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A B S T R A C T

Many geotechnical engineering models are empirical and calibrated based on data gathered from various
sites/projects, using optimisation algorithms with criteria like least squared errors or minimising the coefficient
of variation of method bias with the constraint of mean bias equal to unity. This paper discusses the use
of hierarchical Bayesian regression models for the same purpose. A database of axial capacity of piles in
predominantly clay sites and a CPT-based design model, compiled and developed as part of a Joint Industry
Project (JIP) led by the Norwegian Geotechnical Institute (NGI), is used for demonstration. The analyses focus
on two related areas that the traditional approaches overlook: (i) quantification of uncertainty in the estimated
parameters of the model, and (ii) modelling site-dependency of the model parameters (i.e., between-group
variation). The former is important in the context of reliability-based design and contributes to establishing
confidence in estimated reliability indices, particularly when only limited data are available. The latter expands
our understanding regarding the domain of applicability of a model; that is, if a model is broadly applicable
or highly site-dependent. The benefits of the proposed Bayesian approach are highlighted with a prediction
exercise where the calibrated models are used in conjunction with limited site or project-specific data.
. Introduction

Calibration of (empirical) geotechnical models involves gathering
ata from different sources that are assumed similar to each other in
he sense that they fall within an envelope that is representative of the
ehaviour or application being investigated. Such data compilations are
ometimes referred to as generic databases. Then, the corresponding
‘best-fit’’ values for the parameters of the model are found.

The best-fit parameters are often the outcome of an optimisation
xercise formulated either as least-squares regression analysis or by
inimising the coefficient of variation (COV) of method bias (usually
efined as the ratio of measured to calculated values; also referred to as
odel factor, model bias; hereafter, bias for brevity) with the constraint

f mean bias equal to unity. A few examples of such calibrations are
1–4], and [5].

Regardless of the methodology used, many model calibrations re-
orted in the geotechnical engineering literature have shortcomings in
wo aspects. First, uncertainty in the best-fit coefficients, i.e. statistical
arameter uncertainty, is overlooked. That is, only point estimates for
oefficients are reported with little or no attention to the precision
f such estimates. Reporting and propagating statistical parameter
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uncertainty is particularly important when dealing with geotechnical
data where variations are typically large and the data limited. In the
context of reliability-based design (RBD) and load and resistance factor
design (LRFD) calibration, acknowledging this statistical parameter
uncertainty results in uncertain estimates of reliability indices or resis-
tance factors, as explored by Surles et al. [6] using Bootstrapping and
Bozorgzadeh and Bathurst [7] from a Bayesian perspective.

Second, more often than not, the generic databases gathered for pur-
poses such as model calibration, RBD or LRFD calibration are structured
in that they could be parsed into sub-groups (e.g. by project, region,
site, location within site, laboratory and such) that are similar to each
other in the sense that they fall under a representative envelope for the
application being investigated, but are not necessarily identical condi-
tions. Therefore, there could be quantifiable variations between such
sub-groups (e.g. [8,9]). Typical calibration of geotechnical models ig-
nores such structures in the data and assumes the model parameters to
be representative of all the data. In other words, the model parameters
for all possible sub-groups are assumed to be identical and estimated
from all the data. This could be misleading, or at the least sub-optimal,
because all the residual variation is expressed as a lumped variance,
portions of which could potentially be attributed to the existence of
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the above-mentioned sub-groups. Hierarchical Bayesian models provide
a means of relaxing the assumption of identical parameters, allowing
for model parameters to vary from each other but still learn from one
another when there are similarities among them (e.g. [10]). In other
words, each group-specific parameter is estimated from the data within
that group, but also ‘‘borrows strength’’ (or precision) from the data in
all other groups [11].

The underlying ideas and theoretical basis for hierarchical mod-
elling date back to the 1950s and 1960s, with applied Bayesian analysis
using hierarchical models gaining some popularity in the 1980s and
1990s and becoming more common afterwards with the availability of
modern computers and Markov Chain Monte Carlo (MCMC) algorithms.
A review of the theoretical and applied advancements in hierarchical
modelling is beyond the scope of this paper but a comprehensive
overview may be found in the bibliographic note in Chapter 5 of [10].

