
ABSTRACT

Risk assessment of CO2 storage requires the use of geophysical monitoring techniques to

quantify changes in selected reservoir properties such as CO2 saturation, pore pressure and

porosity. Conformance monitoring and associated decision-making rest upon the quantified

properties derived from geophysical data. It is consequently crucial that these properties are

estimated with uncertainty assessment. A general framework combining seismic and con-

trolled source electromagnetic (CSEM) inversion in a first step, with rock physics inversion

in a second step is proposed. Fully Bayesian formulations are used in both steps allowing

proper quantification of uncertainty. The Bayesian rock physics inversion is the main focus

and rests upon two stages. The first one is a search stage and consists in exploring the

model space and deriving models with associated probability density function (PDF). The

second one is an appraisal or importance sampling stage, which is used as a ”correction”

step to ensure that the full model space is explored and that the estimated posterior PDF

can be used to derive quantities like marginal probability densities. Both steps are based on

the neighbourhood algorithm. The approach does not require any linearization of the rock

physics model or assumption about the model parameters distribution. After describing the

CO2 storage context, the available data at the Sleipner field before and after CO2 injection

(baseline and monitor), and the corresponding rock physics models, we perform an extended

sensitivity study. We show that prior information is crucial, especially in the monitor case.

We demonstrate that joint inversion of seismic and CSEM data is also key to quantify CO2

saturations properly. We finally apply the full inversion strategy to real data from Sleipner.

We obtain rock frame moduli, porosity, saturation and patchiness exponent distributions

and associated uncertainties along a 1D profile before and after injection. The results are

consistent with geology knowledge and reservoir simulations, i.e., that the CO2 saturations
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are larger under the caprock confirming the CO2 upward migration by buoyancy effect. The

estimates of patchiness exponent have a larger uncertainty, suggesting semi-patchy mixing

behaviour.
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INTRODUCTION

For large-scale CO2 storage projects, international regulations require the operator to set

up a suitable Measurement, Monitoring and Verification (MMV) plan both during and after

CO2 injection (Pawar et al., 2015). The objectives of such a plan are to ensure conformance,

containment, and early implementation of mitigation measures in case of leakage (Dean and

Tucker, 2017). Conformance verification requires demonstrating a good understanding of

the CO2 behavior in the storage complex. This can be achieved by comparing model-based

forecasts to monitoring measurements describing the CO2 plume. In practice, geophysical

measurements often play a key role in conformance verification. In this context, seismic

and/or CSEM (controlled source electromagnetic) surveys combined with proper imaging

methods offer the possibility to derive CO2 saturation or other relevant rock physics prop-

erties (Ghosh et al., 2015; Dupuy et al., 2017).

Joint inversion of CSEM and seismic data can be approached using structural or/and

petrophysical constraints. To favor structural similarity, Gallardo and Meju (2007) suggest

adding a cross-gradient term to the misfit function otherwise only consisting of the sum of

data misfits for the independent methods. Joint inversion with structural constraints has

been applied for salt imaging, where seismic migration is challenging due to high attenua-

tion in salt bodies and where CSEM can help mitigate such imaging challenges (Colombo

et al., 2014; Ceci et al., 2014; Colombo et al., 2018). For the petrophysically constrained

joint inversion, the coupling focuses on estimating rock physics properties using known

cross-relationships between these reservoir parameters and seismic and CSEM data (Hover-

sten et al., 2006; Du and MacGregor, 2010). Combining both structural and petrophysical

coupling is investigated by Abubakar et al. (2012) and Colombo and Rovetta (2018) while
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constraining seismic imaging by rock physics relationships is also explored in recent papers

(Aragao and Sava, 2020). Giraud et al. (2019) propose to account for uncertainties in joint

inversion through a Bayesian framework. More generally, Dell’Aversana (2014) provides an

extensive review of geophysical joint inversion approaches. For CO2 storage monitoring,

existing literature is limited to joint inversion of electrical resistivty tomography (ERT) and

seismic data with structural coupling at Ketzin and at CaMI FRS (Containment and Moni-

toring Institute Field Research Station) (Jordan et al., 2018; Rippe et al., 2018), constrained

CSEM inversion with seismic inversion results at Sleipner (Eliasson et al., 2014) and joint

rock physics inversion on CSEM and seismic data at Sleipner (Subagjo et al., 2018).

The quantitative workflow described here is a joint rock physics inversion approach and

uses a combination of geophysical and rock physics inversion methodologies (Dupuy et al.,

2016c). Geophysical inversion typically provides estimates of macroscale properties such

as seismic velocities, density or resistivity, while the rock physics inversion allows deriving

meso- to micro-scale properties such as rock frame and fluid parameters (Dupuy et al.,

2016a). However, the inverse problems associated with the first (geophysical inversion)

and second (rock physics inversion) steps are non-linear, highly under-determined and ill-

posed. Uncertainty evaluation is therefore of critical importance for proper monitoring

and decision-making associated with conformance verification. A CO2 storage site operator

might take critical decisions such as stopping injection or adapting the injection strategy

based on the monitoring results.

One way to allow for uncertainty evaluation consists in using a Bayesian formulation

for both inversion steps (Tarantola, 2005). The geophysical inversion step based on, e.g.,

methods like Full Waveform Inversion (FWI) or CSEM inversion, is often carried out us-

ing gradient-based local optimization techniques. The uncertainty estimation can in this
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case be performed using ensemble methods (Thurin et al., 2019) or with the computation

and analysis of the inverse of the Hessian (or the second derivative of the distance to be

minimized with respect to the model parameters). It can be interpreted as the posterior

covariance matrix in a local probabilistic sense (Eliasson and Romdhane, 2017). This ap-

proach generates of a set of equivalent models, all explaining similarly well observed data

and prior knowledge. The inversion results (quantities plus associated uncertainties) derived

from this first step are typically seismic velocities or impedances, density, and resistivity.

Those results can be used as input for the second inversion step, the rock physics inversion,

which will be the focus of this paper.

Numerous approaches have been developed and applied in the last decades to carry out

rock physics inversion for seismic reservoir characterization. Seismic reservoir characteriza-

tion is the generation of reservoir structure and properties using seismic data. We do not

intend to give a full review of the available rock physics inversion approaches. The readers

are referred to Doyen (2007) and Bosch et al. (2010) for an exhaustive overview including

geostatistical methods to estimate rock physics properties. In addition, Avseth et al. (2005)

provide a good introduction to quantitative interpretation methods, while Mavko et al.

(2009) and Guéguen and Palciauskas (1994) are useful books to understand the theoretical

background and applicability of the wide range of available rock physics models.

To estimate rock physics properties from seismic data or inversion results, one has to

solve an inverse problem where a distance (or a misfit function) is minimized. Because

the forward problems are usually analytic and very quick to compute, global optimization

or semi-global optimization techniques can be used. A full range of algorithms, includ-

ing simulated annealing, genetic algorithms, and the neighbourhood algorithm, have been

developed from the initial Monte-Carlo approach. Coléou et al. (2005) use seismic AVO
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(amplitude versus offset) attributes to derive porosity estimates in a rock physics inversion

framework. Grana et al. (2012) also formulate the optimization problem in a stochastic

manner while Dupuy et al. (2016c) and Dupuy et al. (2016b) use the neighbourhood algo-

rithm (Sambridge, 1999a) to determine the distribution of rock physics parameters without

linearizing the forward operator. When compared to local optimization techniques, direct

search (i.e, derivative free) optimization schemes offer the possibility to avoid convergence

towards local minima when the misfit function has a complex shape. However, obtaining

statistically meaningful information requires a careful sampling including both ”good” and

”bad” data-fitting models.

