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Abstract: We present a generalized Geertsma solution that can consider any number of finite-
thickness layers in the subsurface whose mechanical properties are different from layer to layer. In
addition, each layer can be assumed either isotropic or anisotropic. The accuracy of the generalized
solution is validated against a numerical reference solution. The generalized Geertsma solution
is further extended by a linear superposition framework that enables a response simulation due
to an arbitrarily-distributed non-uniform pressure anomaly. The linear superposition approach
is tested and validated by solving a realistic synthetic model based on the In Salah CO2 storage
model and compared with a full 3D finite element solution. Finally, by means of a simple inversion
exercise (based on the linear superposition approach), we learn that the stiffnesses of cap rock and
reservoir are the most influencing parameter on the inversion result for a given layering geometry,
suggesting that it is very important to estimate high-confidence mechanical properties of both cap
rock and reservoir.

Keywords: generalized Geertsma solution; CO2 storage; surface deformation; anisotropic subsurface

1. Introduction

Disturbing underground pore pressure by fluid injection or production may induce
significant changes in stress and strain fields in a subsurface reservoir, which can then
propagate to neighboring layers both down- and upwards and even to ground surface
or seabed [1]. Such a mechanical behavior can be well described by the poro-elasticity
theory (e.g., [2,3]) and have been used for characterization and monitoring of subsurface
geomechanical behavior in many different areas of engineering and geoscience (e.g., [4–6]).
The same mechanical behavior is relevant for understanding geomechanics related to
geological CO2 storage sites. In particular, the interferometric synthetic aperture radar
(InSAR) data acquired at the In Salah CO2 storage project in Algeria have been successfully
applied to understand the pressure front evolution and hydraulic communication network
in the subsurface during the whole period (around 7 years) of CO2 injection (e.g., [7–10]).
In addition, Hu et al. [11] showed how the change in temperature and pressure may
influence CO storage capacity, which is also one of the main parameters together with the
geomechanical integrity in the context of CO2 storage characterization and monitoring.

When relating surface deformation to the change in pore pressure, stress, and strain
in the subsurface, we need a well-developed solution-frame that can calculate the quanti-
tative dependency between the surface deformation and disturbed pore pressure under
realistic geological environment e.g., heterogeneous stratigraphy, arbitrarily-distributed
pressure anomaly. The Geertsma’s solution [2] is well known to provide good insights (as
a first-order approximation) on how ground deformation behaves, when a fluid is injected
into or produced yet only from an isotropic homogeneous subsurface. In addition, the
Geertsma’s solution is relevant only for a disk-shaped reservoir with a uniform pressure
perturbation. Du and Olson [12] extended the Geertsma’s solution by numerically integrat-
ing the nucleus of poro-elastic strain over a rectangular prism so that the spatial change
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of pore pressure can be taken into account, followed by superposing results from each
rectangular prism. Fokker and Orlic [13] presented an advanced semi-analytical solution
that is based on a boundary element method and can consider a multi-layered visco-elastic
subsurface. The semi-analytical solution can be faster than e.g., finite element approach,
but is still rather slow compared to the analytical Geertsma’s solution. Tempone et al. [14]
extended the Geertsma’s solution a bit further by adding a rigid layer beneath a compacting
reservoir, and also reported a correction to an error found in [15]. Lately, Mehrabian and
Abousleiman [16] not only provided a good overview of the analytical solutions devel-
oped further to address the limitations of the Geertsma’s solution, but also presented a
poro-elasticity framework that can simulate an isotropic layered-stratigraphy.

The current study makes further improvements in such a Geertsma type problem by
deriving a more-generalized analytical solution that can consider any number of finite-
thickness layers, each of which can have not only different but also anisotropic stiffnesses.
These novelties are not found in any of the previous studies mentioned above. The
analytical solution requires a numerical Hankel transform, whose accuracy and efficiency
are also discussed. The accuracy of the analytical solution is validated in comparison with
a finite element solution. Then, we discuss the importance of the heterogeneity in the layers
through a set of synthetic models. In addition, we discuss the possibility of applying the
analytical solution for a spatially-varying pressure anomaly, not only a single cylinder-
shaped constant pressure. The approach is based on a linear superposition and should be
efficient, since it avoids the numerical integration presented by Du and Olson [12]. At the
end, we apply the analytical solution to analyze a realistic synthetic surface heave data that
is made based on the In Salah CO2 storage site in Algeria.

