12.022
https://doi.org/10.1016/j.tust.2020.103466
https://doi.org/10.1038/nature14236

Automation in Construction 127 (2021) 103701

12

neural networks and tree search, Nature 529 (2016) 484–489, https://doi.org/
10.1038/nature16961.

[16] J. Shahrabi, M.A. Adibi, M. Mahootchi, A reinforcement learning approach to
parameter estimation in dynamic job shop scheduling, Comput. Ind. Eng. 110
(2017) 75–82, https://doi.org/10.1016/j.cie.2017.05.026.

[17] M. Lanham, Reinforcement Learning, from Games to Geologic Interpretation. htt
ps://medium.com/@cxbxmxcx/reinforcement-learning-from-games-to-geologi
c-interpretation-93757664f0e4, 2019 (accessed 2 October 2020).

[18] M. Lanham, Reinforcement Learning, It’s Coming not Just for Games. https://me
dium.com/@cxbxmxcx/reinforcement-learning-its-coming-not-just-for-games-6b6
064e02bbe, 2019.

[19] D. Schwung, A. Schwung, S. Ding, Actor-critic reinforcement learning for energy
optimization in hybrid production environments, Int. J. Comput. 18 (2019)
360–371.

[20] I. Carlucho, M. de Paula, S. Wang, Y. Petillot, G.G. Acosta, Adaptive low-level
control of autonomous underwater vehicles using deep reinforcement learning,
Robot. Auton. Syst. 107 (2018) 71–86, https://doi.org/10.1016/j.
robot.2018.05.016.

[21] B. Maidl, M. Thewes, U. Maidl, D. Sturge, Handbook of Tunnel Engineering, First,
Engl. ed., Ernst/Wiley, Berlin, 2013.

[22] W. Stipek, R. Galler, M. Bauer (Eds.), 50 Years of NATM: Experience Reports, ITA,
Austria, Wien, 2012.

[23] Norwegian Tunnelling Society (Ed.), Norwegian Tunnelling Technology:
Publication no. 23, 2014.

[24] S. Pelizza, D. Peila, Soil and rock reinforcements in tunnelling, Tunn. Undergr.
Space Technol. 8 (1993) 357–372, https://doi.org/10.1016/0886-7798(93)90020-
V.

[25] P. Lunardi, Design and Construction of Tunnels: Analysis of Controlled
Deformation in Rocks and Soils (ADECO-RS), Springer-Verlag, Berlin, Heidelberg,
2008.

[26] S. Raschka, V. Mirjalili, Python Machine Learning - Third Edition: Machine
learning and deep learning with python, scikit … -learn, and tensorflow 2, Packt
Publishing Limited, [S.l.], 2019.

[27] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, Second edition,
The MIT Press, Cambridge Massachusetts, 2018.

[28] ITA Working Group Conventional Tunnelling, General Report on Conventional
Tunnelling Method, Distrib, ITA Secretariat c/o EPFL, Lausanne, 2009.

[29] P.A. Vermeer, N. Ruse, T. Marcher, Tunnel heading stability in drained ground,
Felsbau 20 (2002) 8–18.

[30] M.A. Kanji, Critical issues in soft rocks, J. Rock Mech. Geotech. Eng. 6 (2014)
186–195, https://doi.org/10.1016/j.jrmge.2014.04.002.

[31] T. Marcher, S. Stauder, M. Winkler, HSSR – Ein Versuch der Einordnung und
Abgrenzung des Materials, in: T. Marcher (Ed.), Beiträge zum 1. Hard Soil – Soft
Rock (HSSR) Minisymposium: Charakterisierung, Modellierung und
experimentelle Untersuchungen von Uebergangsgesteinen – Aktuelles aus
Forschung und Entwicklung, Graz, 2020.

[32] G. Anagnostou, K. Kovári, Face stability conditions with earth-pressure-balanced
shields, Tunn. Undergr. Space Technol. 11 (1996) 165–173, https://doi.org/
10.1016/0886-7798(96)00017-X.

[33] A.A. Borovkov, Random walks and factorisation identities, in: A.A. Borovkov (Ed.),
Probability Theory, Springer London, London, 2013.

[34] C.J.C.H. Watkins, Learning from Delayed Rewards. Ph.D. Thesis, Oxford, 1989.
[35] C.J.C.H. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (1992) 279–292, https://

doi.org/10.1007/BF00992698.
[36] A.A. Javadi, M. Rezania, Applications of artificial intelligence and data mining

techniques in soil modeling, Geomech. Eng. 1 (2009) 53–74, https://doi.org/
10.12989/gae.2009.1.1.053.

[37] M.A. Shahin, M.B. Jaksa, H.R. Maier, Recent advances and future challenges for
artificial neural Systems in Geotechnical Engineering Applications, Adv. Artific.
Neural Syst. 2009 (2009) 1–9, https://doi.org/10.1155/2009/308239.

[38] H. Kinsley, Reinforcement Learning W/ Python. https://pythonprogramming.net
/q-learning-reinforcement-learning-python-tutorial/, 2019.

[39] R.H.R. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R.J. Douglas, H.S. Seung, Digital
selection and analogue amplification coexist in a cortex-inspired silicon circuit,
Nature 405 (2000) 947–951, https://doi.org/10.1038/35016072.

[40] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in:
G. Gordon, D. Dunson, M. Dudik (Eds.), Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, 2011,
pp. 315–323.

[41] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (1998) 2278–2324, https://doi.org/10.1109/
5.726791.

[42] D.H. HUBEL, T.N. WIESEL, Shape and arrangement of columns in cat’s striate
cortex, J. Physiol. 165 (1963) 559–568, https://doi.org/10.1113/jphysiol.1963.
sp007079.