Interestingly, hierarchical models are absent as a general approach
to data analysis from the decades-long history of application of Bayesian
techniques in geotechnical engineering (e.g. see review papers by
Zhang et al. [12] and Baecher [13]). Zhang et al. [14,15] are among
early examples of using hierarchical models for systematic modelling of
between-site variations. Bozorgzadeh et al. [16] and Bozorgzadeh and
Bathurst [8] provide relatively accessible introductions to hierarchical
modelling as a general means of approaching geotechnical engineering
data. They discuss the relevance of hierarchical modelling for geotech-
nical applications to be three-fold: first, they can be seen as tools for
understanding the variations in the data (analysis of variance); second,
they can be used to make predictions about a yet-to-be-observed sub-
group, which is the design problem in a future project/site; and third,
they provide improved (partially pooled, see Section 3) estimates of a
group-specific parameter for which some group-specific data are also
be available. An instance of the latter is the case where limited site
or project-specific data are available, and it is desirable to combine
this site-specific information with a generic database. Ching and Phoon
[17] and Ching et al. [9,18] are notable examples of application
of hierarchical models for predicting geotechnical parameters from
empirical relationships based on Cone Penetration Test (CPT) data.

With axial capacity of piles in clay as an example, this paper
explores calibrating geotechnical models using hierarchical Bayesian
regression while discussing the above-raised two issues of quantifying
statistical parameter uncertainty and between-group variations. The
paper is organised as follows. Section 2 introduces the data and design
model for the axial capacity of piles in clay. Section 3 presents the
regression modelling including (statistical) model checking and com-
parison. Finally, Section 4 discusses some of the benefits of hierarchical
modelling via selected examples of predicting site-specific data.

2. Axial pile capacity formulation and database of pile load tests

With the increasing application of the CPT in recent years, there has
been a parallel increase in interest in direct CPT-based geotechnical
design models. The new Unified, unaffiliated CPT-based method for
axial pile capacity calculation [19] is a recent example of such models.
This model was the outcome of two Joint Industry Projects (JIP)
under the management of the Norwegian Geotechnical Institute (NGI),
which led to the creation of two ‘‘Unified’’ databases of high-quality
instrumented pile load tests, one in predominantly sand and the other
in predominantly clay sites (hereafter sand and clay for brevity) [20].
The Unified database was established with the consensus of university
representatives in the profession and personnel in multiple companies
from the offshore energy sector. Models for the design of axial capacity
of piles in sand and clay were developed. The following provides the
background information about the pile load test data and the model
for axial capacity of piles in clay that is necessary for formulating
the model calibration regression problem in this paper. Details beyond

what is presented here may be found in [21,22] and [23].

2

2.1. Unified database

A full description of the ‘‘Unified’’ database in clay is provided
by Lehane et al. [20]. A total of 49 pile load tests were selected
after careful screening based on stringent selection criteria described
by Lehane et al. [20]. The CPT data for 10 tests close to or within
Zone 1 of the soil behaviour type (SBT) chart [24] indicated sensitive
clay. The statistical analyses focused on the clays outside of Zone 1,
so 39 pile loads from 20 sites. An overview of the pile load tests in
clay in the Unified database is provided in Table 1, with more details
on individual pile configurations, end conditions, loading direction,
equalisation time, and measured axial capacity presented in Table A.1
in Appendix.

2.2. Axial pile capacity model

The axial capacity of piles consists of contributions from shaft skin
friction and end bearing. The Unified, unaffiliated model for the skin
friction component of the axial capacity of piles in clay is [22,23]:

𝜏𝑓 = 𝐴𝑞𝑡
[

max
( ℎ
𝐷∗ , 1

)]−𝑐
(1)

where 𝜏𝑓 is the total (clay) skin friction, 𝑞𝑡 is the corrected cone
resistance, h is the distance from pile tip to a horizon, and D* is the
equivalent pile diameter calculated as (𝐷2−𝐷2

𝑖 )
0.5 for open-ended piles,

and reduces to D for closed ended piles; D is outer pile diameter and
𝐷𝑖 is inner pile diameter, reflecting the lower level of displacement
induced during installation of a pipe pile. The term h/D* represents
length effect. A and c are coefficients to be determined.

The end bearing of compression piles in clay usually represents
a small fraction of the total capacity. The Unified unaffiliated model
assumes the end bearing at a pile movement of 10% of the pile diameter
q𝑏0.1 to be [22,23]:

𝑞𝑏0.1 = 0.8𝑞𝑡 (closed-ended pile) (2a)

𝑞𝑏0.1 = 0.4𝑞𝑡 (open-ended pile) (2b)

It should be noted that the Unified unaffiliated model recommends
using the essentially equivalent approximation for end bearing:

𝑞𝑏0.1 = 𝑞𝑡[0.2 + 0.6(𝐷∗∕𝐷)2] (2c)

For the calibration example in this paper, the following assumptions
are made for simplicity. First, the end bearing is taken as deterministic.
Second, the piles in the database are driven in dominantly clay layers;
the contribution of sand/silt layers (if present) is calculated using the
Unified CPT-based method in sand [19], also taken to be deterministic.
Therefore, the measured skin friction capacity for calibrating the model
in Eq. (1) is calculated as the total measured capacity minus the
contributions of sand/silt layers and end bearing.