2. Analytical Solution for Anisotropic Layered Subsurface

Here, we present an analytical solution for displacement field for an anisotropic
layered subsurface subjected to fluid-induced pore pressure disturbance in a reservoir layer.
The anisotropy herein refers to a particular case of vertically-transverse isotropic (VTI)
stiffness, as shown in Figure 1. Note that the anisotropy (horizontal-to-vertical velocity
ratio) can be applied individually to S- and P-wave velocities and each layer may have
different velocity ratios. The analytical solution is derived for a constant pressure change
within a reservoir layer, and the pressure change is of cylinder shape i.e., axis-symmetric
problem. The reservoir thickness can be any value, not only very small as in [2]. In addition,
any number of VTI or isotropic layers can be taken into account. Therefore, the analytical
solution in the present study can be considered as a generalized Geertsma solution (GGS).

Figure 1. VTI anisotropic subsurface model consisting of N layers and subjected to fluid-induced
constant pore pressure p(r, z) (darker-shaded) of radius R in an n-th layer. Note ρ, Vs, Vst, Vp, Vpt, and
h are mass density, radial/horizontal and vertical S-wave velocities, radial/horizontal and vertical
P-wave velocities, and layer thickness, respectively. Axis-symmetric coordinates (r, z) are used and
z-positive is upwards.
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To derive the analytical solution for the VTI medium shown in Figure 1, we apply the
following axis-symmetric governing equation in cylindrical coordinate (r, z) and Hankel
transforms with k being the transform parameter (or wavenumber).

Governing equation:[{
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Hankel transforms:

ur =
∫ ∞

0 U1(z)kJ1(kr)dk → : radial displacement
uz =

∫ ∞
0 U3(z)kJ0(kr)dk → : vertical displacement

p =
∫ ∞

0 P(z)kJ0(kr)dk → : pore pressure
(2)

In the equations above, ur and uz are the radial and vertical displacements, respectively;
p is the pressure anomaly of radius R; ∇ is the gradient operator; (λ, G) and (λt, Gt) are
the two pairs of the Lamé first parameter and shear modulus for the horizontal (or radial)
and vertical directions, respectively; α is the Biot coefficient. It is also noted that the Lamé
and shear moduli are related to the elastic P- and S-wave velocities as below by Park and
Kaynia [17]:

V2
p =
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ρ
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ρ
, V2
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(3)

where ρ, Vs, Vst, Vp, and Vpt are, respectively, mass density, radial/horizontal and vertical
S-wave velocities, radial/horizontal and vertical P-wave velocities of each layer. Formally
applying the Hankel transforms defined above to the governing equation, we obtain the
governing equation in the k-z domain as below:
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=
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(4)

The solution to this linear system of ordinary differential equations can be obtained
through a standard algebra and the final results are given below:
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1
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p
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In addition, there are four unknown coefficients of A, B, C, and D for each layer,
which can be determined by satisfying the interface conditions between adjacent layers (i.e.,
displacement continuity and traction equilibrium). Furthermore, by imposing the zero-
displacement boundary conditions at the bottom of the last finite-thickness layer, we can
also simulate the rigid layer beneath a compacting reservoir studied by Tempone et al. [14].
The related two traction components (Srz and Szz) at the layer interfaces can also be written
in the k-z domain as below:



Geosciences 2021, 11, 180 4 of 13

Srz = ρV2
st

[
(+k1 − kφ1)Aek1z − (k1 − kφ1)Be−k1z + (k2 − kφ2)Cek2z − (k2 − kφ2)De−k2z

]
Szz = +ρ

[(
V2

pt − 2V2
st

)
k + k1φ1V2

pt

](
Aek1z + Be−k1z

)
+ ρ
[(

V2
pt − 2V2

st

)
k + k2φ2V2

pt

](
Cek2z + De−k2z

)
− αP[V2

p−(V2
pt−2V2

st)]
V2

p

(7)

Once we determine the four coefficients of A, B, C, and D for each layer, we can
then obtain the final displacement field in the full-space (r, z) domain by performing
numerically the Hankel transforms defined above. In theory, the integrations above should
be done from 0 to infinite along parameter k. In practice, however, we should define
the upper limit of parameter k (denoted as kmax) so that the numerical calculation can
be terminated. Throughout an auxiliary numerical experiment, it is found that kmax is
inversely proportional to the total thickness of the overburden (denoted as Hob), and the
criterion of kmax ≥ 10/Hob is suggested.