Probabilistic sampling, or importance sampling, can provide multiple realizations of

prior and posterior distributions (Tarantola, 2005). Mosegaard and Tarantola (1995) explain

that obtaining a maximum likelihood model is not sufficient to quantify uncertainty. For a

model space with a large number of dimensions, it is necessary to generate a collection of

equivalent models from the posterior distribution using a sampling algorithm (Metropolis

algorithm in this case). The pioneering work of Sambridge and Mosegaard (2002) give

a first review of sampling algorithms for geoscience applications. Oh and Kwon (2001)

propose an implementation of Markov Chain Monte Carlo (MCMC) to infer information

from posterior distributions of resistivity data derived by simulated annealing. Gunning and

Glinsky (2007) compute the posterior distribution using MCMC but parametrize the model

space with additional parameters to analyze reservoir quality. More recently, de Figueiredo

et al. (2017) propose a Bayesian inversion combining linearized seismic AVO and rock physics

inversion considering multi-modal prior distributions. In case of prior information in the

form of Gaussian mixtures, they show that the use of a Gibbs sampler is required for

sampling the posterior distribution and analyzing the uncertainty. Fjeldstad and Grana
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(2018) also consider Gaussian mixtures for prior models to invert for rock-fluid classes.

Jullum and Kolbjørnsen (2016) use a similar approach to derive rock physics properties

from reflection data via a MCMC sampling algorithm using Sleipner poststack data after

simplifying and linearizing the rock physics model.

Instead of linearizing the forward model, our approach uses a complete rock physics

model and applies the two-stage workflow proposed by Sambridge (1999a,b), combining

search and importance sampling stages to estimate selected rock physics parameters with

uncertainty assessment. We first recall the Bayesian inversion method before describing the

neighbourhood algorithm used for the search and appraisal stages of the second inversion

step (rock physics inversion). We then present the CO2 storage monitoring context and

the associated rock physics models. In the third section, we show sensitivity tests and

discuss the importance of prior information. We then demonstrate the workflow on a real

data example from the Sleipner field where we combine inputs from seismic and CSEM

inversions to derive rock frame properties, fluid saturations and distributions. Finally, we

discuss limitations and possible improvements of the proposed approach.

THEORY

Bayesian inversion method

Our proposed two-step approach combines independent inversion of geophysical data with

rock physics inversion. The use of a Bayesian formulation is motivated by the need to

incorporate prior information and uncertainties in both steps. Bayesian inference consists

in using Bayes’ theorem to update a prior probability distribution to a posterior one by

making use of new (observed) information (Tarantola, 2005). The solution to a Bayesian
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inverse problem can be written as:

ρpost(m) ∝ ρprior(m) L (m|dobs) , (1)

where m is the model parameter vector to be estimated, ρpost(m) is the posterior probability

density function (PDF), and ρprior(m) is the prior PDF describing our initial knowledge

about the model parameters. L (m|dobs) denotes the data likelihood function describing

the probability of having a model m, given observation dobs. This probability depends on

the fit between the observations and predictions for a given model m.

For simplicity, we assume that the prior PDF can be described by a multidimensional

Gaussian distribution, but our approach for the rock physics inversion step is not limited

to this assumption. We define ρprior(m) as

ρprior(m) ∝ exp

(
−1

2
(m−m0)T Cmprior

−1 (m−m0)

)
, (2)

where m0 and Cmprior denote the prior mean model and the prior model covariance,

respectively. The data likelihood function can be described by first defining the misfit ζ(m)

between observed and modeled data such as

ζ(m) = (dobs − g(m))T C−1
d (dobs − g(m)) . (3)

Here, Cd is the data covariance matrix describing uncertainties and correlations in observed

data. The operator T is the transpose (or conjugate transpose in case of complex entries)

and g(m) denotes a general (linear or non-linear) forward modeling operator describing the
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link between a (predicted) data vector d and a model vector m:

d = g(m). (4)

Assuming that the data likelihood function also follows a multidimensional Gaussian dis-

tribution, we can write:

L (m|dobs) ∝ exp

(
−1

2
ζ(m)

)
. (5)

In the geophysical domain, g(m) is the operator linking geophysical data (e.g., pre-stack

seismic data or electromagnetic data) to selected geophysical properties (e.g., seismic veloc-

ities or resistivities) for a given acquisition. For FWI and CSEM methods, it corresponds

to the numerical solutions of the acoustic wave equation and the Maxwell equations at

the receiver locations, respectively. Solving the associated inverse problem requires dealing

with a large-scale non-linear inverse problem where only local or ensemble-based optimiza-

tion techniques are tractable in terms of computational requirements (Virieux and Operto,

2009). One efficient way of approximating the posterior PDF consists in linearizing the

forward modeling operator around the maximum a posteriori model mLSI that can be

derived with least square inversion techniques (Tarantola, 2005). The posterior can then be

approximated with a multidimensional Gaussian distribution such as

ρpost(m) ∝ exp

(
−1

2
(m−mLSI)T Cmpost

−1 (m−mLSI)

)
, (6)

where the posterior model covariance Cmpost can be calculated as a reduction of the prior

model covariance using the information gained from the geophysical inversion (Duffet and
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Sinoquet, 2006; Zhu et al., 2016; Eliasson and Romdhane, 2017). Posterior covariance

analysis is useful for assessing uncertainty in the velocity or resistivity models obtained by

FWI or CSEM inversion. The posterior (model) covariance matrix Cmpost obtained after

the first inversion step (FWI and CSEM) is used as the prior (data) covariance matrix in

the second inversion step (rock physics inversion). This is a convenient way to propagate

uncertainty in both steps. For more details on the workflow, see Dupuy et al. (2021).

In the rock physics domain, g(m) is the operator linking geophysical properties to rock

physics properties m (e.g., porosity, pore pressure and fluid saturation) and is usually re-

ferred to as the rock physics model. Similarly to the first step, a data fitting process is

carried out between modeled rock physics properties and observed data, corresponding to

geophysical properties. We use the Gassmann (1951) rock physics model with an effective

fluid phase calculated according to the Brie et al. (1995) equation. Similar to the first step,

the function g(m)−1 cannot be explicitly derived in the case of multiphase pore fluids. How-

ever, given the low computational requirement of the forward model, the inverse problem

can be solved with global or semi-global optimization algorithms such as Monte-Carlo or

the neighbourhood algorithm (NA) (Sambridge, 1999a). In our approach, we use the NA

following the work of Dupuy et al. (2017) and we describe the misfit between observed and

modeled data using equation 3, where Cd is the data covariance matrix describing data

noise statistics and equal to the posterior covariance matrix derived after FWI or CSEM in-

version. In the examples discussed below, the model parameters m are selected rock physics

properties, the rock physics model function is denoted by g, while observed data dobs are

geophysical properties from the geophysical inversion step (using for example FWI and/or

CSEM). The data covariance is therefore described by the posterior covariance matrix from

the first (geophysical inversion) step.
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Neighbourhood Algorithm: search and importance sampling

In this work, both search and appraisal stages described in Sambridge (1999a) and Sam-

bridge (1999b) are used. The first stage is a direct (i.e., derivative free) guided search

exploring the model space and calculating the misfit between modeled g(m) and observed

dobs data following equation 3. It is aimed at efficiently finding an ensemble of models that

sample the ”good” data fitting regions of the parameter space using the geometric proper-

ties of the Voronöı cells. The Voronöı diagram allows to divide a multi-dimensional model

space into convex polyhedra (cells) which are the nearest neighbour regions of the samples

calculated with a given distance measure (L2 norm in NA). In Bayesian inference, we do

not only look for the most likely model, but for the probability of all models. Consequently,

a thorough exploration of the whole model space is necessary. The NA has excellent prop-

erties in terms of exploration of large parts of the model space combined with convergence

towards high likelihood models.