Hereafter, the term ‘‘model’’, when used in isolation, refers to a
statistical model. To prevent confusion between statistical models and
the geotechnical model, the latter is explicitly referred to as the pile
capacity or skin friction model.

3. Statistical analysis of data

3.1. Regression models

The coefficients of the model in Eq. (1) are estimated using Bayesian
regression. Two general regression modelling approaches can be adopted
when calibrating such a model to be used for prediction and design:
complete pooling and partial pooling. Below we briefly introduce each
approach and the corresponding regression models. More detailed
discussion of these modelling approaches may be found in seminal
Bayesian textbooks such as [11] and [10], with summary overview and
discussions in the context of geotechnical data in e.g. [16].
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Table 1
Overview of pile load tests in clay in the unified database.

Characteristics of piles tested Number of pile load tests

Closed Open All

Material Steel 13 15 28
Concrete 7 4 11

Shape Circular 18 19 37
Square (and others) 2 0 2

Loading direction Compression 10 (CEC) 11 (OEC) 21 (7 with 𝑄𝑏,𝑢𝑙𝑡 data)
Tension 10 (CET) 8 (OET) 18

Total 20 19 39

CEC: Closed-ended pile tested in compression; OEC: Open-ended pile tested in compression; CET: Closed-ended pile
tested in tension; OET: Open-ended pile tested in tension; Q𝑏,𝑢𝑙𝑡: Measured ultimate end bearing capacity.
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.1.1. Complete pooling
As mentioned earlier, the common approach to model calibration

n geotechnical engineering overlooks the possibility that the available
ata could be parsed into multiple sub-groups (here, pile load tests from
ifferent sites): all the data are pooled into a single large group from
hich the model parameters are estimated (hence complete pooling).
his model is also referred to as the identical parameter model because

t assumes that the model parameters for the sub-groups are identical.
ere, a Bayesian regression model is formulated on the log–log scale;

or 𝑖 = 1, 2, 3, . . . , 𝑁 pile load tests:

n(𝜏𝑓[𝑖] ) = Ln(𝐴) + Ln(𝑞𝑡[𝑖] ) − 𝑐 ⋅ Ln(

[

max

(

ℎ[𝑖]
𝐷∗

[𝑖]
, 1

)]

) + 𝑒[𝑖] (3a)

[𝑖] ∼ Normal(0, 𝜎) (3b)

here 𝜎 is the standard deviation of Ln(𝜏𝑓 ). In other words, Eq. (3a)
describes a model where the natural logarithm of total skin friction
is normally distributed with mean equal to the natural logarithm of
the right-hand-side of Eq. (1) and standard deviation 𝜎. The following
priors are assigned to A, c and 𝜎:

𝐴 ∼ HalfNormal(0, 1) (3c)

𝑐 ∼ HalfNormal(0, 1) (3d)

𝜎 ∼ HalfNormal(0, 1) (3e)

Regarding the above choice of prior distributions, it is noted that statis-
tical analyses of geotechnical data in the literature usually adopt default
flat priors such as Uniform(0, 𝑈) (with U chosen to be a large value
such as 100 or 1000 depending on the scale of the data) or a normal
distribution with zero mean and large standard deviation. However,
more recent recommendations on choosing prior distributions (e.g.
[25]) point out that such traditional default flat priors assign non-
zero probabilities to extreme parameter values that are known to be
unreasonable. Also, priors with hard boundaries are recommended only
when justified by mathematical or physical constraints, e.g. standard
deviation must be positive. The half-normal is recommended as a
generic weakly informative prior especially for situations where the
(scaled) parameters are roughly on unit scale; half-t or half-Cauchy
are recommended when heavy tails are expected. In the context of the
current study, the parameters A and c are expected to be between 0
and 1, with previous similar work on piles in predominantly sand layers
([20]) suggesting that the smaller values in that range are more likely.
The measured pile capacity data (Table A.1) span about 5 units on the
log-scale which roughly corresponds to a standard deviation of 1.25
(assuming approximate normality). However, the residual standard
deviation of the regression model is expected to be much smaller than
the standard deviation of the unmodelled observations because the
model should capture considerable portions of the raw variation in the
data. The HalfNormal+(0, 1) is bounded to be positive, has a mean of
about 0.77, median of about 0.63, and 95%-th percentile of 1.95, so
it excludes (or more precisely, assign practically zero prior probability
to) extreme parameter values that we know to be unreasonable. It also
3

assigns roughly 0.7 probability to values smaller than 1. The assigned
HalfNormal priors express soft constraints on the parameter space
and contribute to more efficient Markov Chain Monte Carlo (MCMC)
sampling without distorting posterior inferences; overall, the posterior
means obtained from the model of Eq. (3) are comparable to best-
fit values from an optimisation analysis where the COV of the bias is
minimised with the constraint of mean bias equal to unity [23]. Finally,
it is worth mentioning that fitting the model using Uniform(0, 1) priors
results in essentially the same (within MC error) posteriors.