It is useful to notice that the horizontal S-wave velocity (Vs) is not showing up in
the final expression of the analytical solution. Therefore, if we know the vertical S-wave
velocity (Vst), we need to measure the anisotropic factor only for the P-wave velocity (Vp,
Vpt). It is also important to remember that the solution derived above is valid only for
VTI layers, not for an exact isotropic layer (i.e., Vp = Vpt), because the linear independence
among the four unknown coefficients are not valid for the exact isotropic case. For the latter,
we need to use the corresponding solution for the isotropic medium, which is presented
by Mehrabian and Abousleiman [16]. Therefore, if both anisotropy and isotropy exist in a
subsurface media, the two solutions are used jointly. Alternatively, to simulate an isotropic
layer, we may specify the ratio of horizontal-to-vertical velocities as ~1 but not exactly
1.0, e.g., 1.001, which also produces almost the same result as that by the exact isotropic
layer solution.

Correction to Mehrabian and Abousleiman

In addition to the analytical solution for the VTI medium derived above, we also write
down the solution for the isotropic medium derived by Mehrabian and Abousleiman [16],
for the completeness of the current manuscript. It should also be noted that a few critical
typos in Mehrabian and Abousleiman [16] are found through [18]. The corrected solutions
for U1, U3, Srz, and Szz for the isotropic layer are given in the following form, using the
two same parameters of a and cm as in [16]:
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(8)

where a = 1
2(1−2ν)

, cm = α(1−2ν)
2Gν (P modulus), and ν is the Poisson’s ratio. Then, following

the same Hankel transform procedure, we can calculate the displacement field for an
isotropic layered subsurface subjected to the same type of axis-symmetric pore pressure
disturbance of finite radius and thickness.

3. Validation

In order to validate the analytical solutions for the VTI anisotropic layered medium
developed in this study, we solve a set of numerical examples and compare the results
with a finite element solution via COMSOL Multiphysics™ (Solids Mechanics Module,
version 5.3.0.316). Table 1 shows the reference isotropic model consisting of 3 layers. Layer
2 is the reservoir where we apply a 500 m-radius pore pressure anomaly of 10 MPa (fluid
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injection scenario). Note that a constant Poisson’s ratio is applied to all the three layers of
the reference isotropic model. For simplicity, we apply a constant horizontal-to-vertical
velocity ratio not only to all the layers, but also both of P- and S-waves. However, we
consider two different velocity anisotropy ratios of 0.8 and 1.2 and compare the results with
those obtained for the reference isotropic model. Figure 2 shows the results by comparing
the radial and vertical displacements at surface obtained from the analytical (denoted as
GG) and FE solutions for the three different horizontal-to-vertical velocity ratios. First, we
notice that the agreement between the analytical and FE solutions is almost perfect, which
confirms that the analytical solution derived in this study and the implementation are
correct. In addition, we see that the anisotropic models with ±20% horizontal-to-vertical
velocity contrast (blue and yellow curves/dots) behaves quite differently in comparison to
the reference isotropic model (red curves/dots). Therefore, it is suggested to apply the VTI
medium model, when relevant.

Table 1. Layering and material properties for the reference isotropic model for validation. Note that we apply the velocity
ratio of horizontal to vertical for the VTI anisotropic models as specified in Figure 2.

Layer. Thickness [m] Mass Density [kg/m3] z-dir. S-Wave Velocity [m/s] z-dir. P-Wave Velocity [m/s]

1 1500 1000 1500 2598

2 100 1500 1000 1732

3 ∞ 2000 2000 3464

Figure 2. Comparison of surface (a) radial and (b) vertical displacements calculated by the analytical (GG, solid) and FE
(circle) solutions for a VTI medium for different anisotropy ratio of horizontal to vertical velocities (indicated at the end of
each legend). Note that the vertical axis in the plot has the positive upward convention.