The main advantage of the NA search stage is the way that the search algorithm is

parametrized, i.e., with only three parameters allowing exploration of the model space in

a smart and efficient way. The search stage is parametrized by the number of iterations

niter, the number of samples generated at each iteration nsamp and the number of resampled

cells at each iteration ncell. At the first iteration, nsamp models are selected in the model

space following a uniform distribution between minimum and maximum values for each

inverted parameter. At each iteration, probability density (misfit) is calculated for each

sample (model) considering data likelihood and prior distributions (equations 1 and 3).

Among these nsamp models, ncell samples with the highest PDF (lowest misfit) are selected.

Around these ncell samples, nsamp new models equally distributed in the Voronöı cells are
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generated. These cells are built from the samples of the previous iterations and depend

on the neighbouring cells via the Voronöı diagram. At the end, niter x nsamp models are

generated with a good sampling concentration in the promising regions of the model space.

The convergence properties will depend on the choice of the exploration parameters (niter,

nsamp and ncell). For example, if ncell is low and niter is high, the search will be more local

and more models will be found close to the global minimum, while if ncell is high and niter

is low, the search will be wider and explore more the model space. The best compromise

between the three parameters is application dependent and is intensively tested for rock

physics inversion (Dupuy et al., 2016c).

The second stage can be referred to as the appraisal/importance sampling stage. It

answers the need to infer statistically meaningful information (e.g., trade-offs, resolution

and confidence intervals) from the ensemble of models generated during the search stage.

The approach proposed in Sambridge (1999b) relies on a Bayesian point of view. During the

importance sampling, no additional forward problems are solved. The Voronöı cells are also

used at this stage but to construct a multi-dimensional interpolant of the misfit measure and

efficiently approximate the posterior PDF ρpost(m) (representing the information contained

in the ensemble of models):

ρNA(m) ≈ ρpost(m) . (7)

The neighborhood approximation of the PDF ρNA(m) can then be used for the evaluation of

Bayesian integrals and derive relevant statistical indicators such as posterior mean model,

posterior model covariance matrix, resolution matrix and marginal distributions. Prior

model probability distributions can be easily integrated in the post-Bayesian analysis step.

The appraisal stage requires the generation of a (new) resampled ensemble distributed
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according to the approximate PDF ρNA(m). Sambridge (1999b) suggests the use of a Gibbs

sampler and discuss in detail the main factors influencing the computational burden of the

appraisal stage. The tuning parameters for this stage are the number of random walks

nwalks and the number of steps nsteps for each random walk. They are often derived by trial

and error. After each trial, the convergence of the sampler can be checked by computing

the potential scale reduction factor (PSR factor, (Gelman et al., 2013)). The dependency of

the results on the starting points used for each random walk can also be analysed to verify

the reliability of the estimated distributions.

CO2 STORAGE MONITORING: CONTEXT AND MODELS

Sleipner case study

Sleipner is the oldest CO2 storage site in activity. In the North Sea, offshore Norway,

approximately one million tonnes of CO2 per year have been injected into the Utsira saline

aquifer since 1996. Regular seismic surveys have been acquired since 1994, before the start

of the injection. In this study, we used baseline (1994) and monitor (2008) vintages for

a real data case study. The Utsira sandstone has very good reservoir quality thanks to

its high permeability and high porosity. It is also an extensively studied rock formation,

allowing several of the rock physics parameters to be determined with good confidence.

The mineralogical composition is a mix of seven minerals, with mainly quartz (75%),

K-feldspar (13%), and other minerals (calcite, albite, aragonite and mica) in smaller pro-

portions (3% each) (Chadwick et al., 2004). Effective grain density is calculated by mass

weighted average while the effective grain bulk modulus is calculated by averaging Hashin

and Shtrikman (1963) bounds based on the mineral composition of the Utsira sandstone.
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Pore fluid properties (brine for the baseline case and brine mixed with supercritical CO2 for

the monitor case) depend on pore pressure, temperature and salinity, which are well-known

at Sleipner (Ghaderi and Landrø, 2009). We use the Utsira reservoir pressure and temper-

ature (37◦C and 11MPa) to calculate brine and CO2 properties with empirical equations

(Batzle and Wang, 1992) and with equations of state (Span and Wagner, 1996; Lindeberg,

2013). We use the available information to define prior distributions of the grains (KS and

ρS) and fluid (Kw, ρw, KCO2 and ρCO2) properties described in the following subsection.

Rock physics models

In this section, we describe the forward modeling operator g which is a set of analytical non-

linear relations linking rock physics parameters, describing the properties of interest, and

geophysical data (seismic, gravimetry, CSEM and/or electrical data). Extensive literature is

available to build relevant rock physics models. The approaches range from simple to quite

complex and can be empirical or more generic. For CO2 storage in high porosity sandstone

aquifers, generic Gassmann (1951)’s relations for seismic data and Archie (1942)’s law for

electrical properties are adopted in many papers (Dupuy et al., 2017; Falcon-Suarez et al.,

2018). The seismic velocities (P-wave velocity VP and S-wave velocity VS) can be described

with respect to bulk and shear moduli (here undrained bulk modulus KU and undrained

shear modulus GU ) as:

VP =

√
KU + 4GU/3

ρ
, (8)

VS =

√
GU
ρ
. (9)
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The bulk density ρ is usually calculated as a weighted average over the fluid and solid

components of the porous medium:

ρ = (1− φ) ρS + φ ρf , (10)

where φ is the porosity, ρS and ρf are the grains and fluid density, respectively. The

mechanical moduli KU and GU are derived from the Gassmann (1951)’s equations:

KU =
φ KD + (1− (1 + φ) KD/KS) Kf

φ (1 + ∆)
, (11)

GU = GD, (12)

with the additional parameter ∆ is defined as:

∆ =
1− φ
φ

Kf

KS

(
1− KD

(1− φ) KS

)
. (13)

Together with the porosity φ, the dry bulk modulus KD and the dry shear modulus

GD describe the rock frame (drained state). The bulk modulus Kf of the fluid saturating

the pores and the bulk modulus KS of the grains are the additional parameters used in

Gassmann’s equations for a saturated porous medium (with one fluid phase). Equations

8 to 13 are sufficient to establish an adequate link between the most relevant rock physics

and elastic properties for a baseline case (before CO2 injection). Table 1 summarizes these

properties and related input data.