3.1.2. Partial pooling (hierarchical model)
In Bayesian hierarchical modelling, statistical parameters of differ-

ent sub-groups in the data are assumed to be similar but not identical,
which is an informal expression of the mathematical concept of ‘‘ex-
changeable’’ parameters. Exchangeable parameters can be thought of as
being drawn from a population distribution, and thus can be assigned a
common prior distribution with unknown parameters ([11]). In other
words, a statistical model is assumed for the parameters of the data
model, the parameters of which (i.e. the hyper-parameters) would be
estimated from the data. Therefore, each group-specific parameter is
estimated from two sources of information: (i) directly from the data
within the corresponding group, and (ii) from the data in all other
groups, but indirectly and through the common prior distribution.

From a geotechnical engineering perspective, the ideal hierarchical
model for axial capacity of piles is one with hierarchical structures
specified for coefficients A and c, as well as standard deviation 𝜎.
That is, a model with site-specific As, site-specific cs and site-specific
𝜎s, all of which are estimated from within-site data but also borrow
information from the data belonging to other sites via some common
prior distribution. However, the available data (𝑁 = 39 from 𝐽 = 20
sites, with many sites comprising very few observations) do not allow
meaningful estimation of such a complex model, and thus a simpler
hierarchical model should be considered.

The small number of observations in each site means that the
within-site data contribute very little to estimation of a site-specific
residual standard deviation 𝜎. In case of a model with hierarchical
standard deviation 𝜎, the group-specific standard deviations will essen-
ially be equal to the higher-level population standard deviation, which
tself is being estimated from the limited 𝐽 = 20 observations and thus
otentially noisy. Therefore, assuming a model with common standard
eviation does not seem unreasonable. Between the two parameters of
he axial capacity model, A is directly multiplied by the corrected cone
esistance q𝑡, which is the key parameter representing soil strength in
he model and derived from CPT data. Coefficient c represents the rate
f friction fatigue with distance from the pile tip. Therefore, between
and c, A is judged to be the better representative of site conditions.

hus, a regression model with hierarchical A (varying by site) and
ommon c and 𝜎 is formulated for 𝑗 = 1, 2, . . . , 20 sites:

n(𝜏𝑓[𝑖,𝑗] ) = Ln
(

𝐴[𝑗]
)

+ Ln(𝑞𝑡[𝑖,𝑗] ) − 𝑐 ⋅ Ln(

[

max

(

ℎ[𝑖,𝑗]
𝐷∗

[𝑖,𝑗]
, 1

)]

) + 𝑒[𝑖] (4a)

𝑒 ∼ Normal(0, 𝜎) (4b)
[𝑖]
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𝐴[𝑗] ∼ Lognormal(𝜇𝐴, 𝜎𝐴) (4c)

𝑐 ∼ HalfNormal(0, 1) (4d)

𝜎 ∼ HalfNormal(0, 1) (4e)

𝜇𝐴 ∼ Normal(0, 1) (4f)

𝜎𝐴 ∼ HalfNormal(0, 1) (4g)

q. (4c) states that the coefficients A have a common distribution with
nknown parameters. In other words, the A of each site has been drawn
rom a population distribution with mean 𝜇𝐴 and standard deviation
𝐴. It is through this population distribution that when learning about
of a site from data belonging to that site we also ‘‘borrow strength’’

rom the data from all the other sites.
The parameter 𝜎𝐴 is the standard deviation among the (natural

ogarithm of the) site-specific As and it is instructive to explore its
imits. If 𝜎𝐴 → 0, then there is no variation among groups, i.e. all the
[𝑗]s would be equal; this is the complete pooling model. On the other
xtreme, if 𝜎𝐴 → ∞, then no common distribution of As exists, i.e. a
o pooling model; the As are independent. Hierarchical estimates are
lose to complete pooling estimates if 𝜎𝐴 is small (relative to the total
ariation in the data) and close to the no pooling estimates if 𝜎𝐴 is

large. Therefore, it can be seen that hierarchical models are the more
general formulation of the problem, with the no pooling and complete
pooling models as their limiting cases.