4. Representation of Arbitrarily-Distributed Pressure Anomaly

The analytical solutions presented above provide the surface deformations for a simple
case where the pressure anomaly is uniform and cylindrical. However, the pressure in
a real reservoir is typically non-uniformly and varies in space (Figure 3a). In practice,
such distribution can be described via a series of square-cuboid grids. Such a grid can be
represented approximately by an equivalent cylinder (or drum) whose volume is the same
as the square-cuboid grid (See Figure 3b). Then, we can describe arbitrarily-distributed
pressure anomaly of any shape by applying the linear superposition of the contribution
from as many square-cuboid grids as needed, for each of which we apply the analytical
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solution presented in the current study and using the equivalent radius (Req). The linear
superposition can be expressed as below:

uz,i =
J

∑
j=1

gz,ij pj (9)

where uz,i is the total vertical displacement at point i, gz,ij is a vertical displacement at point
i due to a unit-magnitude pressure anomaly at grid j (i.e., so-called fundamental or Green’s
function), and pj is the pressure magnitude at grid j. When we have the displacement at
multiple points (Figure 3a), then we can also write the linear superposition expression in
the following matrix form:

Uz = GzP (10)

with:

Uz = [uz,1, uz,2, . . . uz,i, . . . , uz,I ]
T ,P =

[
p1, p2, . . . , pj, . . . , pJ

]T ,Gz =

 gz,11 · · · gz,1J
...

. . .
...

gz,I1 · · · gz,I J

 (11)

Note that the linear superposition expression in matrix form can also be used for an
inversion problem where we invert known (or measured) surface displacement (Uz) to
estimate pressure anomaly distribution (P). In this case, it is assumed that the subsurface
model (layering and stiffness or the Green’s function matrix Gz) is known.

Figure 3. (a) Schematic description of arbitrarily-distributed pressure anomaly. We assume that the pressure anomaly
is discretized into J number of square-cuboid grids, to each of which a value of pressure pj is specified. The vertical
displacement at a point (say uz,i) on the surface can be obtained by linearly summing up the contribution from all the
pressure grids. (b) Illustration of an equivalent cylinder (radius Req = Lre/

√
π) to a square-cuboid of length Lre. Note both of

the square-cuboid and the equivalent cylinder have the same height of Hre.

Since the equivalent-radius representation is an approximation, we need to know its
performance and limitation so that we can decide Req to be used without introducing any
significant error in the calculation. To investigate this issue, we perform a parameter study
by using FE simulation (COMSOL Multiphysics™, version 5.3.0.316). Namely, we compare
two FE solutions obtained (1) by the exact square-cuboid shape pressure anomaly and (2) by
the equivalent-radius cylinder shape pressure anomaly, respectively, with varying the lat-
eral length of reservoir pressure anomaly (length, Lre). For the simplicity in calculation, we
simulate an isotropic homogeneous half-space of 1 GPa shear modulus and 0.25 Poisson’s
ratio. Figure 4 shows the results of the parameter study by plotting the relative difference
between the two FE solutions versus the ratio of the radial coordinate to the overburden
thickness (Hob). Note that in the parameter study we fix the pressurized reservoir thickness
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(Hre) to be 100 m, while we consider four different overburden thicknesses of 500 m, 1000 m,
1500 m, and 2000 m. In addition, for each overburden thickness, we vary the ratio of
Lre/Hob from 0.5 to 2. As shown in Figure 4, the relative difference between the two FE
solutions depends on all the parameters used in the current sensitivity. It is also noticed
that the dependency is most influenced by the ratio of Lre/Hob, and the cylinder-shape
approximation for a square-cuboid-shape constant pressure anomaly works very well
(<1% relative error) as long as Lre/Hob ≤ 1.4–1.5 (depending on reservoir depth). For the
practical purpose, we choose the condition of Lre/Hob ≤ 1.0 (i.e., Req/Hob ≤ 1/

√
π) in order

to guarantee the accurate displacement calculation at the top surface for a square-cuboid
shape pressure via the equivalent cylinder shape pressure. The purple dashed lines in
Figure 4 correspond to the upper limit of the criterion (i.e., Lre/Hob = 1.0). However, note
that the real size for Lre (i.e., size of square-cuboid grids) to be used is also depending on
the spatial variation of pore pressure disturbance in the subsurface e.g., sharp variation
requiring smaller Lre.