With the injection of CO2, the pores of the Utsira sandstone will be partially filled with

brine and supercritical CO2 (given the reservoir pressure and temperature conditions at

Sleipner). The most common way to account for partial saturation is to derive properties
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of an effective fluid phase that can be plugged into Gassmann’s equations (normally defined

for a single fluid in the pores). The effective fluid density ρf is calculated with respect to

brine ρw and CO2 ρCO2 densities and CO2 saturation SCO2 as:

ρf = (1− SCO2) ρw + SCO2 ρCO2 . (14)

The effective fluid bulk modulus Kf is a critical parameter and can be calculated in different

ways. Dupuy et al. (2017) show that using the Brie et al. (1995) equation is a convenient

way to span the different models by introducing an additional degree of freedom via the

exponent e. This exponent is called Brie exponent or patchiness exponent as it corresponds

to uniform mixing of fluid phases for large values (up to 40) and patchy mixing for values

tending towards 1. The Brie equation is then expressed with respect to brine bulk modulus

Kw and CO2 bulk modulus KCO2 as well as patchiness exponent e and CO2 saturation

SCO2 :

Kf = (Kw −KCO2) (1− SCO2)e +KCO2 . (15)

In addition to the 2008 seismic data, we consider also CSEM data (acquired in the same

year) to derive bulk resistivity Rt. The common way to link resistivity with rock physics

parameters is to use the Archie (1942)’s law. This formula expresses the resistivity with

respect to porosity φ, CO2 saturation SCO2 , brine conductivity σw, cementation exponent

m and saturation exponent n as:

Rt =
φ−m(1− SCO2)−n

σw
. (16)
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The parametrization and the associated geophysical observables for the monitor case

(partial saturation due to the CO2 injection) are summarized in Table 1. Part of these rock

physics properties can be estimated a priori from geological knowledge, log data or baseline

inversions (Yan et al., 2019) as shown in the real data application section.

SYNTHETIC SENSITIVITY TESTS

Search and appraisal stages

Figures 1 and 2 present examples of derived rock physics inversion results after search and

appraisal stages. For both cases, the input data is a vector with two entries corresponding

to bulk density and P-wave velocity values. The output vector is a 7x1 vector with the rock

physics properties described in Table 1. This test corresponds to the sensitivity test for the

baseline data shown in the following section. For this test, we consider a total number of

samples corresponding to nsamp = 300 resampled models for niter = 100 iterations, i.e., 30

300 models (knowing that 300 models are drawn randomly in the model space at the first

iteration) for the search stage. For the appraisal stage, the convergence is reached after

a total of nmodels = 800, 000 resampled models corresponding to nwalks = 10, 000 random

walks and a maximum of nsteps = 80 steps for each walk.

Selected 2D sections of the model space are displayed after the search (top panels) and

appraisal stages (bottom panels) in Figures 1 and 2. For the results of Figure 1, a bounded

uniform distribution of the inverted properties is assumed (i.e., very weak prior information).

Figure 2 shows the same results when the prior information about the inverted parameters

is described by normal distributions with properties given in Table 2. The prior PDF is

multiplied by the data likelihood following equation 1. The results of the appraisal stages
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Table 1: Parameters (model space) and input data for the baseline and monitor cases. In
the baseline case, the porous medium is fully brine saturated so the model space is limited
to seven parameters: KS , ρS , Kf , ρf , φ, KD and GD. The input data is also limited to
seismic data for the baseline case, i.e., only VP and ρ.

Estimated parameters

Grains parameters
Name Bulk modulus Density
Symbol KS ρS
Unit GPa kg/m3

Brine parameters
Name Bulk modulus Density
Symbol Kw ρw
Unit GPa kg/m3

CO2 parameters
Name Bulk modulus Density
Symbol KCO2 ρCO2

Unit GPa kg/m3

Dry rock frame parameters
Name Porosity Bulk modulus Shear modulus
Symbol φ KD GD
Unit GPa GPa

Archie parameters
Name Brine conductivity Cementation exponent Saturation exponent
Symbol σw m n
Unit S/m

Partial saturation parameters
Name CO2 saturation Patchiness exponent
Symbol SCO2 e
Unit

Input data

Seismic data
Name P-wave velocity Bulk density
Symbol VP ρ
Unit m/s kg/m3

EM/electrical data
Name Bulk resistivity
Symbol Rt
Unit Ω.m
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(bottom parts of the figures) show the distribution of resampled models assuming equal

likelihood. This resampled distribution allows to calculate Bayesian integrals and derive

marginal probabilities, resolution matrices and confidence intervals. It is worth noting that,

similar to Sambridge (1999b) observations, the spread of the models is wider after appraisal

stage than after the search stage. Consequently, the ensemble of models obtained after the

search stage and the derived marginal PDF may give a false impression of accuracy.

Figure 1: Bayesian rock physics inversion results after search and appraisal stages. The top
line gives the distribution of models with associated PDF after the search stage (a-d). The
bottom line gives all resampled models after the appraisal stage (all models are equally likely
after sampling) (e-h). The results are given for a case where seven rock physics parameters
are inverted: (a,e) grains density and grains bulk density, (b,f) fluid density and fluid bulk
modulus, (c,g) dry bulk modulus and porosity and (d,h) dry shear modulus and dry bulk
modulus. The input data are P-wave velocity VP and bulk density ρ. Prior information
assumes a bounded uniform distribution for each parameter. The inversion ranges are given
in Table 2.
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Figure 2: Bayesian rock physics inversion results after search and appraisal stages. The
top line gives the distribution of models with associated PDF after the search stage (a-d).
The bottom line gives all resampled models after the appraisal stage (all models are equally
likely after sampling) (e-h). The results are given for a case where seven rock physics
parameters are inverted: (a,e) grains density and grains bulk density, (b,f) fluid density
and fluid bulk modulus, (c,g) dry bulk modulus and porosity and (d,h) dry shear modulus
and dry bulk modulus. The input data are P-wave velocity VP and bulk density ρ. The
prior distributions are applied to the PDF calculated during the search stage and are based
on normal distributions with properties given in Table 2 along with the inversion ranges.

Parametrization and prior models

We run a set of realistic synthetic tests to infer the best parametrization and input data

choice for the Sleipner real data (following section). We test both baseline and monitor

cases using the rock physics models defined in the previous section. For the monitor tests,

we compare the derived results for different cases involving: (1) uniform and normal prior

distributions, (2) parameters fixed to their true value (to reduce the size of the model space);

(3) low and high CO2 saturation, and (4) different input data (seismic only or seismic and

CSEM).
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For the baseline case, the seven rock physics parameters are inverted from P-wave veloc-

ity and bulk density input data, considering the cases of truncated (between minimum and

maximum values) uniform (Figure 3) and Gaussian prior distributions (mostly on grains

and fluid properties, Figure 4). The prior distributions are also displayed for comparison.

Table 2 gives the parameter ranges and the prior properties.

The posterior PDF (visualized using 1D and 2D marginal distributions) is improved

(uncertainties reduced) when stronger prior information is included (Gaussian prior). The

uncertainty of rock frame properties (dry bulk and shear moduli and porosity) is reduced

mainly thanks to better constraints (stronger prior information) on the four other param-

eters (grains and fluid properties). These four parameters have stronger prior information

but the uncertainty on their inverted values is large (Figure 4), mainly because the seismic

input data (P-wave velocity and density) are weakly sensitive to these parameters (Dupuy

et al., 2016c).

In a second stage, the results from the inversion of the baseline data are used to de-

fine prior distributions for the monitor case, by assuming truncated Gaussian distributions

centered around true values with properties given in Table 3. In these sensitivity tests,

we assume that the baseline results help to decrease the standard deviation and that we

have less uncertainty on the fluid, grains and rock frame parameters. For the following real

data case, the posterior PDF from the baseline inversion is used as prior PDF and 99%

confidence intervals are selected from the baseline PDF to define model space limits for the

monitor case.

Figures 5 and 6 show the Bayesian rock physics inversion results for the monitor case

involving inversion for eleven rock physics parameters, assuming uniform and Gaussian
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prior distributions, respectively. We select prior distribution following truncated Gaussian

distributions with mean centered around true value and a standard deviation more or less

large depending on the knowledge we expect to have on each parameter. For example, the

grain properties of the Utsira sands are well-known so we set up a small standard deviation.