It is worth mentioning that the above-mentioned no pooling model
site-specific As, common c and 𝜎) can be formulated by assigning to

each 𝐴[𝑗] an independent vague prior (as opposed to the common prior
in the hierarchical model). No pooling models with non-informative
priors are rarely of interest for analysing geotechnical data because
the usually limited quantity of project or site-specific data do not
allow reliable parameter estimations and it is necessary to borrow
information from elsewhere. Also, by definition, they cannot be used
for predictions beyond the data they have been fitted to.

3.2. Results

3.2.1. Posterior distributions
All regression models are fitted using the computer software Stan

26] with pre- and post-processing of the data and results in R [27].
he Markov Chain Monte Carlo (MCMC) consisted of running three
arallel chains, each with 6000 total simulations and 1000 warm-up
terations (15000 simulations in total). All chains were examined for
ack of convergence both visually and using quantitative diagnostics.

Table 2 provides posterior summary statistics for the complete pool-
ng and partial pooling (hierarchical) models. The mean of a posterior
istribution can be thought of as a point estimate and is comparable
o the best-fit value obtained from a least-squares regression or min-
mising bias COV. The spread of posterior distributions (expressed as
he standard deviation and 95% credible interval (CI)) emphasises the
ncertainty associated with the parameters.

Fig. 1 shows the joint posterior distribution of A and c from the two
models. Note that in this figure, A from the hierarchical model is the
population level A, i.e. posterior simulations from Lognormal(𝜇𝐴, 𝜎𝐴),
which accounts for posterior uncertainty in the hyper-parameters 𝜇𝐴
and 𝜎𝐴, but more importantly for between-site variation, i.e. the de-
viations of individual site-specific A values from the population-level
mean A . Fig. 2 shows a visual summary of posterior distributions of
site-specific As and how they vary from one-another and how they
compare to the complete pooling A. The hierarchical estimate of A
(for a new site) is more uncertain than that of the complete pooling.
However, the estimate for residual standard deviation is smaller in the
hierarchical model. In other words, and informally, some of the residual
standard deviation in the complete pooling model (𝜎 = 0.24) has been
explained by the variation between As of different sites. The 95% CI
for each A emphasises uncertainty in the estimated value of A for the
corresponding site.
4

Table 2
Posterior summary statistics for the complete and partial pooling models.

Model Parameter Posterior

Mean(SD)a 95% CIb

Complete pooling
A 0.06(0.01) (0.04, 0.08)
c 0.19(0.06) (0.07, 0.31)
𝜎 0.24(0.03) (0.19, 0.29)

Partial pooling

𝜇A −2.84(0.15) (−3.15, −2.54)
𝜎A 0.22(0.05) (0.14, 0.32)
𝑚𝐴

c 0.06(0.01) (0.04, 0.08)
𝑠𝐴d 0.01(0.00) (0.01, 0.02)
c 0.19(0.05) (0.09, 0.29)
𝜎 0.12(0.02) (0.08, 0.17)

aStandard deviation.
bCredible interval.
cMean of A.
dStandard deviation of A.

Fig. 1. Joint posterior distribution of A and c (iso-density contours).

Comparing the measured skin friction with the fitted values from
the two models in Fig. 3 is another visualisation of the effect of
hierarchical modelling; for better visualisation, these are presented on
the log–log scale. First, it is noted that the fitted values have posterior
distributions, summarised in the figure as point estimates accompanied
with 95% CIs. At each MCMC iteration a value of A and a value of c
are sampled; these can be used in conjunction with the 𝑞𝑡 profile and
pile dimension data to calculate a value for pile capacity implied by
the model, i.e. the fitted value. Repeating this for all MCMC iterations
results in simulations from the posterior distribution of fitted values
that accounts for uncertainty in the parameters of the model, i.e. A
and c. The estimates from the hierarchical model are generally closer to
the one-to-one line, demonstrating the higher influence of site-specific
data on these estimates. However, the hierarchical estimates also show
generally wider CIs relative to the complete pooling estimates. This
is the hierarchical model emphasising the uncertainty in site-specific
estimates with few data points. In other words, the hierarchical model
adapts to the site-specific data but does not overfit to these limited data.

3.2.2. Model checking and comparison
Fig. 4 shows the standardised residuals (i.e. the difference between

the observed and fitted values, divided by the standard deviation of the
regression) of the complete pooling and partial pooling regression mod-

els. The standardised residuals are expected to generally lie between
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Fig. 3. Fitted vs. measured skin friction from complete and partial pooling models.