Figure 4. Relative difference between the two FE solutions by the exact rectangular-cuboid shape and the equivalent-cylinder
shape as function of the ratio of Lre/Hob (ranging from 0.5 to 2 as shown in each legend), and for four different overburden
thicknesses Hob of (a) 500 m, (b) 1000 m, (c) 1500 m, and (d) 2000 m.
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5. Synthetic Model Study Inspired by in Salah CO2 Storage Dataset

Here, we apply the linear superposition approach presented in the previous section to
a realistic synthetic model and evaluate the performance by comparing with a full 3D FE
solution. Furthermore, we also utilize the same superposition approach in the context of
the simple inversion problem described earlier to explore the influence of the subsurface
properties on the inverted pressure. For these purposes, we use an available FE model
that was made for the history-matching study of the injection data and surface heave of
the In Salah storage site [3]. To make things simpler, we remove the vertical fault (F12) at
Well KB502, and the pressure build-up within the fault from the FE simulation. Namely,
we take only the pressure build-up in the reservoir layer of 20 m thickness from the FE
simulation results, and produce a synthetic surface deformation data by means of the
simplified FE model. Then, using the superposition approach combined with the analytical
solution derived in the present study, we invert for the reservoir pressure. Table 2 shows
the layering and material properties for the In Salah model simplified from [3]. In addition,
Figure 5 shows the reservoir pressure change calculated by Bjørnarå et al. [3] in a grid
setting of 1000 m × 1000 m × 20 m (i.e., Lre = 1 km and Hre = 20 m for each square-cuboid
grid), covering a large area of 25 km × 25 km.

Table 2. Layering and material properties for In Salah-inspired isotropic synthetic model (after Bjørnarå et al. [3]).

Layer Thickness [m] Young’s Modulus [GPa] Poisson’s Ratio [-] Remark

1 900 3 0.25 Shallow aquifer (Cretaceous)
2 750 5 0.30 Cap rock (Visean mudstone)
3 130 2 0.30 Lower cap rock
4 20 20 0.25 Tight sandstone
5 20 9 0.15 Reservoir
6 ∞ 15 0.30 Devonian (underburden)

Figure 5. Distribution of reservoir pressure change for an In Salah-inspired synthetic model, sim-
plified after Bjørnarå et al. [3]. Note that the size of each grid is 1000 m × 1000 m and each grid is
represented by a filled circle.

First, we re-calculate the surface deformation resulting from the reservoir pressure
build-up shown in Figure 5 yet now by using the linear superposition approach with the
analytical solution derived earlier in order to check if the linear superposition approach
produces the same results as the simplified FE model. The comparison of the results is
shown in Figure 6. It is clearly seen that the two results look almost identical to each other.
Note that the surface deformation in Figure 6 is plotted in a grid setting of 125 m × 125 m.
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Figure 6. Surface vertical displacement resulting from an In Salah-inspired reservoir pressure shown in Figure 5: (a) FE
solution; (b) Generalized Geertsma (GG) solution. Note that the vertical displacement in mm scale is plotted via surface
plot and the grid size is 125 m × 125 m.

The next task is to invert the surface deformation calculated by the FE model (i.e.,
shown in Figure 6a) by means of the inversion idea explained earlier. In our inversion
study here, we introduce some changes in the layer stiffness to see the impact of such
stiffness change on the inverted reservoir pressure build-up. Namely, we increase the
stiffness of each layer by 10% in the three different following scenarios. In Scenario 1, we
increase the stiffnesses of Layers 1–3, while keeping the other layers’ stiffnesses unchanged.
In Scenario 2, we increase the stiffnesses of only Layers 4 and 5 and in Scenario 3, for
Layer 6 only. In addition, we also run the inversion without changing any stiffness as
Scenario 0. The inversion results for all the four scenarios are plotted in Figure 7 in terms
of inverted pressure (left panels) and difference between inverted and true (right panels).
It is clearly shown that the stiffness change has noticeable impact on the inverted pressure,
and the impact is the most significant (more than 1 MPa or 10%) when the stiffnesses of
cap rock and reservoir are changed (Scenario 2 and shown in Figure 7e,f). This observation
illustrates that it is very important to estimate the high-confidence stiffnesses of cap rock
and reservoir in comparison to the other layers in the subsurface.