CO2 saturation is the main driver of P-wave velocity changes and we set up a large standard

deviation as we do not have a priori information on this parameter.

Significant changes of 1D marginal probabilities for SCO2 saturation and for the patch-

iness exponent e can be observed, with a better convergence towards true values of CO2

saturation and patchiness exponent (SCO2 = 0.2 and e = 5) when Gaussian prior is included

(Figure 6). The 1D marginal distribution for the rock frame properties and the porosity

are also slightly improved in Figure 6 compared to Figure 5, suggesting rather low moduli

and high porosity (approximately 35%) with low uncertainty. Significant changes for most

of the 2D marginal probabilities can be noted with a clear Gaussian shape when normal

distributions are considered for the prior information. These relative large uncertainties

(large standard deviation) for the parameters can be interpreted from the ambiguity in

saturation-patchiness exponent relation to P-wave velocity (see next section).

Figure 7 displays the inversion results when the prior information is described with

normal distributions as given in Table 3 for KD, GD, φ, SCO2 and e. Compared to the case

of Figure 6, the other parameters (KS , ρS , Kw, ρw, KCO2 , and ρCO2) are fixed to their

true values. The derived 1D marginal probabilities for SCO2 and e are consistent with the

true values (SCO2 = 0.2 and e = 5) although the CO2 saturation is slightly overestimated.

Compared to Figure 6, the rock frame properties and porosity posterior PDF are also

improved.
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Figure 8 displays the results when the true CO2 saturation is equal to SCO2 = 0.8.

Similar trends are obtained when compared to those of Figure 7. CO2 saturation estimates

(4th column/row of Figure 8) are updated. One can note that the Gaussian shape of the

SCO2 marginal probability distribution is not as clean as the case with SCO2 = 0.2 (Figure

7. This reflects the well-known trade-off between these the patchiness exponent and the

CO2 saturation which are difficult to discriminate when CO2 saturation is high (Dupuy

et al., 2017).

Figures 9 and 10 show the same tests when bulk resistivity Rt is used as an additional

input (to P-wave velocity and density). In this case, the rock physics models include

equation 16 (Archie’s law), resulting in four additional inverted parameters. For simplicity,

we assume the electrical properties (brine conductivity σw, cementation exponent m and

saturation exponent n) to be known and fixed to their true values (Table 3).

The estimated marginal probability distributions, including SCO2 and e, are significantly

updated in Figure 10 when compared to the case shown in Figure 8. The peaks of the

1D marginals are consistent with true values and have a narrower spread. For SCO2 =

0.2, the 1D marginal PDF shows an uni-modal normal-like shape with the peak around

0.2 and the 1D marginal probability distribution for e is also quite narrow (Figure 9).

However, it is not a significant improvement compared to Figure 7 where only seismic data

are used. Conversely, when CO2 saturation is equal to 0.8 (Figure 10), the estimation of

CO2 saturation is strongly improved compared to Figure 8. The peak of the distribution

is located close to the true value for the saturation and is more spread for the patchiness

exponent. The resistivity is sensitive almost only to saturation (the other parameters in

the Archie relation being fixed or have strong a priori) so it strongly constrains saturation,

while the P-wave velocity drives the estimation of the patchiness exponent.
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Figure 3: Baseline case - Uniform prior information - Input data = VP , ρ.
Bayesian rock physics inversion results after search and appraisal stages. The prior in-
formation consists in uniform distributions between minimum and maximum values given
in Table 2. The diagonal shows the 1D marginal posterior PDF in continuous blue lines
and the 1D prior distribution in dashed blue lines, and the lower left half shows the 2D
marginal posterior PDF. Posterior marginal distributions are calculated with kernel density
estimates. The results are given for the baseline case where seven rock physics parameters
are inverted. The input data are P-wave velocity VP and bulk density ρ.
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Figure 4: Baseline case - Gaussian prior information - Input data = VP , ρ.
Bayesian rock physics inversion results after search and appraisal stages. The upper right
half shows the 2D prior distributions (normal distributions with properties given in Table
2), while the diagonal shows the 1D marginal posterior PDF in continuous blue lines and
the 1D prior distribution in dashed blue lines, and the lower left half shows the 2D marginal
posterior PDFs. Posterior marginal distributions are calculated with kernel density esti-
mates. The results are given for the baseline case where seven rock physics parameters are
inverted. The input data are P-wave velocity VP and bulk density ρ.
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Table 2: Inversion ranges, prior properties for the normal distribution of baseline parameters
and corresponding seismic data. Note that we have assumed strong prior information on
grains (KS and ρS) and fluid (Kf and ρf ) parameters and little information on rock frame
properties (φ, KD and GD). The inversion ranges are also the bounding values for prior
distributions.

KS(GPa) ρS(kg/m3) Kf (GPa) ρf (kg/m3) φ KD(GPa) GD(GPa)

Inversion range Min 35 2600 2 1000 0.05 0.1 0.1
Max 45 2700 2.5 1050 0.45 20 20

Gaussian distribution Mean (true value) 39.29 2664 2.3 1030 0.36 2.56 0.84
Standard deviation 4 100 0.3 10 0.2 2 2

VP (m/s) ρ(kg/m3)
Corresponding calculated data 2057 2076

Table 3: Inversion ranges, prior properties for the normal distribution of monitor parameters
and corresponding seismic and electrical data. Note that we have strong prior information on
grains (KS and ρS) and fluids (Kw, ρw, KCO2 and ρCO2) parameters and weaker information
on rock frame properties (φ, KD and GD) from the baseline inversion. We have very little
prior information on CO2 saturation SCO2 and patchiness exponent e. The inversion ranges
are also the bounding values for prior distributions.

Seismic KS(GPa) ρS(kg/m3) Kw(GPa) ρw(kg/m3) KCO2
(GPa) ρCO2

(kg/m3)

Inversion range Min 39 2650 2.25 1025 0.07 680
Max 40 2670 2.35 1035 0.08 715

Gaussian distribution Mean (true value) 39.29 2664 2.3 1030 0.075 700
Standard deviation 0.1 1 0.01 0.5 0.00005 0.5

Seismic φ KD(GPa) GD(GPa) SCO2 e

Inversion range Min 0.05 0.1 0.1 0 1
Max 0.45 20 20 1 40

Gaussian distribution Mean (true value) 0.36 2.56 0.84 0.2 or 0.8 5
Standard deviation 0.1 4 4 0.4 10

CSEM φ SCO2
σw(S/m) m n

Inversion range Min 0.05 0 5.5 1 2
Max 0.45 1 5.5 1 2

Gaussian distribution Mean (true value) 0.36 0.8 5.5 1 2
Standard deviation 0.1 0.4 0 0 0