1.96 and +1.96 (95% of the area under the standard normal probabil-
ty density function lies in this range). It is noted that the residuals have
osterior uncertainty because the fitted values are calculated using
ncertain model parameters A and c. From the complete pooling model,
esiduals for two (Kansai bridge, see Table A.1) observations (out of the
otal 39 data points) fall outside of this 95% range. Furthermore, the
robability of observing a value as or more extreme as each of these two
bservations is less than about 0.01, indicating that these observations
re very unlikely according to the complete pooling model, i.e., they
re potential outliers. Removing both of them and fitting the complete
ooling model with 𝑁 = 37 data points results in a posterior standard
eviation with mean of about 0.19 (compare to estimate of 0.24 from
ll data in Table 1).

Currently, the underlying reason for these rather extreme observa-
ions has not been identified, but some suspected contributing factors
5

re potentially higher uncertainties in end bearing capacity interpreta-
ions and thus poorly interpreted shaft fictions, and the fact that the
wo 1.5 m diameter piles at Kansai were driven into a clay deposit that
ncluded significant sand layers. The complete pooling model under-
redicts the capacity of Kansai piles so its application is conservative
rom an engineering design point of view. Nevertheless, the residuals
nd tail probabilities for these observations suggest that the extent
f applicability of the complete pooling model to piles with larger
iameters requires further investigation.

The hierarchical model generally fits better. The two Kansai ob-
ervations are predicted well. There is one data point (data point
umber 36, from the Maskinongé site, see Table A.1) with a posterior
ean residual that falls close to +1.96. Nevertheless, this posterior

esidual is considerably uncertain, with its left (lower) tail extending
ell below +1.96. Furthermore, the associated posterior predictive tail
robabilities for this observation is about 0.03, and thus not exhibiting
orrying signs of misfit.

The predictive accuracy of the complete and partial pooling mod-
ls can be compared using the ‘‘leave-one-out’’ information criterion
LOOIC). LOOIC uses log pointwise predictive density (lppd) as a
easure of goodness-of-fit, in conjunction with leave-one-out cross-

alidation (LOOCV) [10,28]. Smaller LOOIC indicates higher predictive
ccuracy. LOOIC estimates for the complete and partial pooling models
re 0.36(11.50) and −33.12(8.50) (subscripts are standard errors). The dif-
erence in LOOIC is 33.48(12.38) in favour of the partial pooling model.
his difference in LOOIC is large and about 2.7 standard errors away
rom zero. Nevertheless, it is generally recognised that LOOIC standard
rrors could be underestimated, therefore the complete pooling model
hould not necessarily be ruled out as an incorrect model; rather, its
pplication should be justified in the context that it is being used.
inally, it is worth mentioning that although formulating and fitting
ierarchical models is more involved, we follow Gelman et al. [29] who
iscuss that hierarchical models are generally preferable to complete
nd no pooling models: first, we rarely believe that between-group
ariations are truly zero, and second, as discussed earlier, in case of
his variation being relatively small/large the hierarchical model gives
stimates close to the no or complete pooling models.

.2.3. Posterior method bias
It is common in geotechnical engineering applications to quantify

he performance of a model using method bias 𝜆, i.e. the ratio between
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Fig. 4. Residuals from the complete and partial pooling models.
Table 3
Posterior summary statistics for method bias.

Model Parameter Posterior

Mean(SD∗) 95% CI**

Complete pooling Bias mean 1.00(0.04) (0.92, 1.08)
Bias COV 0.25(0.01) (0.246, 0.280)

Partial pooling Bias mean 1.00(0.02) (0.97, 1.04)
Bias COV 0.11(0.01) (0.09, 0.15)

the measured and calculated values of a quantity of interest X: 𝜆𝑋 =
𝑋𝑚∕𝑋𝑐 . Mean method bias of unity implies an on average accurate
model; the smaller the method bias COV the more precise the model.
Here, the fitted values from the regression model can be used to
obtain method bias. It is recognised that the errors of the regression
model fitted on the log-scale are normally distributed. It follows that
logarithm of bias is normally distributed which in turn means that
bias is lognormally distributed. The mean and COV of this lognormal
distribution of bias can be simulated from the posterior distributions of
the regression model.