Figure 7. Cont.
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Figure 7. (left panels) Inverted reservoir pressure and (right panels) difference between inverted and true pressure: (a,b) for
Scenario 0 with all the stiffness as in Table 2; (c,d) for Scenario 1 with 10% higher-stiffness in overburden; (e,f) for Scenario 2
with 10% higher-stiffness in cap rock and reservoir; (g,h) for Scenario 3 with 10% higher-stiffness in underburden. Note that
the color range for the plots in the left panels is fixed between 0 and 10, and any higher or lower value is saturated and not
showing correctly.
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6. Conclusions

We have presented a generalized Geertsma solution that can consider any number of
layers in the subsurface whose properties and thicknesses can be different from layer to
layer. In addition, each layer can be VTI anisotropic, with which more realistic stiffness
can be simulated depending on condition of in situ stress or sediment bedding plane. The
accuracy of the newly-derived analytical solution is validated with respect to an FE-based
reference solution. Furthermore, it is found that the Hankel transform to be numeri-
cally performed can be done via a definite integral whose upper limit can be determined
optimally as inversely proportional to the overburden thickness (i.e., kmax ≥ 10/Hob).
The generalized Geertsma solution is then applied to a linear superposition framework
via square-cuboid-shaped grids so that we can calculate arbitrarily-distributed pressure
anomaly cases, not only the simple case of a constant pressure anomaly of cylinder shape.
Furthermore, we have also defined the condition that the lateral length of a square-cuboid
should be shorter than the overburden thickness (i.e., Lre/Hob ≤ 1.0) in order to guarantee
the accurate displacement calculation at the top surface for a square-cuboid shape pressure
via the equivalent cylinder shape pressure. The performance of this linear superposition
approach is tested by solving a realistic synthetic model based on the In Salah CO2 stor-
age site, simplified by removing the vertical fault in Well KB502. Finally, we look at the
influence of subsurface stiffness on inverted pressure by means of a simple inversion based
on the linear superposition approach. It is learned that the stiffnesses of cap rock and
reservoir are the most influencing parameters on the inversion result, suggesting that it is
very important to estimate the mechanical properties of cap rock and reservoir with high
accuracy (i.e., low uncertainty).

The next step to follow up among many possibilities would be that we apply the
solution approach presented in the current study to real data inversion of the In Salah
storage with taking into account known fault structure such as F12. For this purpose,
we may have to improve a limitation of the current approach that the subsurface should
be a horizontally-layered medium and cannot consider any tilted structure (e.g., faults
with different properties from layers). Tackling this limitation is our immediate task to
pursue. Finally, since the analytical solution approach is fast, its application to machine
learning-based inversion is also a desired task to follow up.
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Nomenclature

r radial coordinate [m]
z vertical coordinate [m]
ρ mass density [kg/m3]
Vp P-wave velocity in horizonal direction [m/s]
Vs S-wave velocity in horizonal direction [m/s]
Vpt P-wave velocity in vertical direction [m/s]
Vst S-wave velocity in vertical direction [m/s]
h layer thickness [m]
R radius of pressure anomaly [m or km]
λ Lamé first parameter in horizontal direction [Pa]
G Shear modulus in horizontal direction [Pa]
λt Lamé first parameter in vertical direction [Pa]
Gt Shear modulus in vertical direction [Pa]
ur radial displacement [m]
uz vertical displacement [m]
σrz traction in radial direction on z-plane
σzz traction in vertical direction on z-plane
p pore pressure anomaly [Pa]
U1 horizontal displacement in Hankel transform domain [m]
U3 vertical displacement in Hankel transform domain [m]
Srz traction in radial direction on z-plane in Hankel transform domain
Szz traction in vertical direction on z-plane in Hankel transform domain
P pore pressure anomaly in Hankel transform domain [Pa]
k Hankel transform parameter in radial direction [1/m]
∇ gradient operator
α Biot coefficient
A,B,C,D unknown coefficients to be determined for each layer
k1,2 Hankel transform parameter in vertical direction [1/m]
f1,2 vertical-to-horizontal displacement ratio in Hankel transform domain [-]
kmax upper limit of Hankel transform parameter k
Hob total thickness of whole overburden
cm P modulus [Pa]
ν Poisson’s ratio
gz,ij Green’s function for vertical displacement at point i due to a unit-magnitude pressure

anomaly at grid j [m]
Uz column vector of vertical displacements on top surface grid [m]
P column vector of pore pressure anomalies within reservoir grid [Pa]
Gz Green’s function matrix [m/Pa]
Req equivalent radius to a square rectangular of Lre × Lre
Lre horizontal edge length of a square-cuboid within reservoir grid
Hre height of a square-cuboid within reservoir grid
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