Corresponding data VP (m/s) ρ(kg/m3) Rt(Ω.m)
SCO2

= 0.2 1648 2052 0.79
SCO2

= 0.8 1397 1981 12.63
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Figure 5: Monitor case - Uniform prior information - Input data = VP , ρ.
Bayesian rock physics inversion results after search and appraisal stages. The prior infor-
mation consists in uniform distributions between minimum and maximum values given in
Table 3. The diagonal gives the 1D marginal distributions in continuous blue lines and the
1D prior distribution in dashed blue lines, and the lower left half gives the 2D marginal
posterior PDFs. Posterior marginal distributions are calculated with kernel density esti-
mates. The results are given for the monitor case where eleven rock physics parameters
are inverted (the five most meaningful parameters are plotted). The input data are P-wave
velocity VP and bulk density ρ.
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Figure 6: Monitor case - Gaussian prior information - Input data = VP , ρ.
Bayesian rock physics inversion results after search and appraisal stages. The upper right
half gives the 2D prior distributions (normal distributions with properties given in Table
3), while the diagonal gives the 1D posterior marginal distributions in continuous blue
lines and the 1D prior distribution in dashed blue lines and the lower left half gives the
2D marginal posterior PDFs. Posterior marginal distributions are calculated with kernel
density estimates. The results are given for the monitor case where eleven rock physics
parameters are inverted (the five most meaningful parameters are plotted). The input data
are P-wave velocity VP and bulk density ρ. The prior distributions are normal distributions
with properties given in Table 3.
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Figure 7: Monitor case - Gaussian prior information and some parameters fixed - Input
data = VP , ρ - SCO2 = 20%.
Bayesian rock physics inversion results after search and appraisal stages. The upper right
half gives the 2D prior distributions (normal distributions with properties given in Table 3),
while the diagonal gives the 1D marginal posterior PDFs in continuous blue lines and the 1D
prior distribution in dashed blue lines, and the lower left half gives the 2D marginal posterior
PDFs. Posterior marginal distributions are calculated with kernel density estimates. The
results are given for the monitor case where five rock physics parameters are inverted. The
input data are P-wave velocity VP and bulk density ρ. The prior distributions are given
for porosity, dry bulk and shear moduli, saturation and patchiness exponent. The other
parameters (KS , ρS , Kw, ρw, KCO2 and ρCO2) are fixed to their true values. The CO2

saturation is equal to 20 %.
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Figure 8: Monitor case - Gaussian prior information and some parameters fixed - Input
data = VP , ρ - SCO2 = 80%.
Bayesian rock physics inversion results after search and appraisal stages. The upper right
half gives the 2D prior distributions (normal distributions with properties given in Table 3),
while the diagonal gives the 1D marginal posterior PDFs in continuous blue lines and the 1D
prior distribution in dashed blue lines, and the lower left half gives the 2D marginal posterior
PDFs. Posterior marginal distributions are calculated with kernel density estimates. The
results are given for the monitor case where five rock physics parameters are inverted. The
input data are P-wave velocity VP and bulk density ρ. The prior distributions are given
for porosity, dry bulk and shear moduli, saturation and patchiness exponent. The other
parameters (KS , ρS , Kw, ρw, KCO2 and ρCO2) are fixed to their true values. The CO2

saturation is equal to 80 %.
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Figure 9: Monitor case - Gaussian prior information and some parameters fixed - Input
data = VP , ρ, Rt - SCO2 = 20%.
Bayesian rock physics inversion results after search and appraisal stages. The upper right
half gives the 2D prior distributions (normal distributions with properties given in Table 3),
while the diagonal gives the 1D marginal posterior PDFs in continuous blue lines and the 1D
prior distribution in dashed blue lines, and the lower left half gives the 2D marginal posterior
PDFs. Posterior marginal distributions are calculated with kernel density estimates. The
results are given for the monitor case where five rock physics parameters are inverted. The
input data are P-wave velocity VP , bulk density ρ and resistivity Rt. The prior distributions
are given for porosity, dry bulk and shear moduli, saturation and patchiness exponent. The
other parameters (KS , ρS , Kw, ρw, KCO2 , ρCO2 , σw, m and n) are fixed to their true values.
The CO2 saturation is equal to 20 %.
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Figure 10: Monitor case - Gaussian prior information and some parameters fixed - Input
data = VP , ρ, Rt - SCO2 = 80%.
Bayesian rock physics inversion results after search and appraisal stages. The upper right
half gives the 2D prior distributions (normal distributions with properties given in Table 3),
while the diagonal gives the 1D marginal posterior PDFs in continuous blue lines and the 1D
prior distribution in dashed blue lines, and the lower left half gives the 2D marginal posterior
PDFs. Posterior marginal distributions are calculated with kernel density estimates. The
results are given for the monitor case where five rock physics parameters are inverted. The
input data are P-wave velocity VP , bulk density ρ and resistivity Rt. The prior distributions
are given for porosity, dry bulk and shear moduli, saturation and patchiness exponent. The
other parameters (KS , ρS , Kw, ρw, KCO2 , ρCO2 , σw, m and n) are fixed to their true values.
The CO2 saturation is equal to 80 %.
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REAL DATA CASE STUDY: SLEIPNER CO2 STORAGE

MONITORING

Seismic and CSEM inversion results

Following the sensitivity tests of the previous section, we choose an appropriate strategy for

estimating relevant properties from Sleipner data. Before CO2 injection, we use seismic 1994

vintage data to derive P-wave velocity and bulk density models (Yan et al., 2019). Along the

same 2D inline (inline 1836), we use the 2008 seismic vintage to derive P-wave velocity and

bulk density models showing a strong velocity drop due to the injected CO2 (Romdhane and

Querendez, 2014). In addition, 2D CSEM data were acquired in 2008 and CSEM inversion

is carried out by Park et al. (2013) and Bøe et al. (2017) to derive resistivity models. The

chosen seismic 2D line (inline 1836) intersects the injection point and the CSEM line in

the southern part of the CO2 plume (Figure 11). We extract the corresponding 1D P-wave

velocity, density and resistivity profiles at this location. Extracted 1D profile of P-wave

velocity for baseline and monitor, of density (for baseline) and resistivity (for monitor) are

displayed in Figure 12 along with uncertainty ranges for these input data. It is worth noting

the strong decrease of P-wave velocity between monitor and baseline cases from 850 m deep

and the high resistivity values for the same depth range.

Rock physics model calibration

As described in the rock physics model section and displayed in the sensitivity tests, there

is a trade off between CO2 saturation and patchiness exponent. This exponent describes

the way the fluid phases are mixed in the pore space and allow to build an effective fluid

bulk modulus Kf . Using the parameters given in Table 3 for the typical monitor case, we
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derive the values of P-wave velocity and resistivity with respect to CO2 saturation in Figure

13. We observe large differences of the P-wave velocity response depending on the value of

the patchiness exponent e. When e is close to 40, the velocity drop is very sharp and the

velocity change is small when CO2 saturation is greater than 0.2. This corresponds to fluid

mixing so-called uniform mixing, i.e., that both fluid phases (supercritical CO2 and brine)

are mixed at the finest scale. When the patchiness exponent decrease towards 1, we tend

towards an almost linear change of P-wave velocity versus saturation. The extreme case of

e = 1 corresponds to so-called patchy mixing. Consequently, the quantitative interpretation

of a velocity change requires the estimation of the patchiness exponent. Full calibration of

the Biot-Gassmann rock physics model for Sleipner Utsira reservoir is carried out by Dupuy

et al. (2017).