[43] F. Chollet (Ed.), Deep Learning with Python, Manning, Shelter Island, NY, 2018.
[44] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensor
flow.org/, 2015.

[45] F. Chollet, Others, Keras, 2015.
[46] Österreichisches Normungsinstitut, Untertagebauarbeiten: Teil 1: Zyklischer

Vortrieb, Wien 91.010.20; 93.020, 2019.
[47] Z. Zhao, Y. Liang, X. Jin, Handling large-scale action space in deep Q network, in:

2018 International Conference on Artificial Intelligence and Big Data (ICAIBD),
IEEE, Chengdu, 2018, pp. 93–96.

[48] T. Zahavy, M. Haroush, N. Merlis, D.J. Mankowitz, S. Mannor, Learn what not to
learn: action elimination with deep reinforcement learning, in: Advances in Neural
Information Processing Systems 31 (NIPS 2018), Montreal, Canada, 2018,
pp. 3566–3577.

[49] ÖGG, Guideline for the Geotechnical Design of Underground Structures with
Conventional Excavation: Ground characterization and coherent procedure for the
determination of excavation and support during design and construction.
Translated from version 2.1, second.first, Salzburg, 2010.

[50] H. Lauffer, Gebirgsklassifizierung für den Stollenbau, Geol. Bauwesen 24 (1958)
46–51.

[51] P. Zhang, H. Li, Q.P. Ha, Z.-Y. Yin, R.-P. Chen, Reinforcement learning based
optimizer for improvement of predicting tunneling-induced ground responses, Adv.
Eng. Inform. 45 (2020) 101097, https://doi.org/10.1016/j.aei.2020.101097.

[52] J. van Eldert, H. Schunnesson, D. Johansson, D. Saiang, Application of
measurement while drilling technology to predict rock mass quality and rock
support for Tunnelling, Rock Mech. Rock. Eng. 53 (2020) 1349–1358, https://doi.
org/10.1007/s00603-019-01979-2.

[53] A. Radinger, F. Fasching, G. Pack, I. Kreutzer, D. Kostial, Consistent exploration by
probe drilling and TSWD through the example of the Koralm tunnel/Konsequente
Vorauserkundung mittels Bohrungen und TSWD am Beispiel des Koralmtunnels,
Geomechanik Tunnelbau 7 (2014) 540–550, https://doi.org/10.1002/
geot.201400038.

G.H. Erharter et al.

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/j.cie.2017.05.026
https://medium.com/@cxbxmxcx/reinforcement-learning-from-games-to-geologic-interpretation-93757664f0e4
https://medium.com/@cxbxmxcx/reinforcement-learning-from-games-to-geologic-interpretation-93757664f0e4
https://medium.com/@cxbxmxcx/reinforcement-learning-from-games-to-geologic-interpretation-93757664f0e4
https://medium.com/@cxbxmxcx/reinforcement-learning-its-coming-not-just-for-games-6b6064e02bbe
https://medium.com/@cxbxmxcx/reinforcement-learning-its-coming-not-just-for-games-6b6064e02bbe
https://medium.com/@cxbxmxcx/reinforcement-learning-its-coming-not-just-for-games-6b6064e02bbe
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0095
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0095
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0095
https://doi.org/10.1016/j.robot.2018.05.016
https://doi.org/10.1016/j.robot.2018.05.016
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0105
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0105
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0110
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0110
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0115
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0115
https://doi.org/10.1016/0886-7798(93)90020-V
https://doi.org/10.1016/0886-7798(93)90020-V
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0125
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0125
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0125
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0130
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0130
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0130
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0135
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0135
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0140
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0140
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0145
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0145
https://doi.org/10.1016/j.jrmge.2014.04.002
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0155
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0155
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0155
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0155
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0155
https://doi.org/10.1016/0886-7798(96)00017-X
https://doi.org/10.1016/0886-7798(96)00017-X
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0165
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0165
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0170
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.12989/gae.2009.1.1.053
https://doi.org/10.12989/gae.2009.1.1.053
https://doi.org/10.1155/2009/308239
https://pythonprogramming.net/q-learning-reinforcement-learning-python-tutorial/
https://pythonprogramming.net/q-learning-reinforcement-learning-python-tutorial/
https://doi.org/10.1038/35016072
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0200
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0200
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0200
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0200
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1113/jphysiol.1963.sp007079
https://doi.org/10.1113/jphysiol.1963.sp007079
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0215
https://www.tensorflow.org/
https://www.tensorflow.org/
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0225
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0230
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0230
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0235
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0235
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0235
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0240
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0240
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0240
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0240
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0245
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0245
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0245
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0245
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0250
http://refhub.elsevier.com/S0926-5805(21)00152-7/rf0250
https://doi.org/10.1016/j.aei.2020.101097
https://doi.org/10.1007/s00603-019-01979-2
https://doi.org/10.1007/s00603-019-01979-2
https://doi.org/10.1002/geot.201400038
https://doi.org/10.1002/geot.201400038

	Reinforcement learning based process optimization and strategy development in conventional tunneling
	1 Introduction
	2 Conventional tunneling as a reinforcement learning problem
	2.1 Simplifications

	3 A simulation of conventional tunneling
	3.1 Geotechnical scenario
	3.2 Agent
	3.2.1 Actions

	3.3 Environment
	3.3.1 States
	3.3.2 Reward system

	4 Training
	5 Experiments
	6 Conclusion and implications for digital tunneling
	7 Outlook
	Declaration of Competing Interest
	Appendix
	References