At each MCMC iteration, values of A and c are simulated, from
which the calculated (fitted) value of skin friction can be simulated for
each pile as discussed earlier in the context of Fig. 3. The calculated
values can in turn be used in conjunction with the corresponding
measured values to obtain bias values for each data point. Repeating
this at all MCMC iterations results in posterior distributions of bias
for each pile. Fig. 5 summarises the posterior distributions of the
𝑁 = 39 biases. Note that there is posterior uncertainty associated
with each individual bias due to the posterior uncertainty in the model
parameters. As mentioned earlier, more often than not, this uncertainty
is overlooked in the geotechnical literature. Finally, mean and COV of
method bias can also be simulated. At each MCMC iteration, 39 bias
values are simulated, the mean and COV of which can be calculated.
Repeating this at all MCMC iterations results in posterior distributions
of bias mean and COV. These are shown in Fig. 6 with summary
statistics reported in Table 3. The histograms of bias mean and COV
emphasise that there is uncertainty associated with these statistics. It
should be noted that bias COV represents the residual variation and
has a role analogous to the parameter 𝜎 in the regression models. More
details about bias and variability may be found in e.g. [30].

The general pattern in the above results is that individual bias

estimates from the partial pooling model exhibit larger uncertainty. On

6

the other hand, the variation among these (informally, the fluctuation
of estimates from one data point to another) is smaller compared to the
complete pooling model biases. The same can be concluded from the
posterior distributions of the COV of bias in Fig. 6b.

The two models result in different estimates of parameter uncer-
tainty and residual variation. Generally, the COV quantifies the residual
(i.e. un-modelled) variation in the data which is sometimes referred to
as aleatory uncertainty, while the spread in the posterior distributions
of bias mean and COV quantifies uncertainty in what the values of these
parameters should be which is referred to as epistemic uncertainty. It
is crucial to mention that these epistemic and aleatory uncertainties
are not properties of the outside world but depend on the models used
to generalise from observed samples to populations (e.g. [31,32]). For
instance, the hierarchical model in this paper explains some of the
variation in the data to be variation between sites, hence giving on
average smaller bias COV (stemming from residual variation) compared
to the status quo complete pooling model. However, the distribution of
bias COV is wider for the partial pooling model. Both models indicate
that bias mean is close to unity, but hierarchical model conveys this
with more certainty. This is reasonable since the individual hierarchical
estimates of bias are more influenced by the corresponding observed
values and hence closer to unity.

The next section demonstrates the importance of recognising and
quantifying these two types of uncertainty in the context of updating a
model with site-specific data.

4. Model predictions and updating

As mentioned earlier, the possibility of augmenting (limited) site-
specific data with a generic database is one of the reasons that makes
hierarchical modelling attractive for geotechnical applications. For in-
stance, Bozorgzadeh et al. [16] discuss how hierarchical modelling
should be used as a means of constructing informative geotechnical
prior distributions. To explore this further, we discuss predictions from
the two models from a leave-one-out analysis. From the total 𝑁 =
39 observations, a selected data point is excluded from the analysis,
the two models are then fitted to the remaining 38 data points, and
predictions are simulated from the posteriors of each model for the left-
out data point. These are essentially the prior predictive for the left-out
data. In the next step, the models are updated by observing the left-out
pile load test. Below we first provide some general details about how
to simulate pile capacity for a new site with no pile load measurement,

and then four selected examples of updating are discussed.
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Fig. 5. Posterior mean and 95% CI for individual method bias values.
Fig. 6. Posterior bias statistics.
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.1. Predictions

A model fitted in the Bayesian framework using MCMC can be
onveniently used to predict pile load capacity. With MCMC simula-
ions available for model parameters, a 𝑞𝑡 profile, and with given pile
imensions required as input to Eq. (4a) axial pile capacity can be
imulated. Note that the MCMC samples can be from a calibrated model
ased on generic data, or from a generic model that is updated with
ite-specific data.

In case of the partial pooling model, at MCMC iteration m, A of a
ew site 𝐴𝑚 is simulated from the population distribution of As by using
he sampled 𝜇𝑚

𝐴 and 𝜎𝑚𝐴 to draw a random value from Lognormal(𝜇𝐴,
𝐴) (Eq. (4c)). The sampled 𝐴𝑚 is used in conjunction with the sampled
𝑚 in Eq. (4a) to calculate mean skin friction for given 𝑞𝑡 at each depth.
he mean total pile axial capacity due to skin friction is the sum over
he depth of the calculated mean skin frictions. The simulated mean
otal axial capacity profile is further perturbed by error 𝑒𝑚 simulated
7

rom Eq. (4b) using 𝜎𝑚. It should be noted that the pile capacity model
s calibrated based on total skin friction observations and therefore
he residual error is that of the total capacity. Finally, if the complete
ooling model is to be used, then there is no need for the two-stage
ampling of 𝐴𝑚 because there is no ‘‘population’’ of As; samples from

posterior A are used directly.