The resistivity response to the changes of saturation is driven by the Archie law (see

rock physics models section) and depends on two empirical coefficients. We observe a large

change in resistivity for CO2 saturations greater than 0.8. The resistivity anomaly derived

from CSEM inversion stays however below 10 Ω.m (Figure 12). The saturation exponent is

commonly set to 2 (Carrigan et al., 2013; Falcon-Suarez et al., 2017) and the cementation

exponent is related to pore tortuosity and evaluated between 1.0 and 1.5 in clean sands

(Pride, 2005). It is worth noting that the well-known fizz gas effect (weak sensitivity of

VP to change of saturation when SCO2 > 0.5) is counterbalanced by the better sensitivity

of resistivity to these high CO2 saturations. In addition to making the inverse system less

under-determined, it is one of the main reasons for combining seismic and EM input data,

i.e., to have a better constraints on the whole range of saturations.
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Baseline results

Rock frame properties are inverted with baseline seismic data along the 1D profile (Figure

14). The inversions are carried out independently for each depth point and there is no

additional constraint on spatial correlation than those inherent to the data itself. The grains

and fluid parameters are also inverted (but not displayed here) and constrained using prior

information defined in Table 2. We give the 1D profile of rock frame parameters (porosity,

dry bulk and shear moduli) with confidence intervals in the reservoir target where CO2

will be injected. As expected, the Utsira sandstone shows very good reservoir quality with

high porosity and low dry bulk and shear moduli. We can observe a decrease of porosity

φ (and associated increase of KD and GD) between 900 m and 950 m deep, which can be

interpreted as the presence of thin interbedded shale layers.

Monitor results

In a second step, using 2008 monitor data (P-wave velocity, bulk density and resistivity),

we estimate CO2 saturation and patchiness exponent (Figure 15), and we update porosity,

dry bulk and shear moduli distributions. Posterior PDFs of rock frame, grains and fluid

parameters obtained in the baseline tests are used as prior distributions in the monitor

case and 99% confidence intervals are extracted from the baseline posterior PDF to define

inversion limits in the monitor case (i.e., limits of the model space).

We showed in the sensitivity study above that combining resistivity and seismic data

(P-wave velocity and density) is crucial for obtaining correct estimates of CO2 saturations,

especially when the CO2 saturation is large. The CO2 saturation profile shows good con-

straints with high saturation at the top of the reservoir while the patchiness exponent has
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a large uncertainty, in agreement with sensitivity tests. It is worth noting that the res-

olution of the depth profile for the saturation is quite low compared to expected results

from time-lapse seismic or seismic inversions at Sleipner (Dupuy et al., 2017). In this case,

the resistivity is the main driver of the saturation estimates and the spatial resolution of

CSEM inversion is inherently lower than seismic inversion (Dell’Aversana, 2014). But, joint

inversion of resistivity and P-wave velocity is the only way to mitigate uncertainties around

patchiness exponent, i.e., the way the CO2 and brine phases are mixed in the pore space

(Subagjo et al., 2018). Gravimetry data can also be used for similar purposes and included

in a joint inversion workflow, but the resolution and time-lapse limitations should be han-

dled with care (Landrø and Zumberge, 2017).
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Figure 11: Location map of Sleipner CSEM and seismic lines. The black dot is the projection
of the injection point. The color background give the depth of the interpreted Utsira
reservoir top (Two Way Travetime, TWT) on the seismic 3D cube. The red area is the
interpreted CO2 plume extension in the top layer in 2008. The western North-South black
line is the selected seismic 2D inline 1836 used for FWI data. The purple line (SW to NE)
is the CSEM 2D line. We use the 1D profiles of resistivity and P-wave velocity derived from
CSEM inversion and FWI and extracted where the seismic inline 1836 (western black line)
and the CSEM line are crossing, i.e., in the southern part of the CO2 plume.
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Figure 12: 1D depth profiles of P-wave velocity VP (left), bulk density ρ (middle) and bulk
resistivity Rt (right) extracted where seismic inline 1836 and CSEM inline are crossing (see
Figure 11). The continuous lines stand for the values obtained by FWI and CSEM inversion
while the dashed lines give the uncertainty range estimated in the inversions and propagated
in the rock physics inversion step through the data covariance matrix Cd. The grey lines
are the data extracted for the baseline case (1994 vintage) while the green lines are the data
extracted for the monitor case (2008 vintage).
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Figure 13: P-wave velocity VP (left) and resistivity Rt (right) with respect to CO2 satu-
ration. The P-wave velocity is calculated with different values of patchiness exponent e (1
in blue dashed line, 3 in green dashed line, 5 in continuous grey line and 40 in red dashed
line). The resistivity is calculated for different combinations of cementation exponent m
and saturation exponent n (m = 1 and n = 1 in blue dashed line, m = 2 and n = 1 in
green dashed line, m = 1 and n = 2 in grey continuous line and m = 2 and n = 2 in red
dashed line). Note that the grey lines (e = 5 for P-wave velocity and m = 1 and n = 2 for
resistivity) are the values chosen in the sensitivity tests.
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Figure 14: Bayesian rock physics inversion results for the 1D Sleipner profile (crossing point
between seismic inline 1836 and CSEM line). Baseline case with P-wave velocity and bulk
density seismic input data derived by FWI. From left to right, the confidence intervals for
porosity, dry bulk and shear moduli are given versus depth.
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Figure 15: Bayesian rock physics inversion results for the 1D Sleipner profile (intersection
between seismic inline 1836 and CSEM line). Monitor case with P-wave velocity and bulk
density (from seismic FWI) and resistivity (from CSEM inversion) input data. Confidence
intervals versus depth for porosity (top left), dry bulk (top middle) and shear (top right)
moduli, CO2 saturation (bottom left) and patchiness exponent (bottom middle). Prior
distributions from baseline inversion results are used for rock frame properties (Figure 14).
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DISCUSSIONS

One of the main limitations of Bayesian inversion is the computational burden. Table

4 summarizes the requirements for the search and appraisal stages of the different cases.

When the complexity of the forward model increases, along with the number of dimensions

in the model space, obtaining a sufficient number of resampled models is time consuming.

Code parallelization is an obvious direction to mitigate such numerical limitations given

that the random walks are independent.

In all our tests, we have included noise statistics assuming that the data covariance

matrix is diagonal. We use a standard deviation equal to 100 m/s for VP , 100 kg/m3 for ρ

(and 200 kg/m3 for the 1D real data case) and 5 Ω.m for Rt. Correlations between these

data uncertainties would be interesting to consider. In many cases, the density is derived

from P-wave velocity using an empirical law or velocity and density can also be estimated

from the same geophysical inversion technique as uncorrelated data variables.

We have mainly shown results of 1D and 2D marginal distributions but other Bayesian

indicators can be derived and analyzed like the posterior covariance matrix, the correlation

matrix or the resolution matrix. It is also worth noting that we use the appraisal stage as a

”correction” procedure to get more reliable uncertainty evaluation as the ensemble derived

in the search stage is already distributed according to a given PDF. The appraisal stage

allows to get statistically meaningful indicators and ensure that the model space has been

well explored (Sambridge, 1999b). The principle of Bayesian inference (Tarantola, 2005)

is that all models bring relevant information to understand the inverse problem and the

appraisal or sampling stage is needed to reliably approximate the posterior PDF.

For the 1D real data case, the inversions are run point-wise, i.e., there is no depth

42



(spatial) correlation between parameters. Lithological knowledge and information from

e.g., log data or structural interpretation, should be considered to build a more realistic

prior model. Such spatial consistency problems are discussed by Dupuy et al. (2016b).

Suitable definition of prior distribution is also critical in Bayesian inversions (Tarantola,

2005). We use uniform and normal distributions, while Gaussian mixtures (Fjeldstad and

Grana, 2018) or other distributions may be considered since the proposed approach is not

linearized and is rather generic. This is one of the main novelties of our approach.

All of our sensitivity tests are designed to determine what is the optimal parametrization

(input data, inverted parameters, a priori models) for the real data case of Sleipner where

the available data is limited i.e., one 2D CSEM line (2008 vintage) and 3D seismic data

from 1994 and 2008. We have chosen to run acoustic FWI for the seismic data, so we are

limited to estimate P-wave velocity and density with FWI, while we get horizontal and

vertical resistivity from the CSEM inversion (only for the monitor case). Elastic FWI (and

thus estimates of shear-wave velocity) is not carried out for several reasons: (1) the seismic

data are recorded with conventional streamer acquisition (pressure from hydrophones), so

it is challenging to infer shear wave velocity, (2) the offset range is limited to 1800 m and

the shear-wave conversions are consequently limited, (3) the data quality is very different

between 1994 and 2008 vintages.

Estimating shear-wave velocity would require AVO inversion, which is possible and has

been done at Sleipner (Jullum and Kolbjørnsen, 2016; Haffinger et al., 2016), but joint

inversion with CSEM data on the side of the plume (where CSEM and seismic lines are

crossing) would be difficult. S-wave velocity model is useful for better estimating density,

which is not updated in our acoustic FWI approach but correlated to the P-wave velocity
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with empirical relations. It is a well-known problem that the density is difficult to assess in

seismic inversion and especially with FWI. We have tested synthetic rock physics inversion

with S-wave velocity as additional input (to P-wave velocity and density), and observe that

the probability density peaks are slightly higher for rock frame properties (KD, GD and

especially φ) when VS is used but the ”fluid” properties (SCO2 , e) are not improved.

Finally, one of the main limitations is related to the forward rock physics models them-

selves. Models used in our approach are fairly simple compared to recent advances in the

rock physics field. There is a wide range of models describing in detail (experimentally

and theoretically) different effects occurring when seismic waves are travelling through a

partially saturated medium, including pressure effects, opening and closing of micro-cracks,

or fluid effects due to patchy saturation. These ”advanced” rock physics models are very

relevant but there are several good reasons explaining the choice of simple rock physics

models in our work (Gassmann equations with effective fluid phase).

First, the rock physics inverse system is highly under-determined (more parameters to

invert than available data). Usually, only one to three data types are available (P-wave

velocity, maybe density, S-wave velocity or resistivity) and there is a minimum of seven

parameters to estimate/invert in the best case (if only one fluid, baseline case). Even in

this simplest case, we demonstrate that strong a priori information is required in order to

converge towards the correct estimation of these parameters. If there are two fluid phases

in the pores, the model space has 11 parameters to estimate and still a limited number

of input data. Using more complex rock physics models usually implies dealing with a

higher number of parameters (e.g., crack aspect ratio, crack density, patches size, various

empirical constants). The proper exploration and sampling of high dimensional space and

the numerical cost can become prohibitively high to get a good sampling (well-known ”curse
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of dimensionality” problem).

Second, pore pressure effects are negligible at Sleipner due to the size of the aquifer

(Chadwick et al., 2012), so the observed P-wave velocity change is only affected by the

change in fluid saturation. Consequently, considering rock physics models where pore pres-

sure is explicit is not useful for Sleipner data. However, our inversion approach is able to

handle different rock physics models, including those where pore pressure effects are explicit

(Hertz-Mindlin model, Walton model, pore space stiffness model or crack models).

Third, wave induced fluid flow (WIFF) models or fluid effects due to patchy distribution

of the fluid phases in the pore space are relevant to consider at Sleipner as the Utsira

reservoir is a high porosity/high permeability sandstone saturated with two fluids (brine and

supercritical CO2) of different mobility (Rubino et al., 2011). However, if the attenuation

is better described at seismic frequencies by WIFF models, seismic velocities are mostly

affected at higher frequencies and Gassmann relations are consequently considered as a

good approximation at seismic frequencies (Rasolofosaon and Zinszner, 2007). Rock physics

inversion tests using patchy saturation models (White, 1975; Dutta and Odé, 1979; Pride

et al., 2004) are run by Dupuy et al. (2016c) and the conclusion is that simpler partial

saturation models as effective fluid phase perform better than complex patchy saturation

models due to a lower number of parameters.

In addition, neither the rock physics models nor seismic and EM wave propagation

will be able to describe accurately the physics in the porous media. If we consider other

monitoring sites, pore pressure changes might be crucial to take into account due to their

competitive effects with CO2 saturation on the seismic response (Hansen et al., 2013). One

way to mitigate the uncertainty in the rock physics modeling is to make the model itself as
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a degree of freedom in the system but this is out of the scope of this work and would require

heavy calibration and classification techniques with extensive well log and laboratory data

(Johansen et al., 2013).

Table 4: Number of models generated for the NA search and appraisal stages for the
different cases. nsamp, ncell, niter and mmin are the number of samples at each iteration,
the number of resampled cells, the number of iterations during the search stage and the
minimum misfit reached during the search stage, respectively. nwalks, nsteps and nmodels
are the number of independent walks, the number of steps/iterations, and the total number
of resampled models during the appraisal stage. The total number of models depends on
nwalks and nsteps, but also on the convergence rate defined by the potential scale reduction
factor (Sambridge, 1999b). For the 1D real data cases, we do not give any total number
of resampled models as there is 79 independent inversions (79 depth samples), so nmodels
might be different for each depth, depending on the convergence rate.

Test case Search stage Appraisal stage
nsamp ncell niter mmin nwalks nsteps nmodels

Baseline, uniform prior, Figure 3 300 300 100 1.00 10−6 10 000 80 800 000
Baseline, prior, Figure 4 300 300 100 7.33 10−5 10 000 80 800 000

Monitor, uniform prior, Figure 5 300 300 100 2.10 10−6 10 000 80 800 000
Monitor, Gaussian prior, Figure 6 300 300 100 0.079 10 000 80 800 000
Monitor, parameters fixed, SCO2 = 0.2, Figure 7 1 000 1 000 50 1.84 10−5 10 000 80 1 600 000
Monitor, parameters fixed, SCO2 = 0.8, Figure 8 1 000 1 000 50 2.52 10−5 10 000 80 1 600 000
Monitor, input data: VP , ρ, Rt, SCO2 = 0.2, Figure 9 1 000 1 000 50 4.40 10−5 50 80 1 000 000
Monitor, input data: VP , ρ, Rt, SCO2 = 0.8, Figure 10 1 000 1 000 50 2.01 10−5 50 80 1 000 000

Sleipner 1D, baseline, Figure 14 1 000 1 000 10 Variable 100 40 Variable
Sleipner 1D, monitor, Figure 15 1 000 1 000 10 Variable 100 40 Variable

CONCLUSIONS

We demonstrate a non-linearized Bayesian rock physics inversion method which is able to

handle non-Gaussian model properties behaviour. The search and importance sampling

stages are implemented to quantify uncertainty in the rock physics parameters estimation.

The sensitivity tests show that we can estimate rock frame parameters and porosity with

a good confidence before the CO2 injection, thanks to the limited size of the model space

(brine saturated porous medium). When partial saturations in brine and CO2 are present,
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it is necessary to add strong prior information from the baseline inversion and fixed values

for the less sensitive parameters. A good discrimination between CO2 saturation and patch-

iness exponent (fluid distribution) is achieved by adding resistivity data (derived by CSEM

inversion). This strategy is applied point-wise to 1D profiles extracted from real data at

Sleipner. We obtain CO2 saturation estimates that are consistent with geology structure,

reservoir models and time-lapse seismic interpretations, with a quantified uncertainty while

the patchiness exponent is more loosely constrained.
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