4.2. Updating

As mentioned earlier, the posterior distributions of the parameters
of a fitted model can be used as prior distributions for analysis of future
data. Bayesian models are dominantly fitted using MCMC, which means
usually only simulations from the posterior distributions are available
which are not a suitable format for expressing prior distributions.
Often, it is possible to obtain reasonable approximations to the MCMC
posterior simulations in the form of parametric distributions. This can
be achieved by fitting parametric distributions directly to the MCMC
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Fig. 7. Leave-one-out predictions from complete and partial pooling models.

imulations or selecting distributions that reasonably capture posterior
ummary statistics.

For the complete pooling model fitted to all 𝑁 = 39 data, the
oint posterior of Ln(A) and c can be approximated by, for instance,
8

a bivariate normal distribution with mean vector (−2.88, 0.19) and
variance–covariance matrix

(

0.035 0.012
0.012 0.004

)

. The standard deviation 𝜎

an be represented as a lognormal distribution with parameters 𝜇𝜎 =
1.44 and 𝜎𝜎 = 0.12. So, a model with informative priors for analysis
f future data could be formulated as:

n(𝜏𝑓[𝑖] ) = Ln(𝐴) + Ln(𝑞𝑡[𝑖] ) − 𝑐 ⋅ Ln(

[

max

(

ℎ[𝑖]
𝐷∗

[𝑖]
, 1

)]

) + 𝑒[𝑖] (5a)

𝑒[𝑖] ∼ Normal(0, 𝜎) (5b)
(

Ln(𝐴)
𝑐

)

∼ MVN
((

−2.88
0.19

)

,
(

0.035 0.012
0.012 0.004

))

(5c)

𝜎 ∼ Lognormal(−1.44, 0.12) (5d)

where MVN denotes the multivariate normal distribution.
Prior distributions could also be specified from the partial pooling

model. The key difference from the complete pooling model is that
parameter A of interest is that of a new site with no data (case ‘‘New’’
in Fig. 2); the resulting prior is weaker (more wide-spread) than that
obtained from the complete pooling model because it accounts for
between-site variations:

Ln(𝜏𝑓[𝑖] ) = Ln(𝐴) + Ln(𝑞𝑡[𝑖] ) − 𝑐 ⋅ Ln(

[

max

(

ℎ[𝑖]
𝐷∗

[𝑖]
, 1

)]

) + 𝑒[𝑖] (6a)

𝑒[𝑖] ∼ Normal(0, 𝜎) (6b)
(

Ln(𝐴)
𝑐

)

∼ MVN
((

−2.84
0.19

)

,
(

0.074 0.007
0.007 0.003

))

(6c)

𝜎 ∼ Lognormal(−2.16, 0.17) (6d)

Specifying a model similar to Eq. (6) facilitates augmenting of (usually
limited) new data (CPT and pile load) with the generic data base via the
use of informative priors. However, if it is also desired for the new data
to contribute to estimating the hyper-parameters in Eq. (3), i.e. update
the prior model of Eq. (6) with the new data for future use, it is more
straightforward to include the new data in the generic data base and
fit the model from scratch rather than trying to specify a hierarchical
model with informative priors obtained from the generic database only.
This is generally because of the more complex structure of the posterior
distributions of the partial pooling model; a population of As should be
specified, mean of which (i.e. 𝜇𝐴) is correlated with the parameter c.

4.3. Examples

Fig. 7 depicts four selected examples of updating the predictions
when site-specific pile load tests are available. The first case presented
is from a site with a single pile load test. This is also a pile for which
the calculated values (i.e. posterior means) from both models fall close
to the measured value. The 90% posterior predictive intervals from the
complete and partial pooling models (𝑁 = 38 analysis) are roughly
the same. However, the 90% posterior mean CI from partial pooling
is much wider. This is mainly due to the relatively more uncertain
coefficient A from the partial pooling model. In the context of the
earlier discussion of aleatory and epistemic uncertainties, the complete
pooling model shows small epistemic uncertainty (narrow posterior
mean) and large aleatory uncertainty. The hierarchical model exhibits
a wide posterior CI, indicating large uncertainty about average skin
friction of a pile in a new site from which we have no observations.

Observing the site-specific data point (i.e. adding the left-out skin
friction measurement to the analysis) does not affect predictions from
the complete pooling model. This is generally expected (and is also
the case for the next three examples) because this model estimates
coefficient c and a single coefficient A from all the data (𝑁 = 38 data
points); adding a single observation does not have a considerable effect
on the posterior distributions of the parameters. In other words, adding
a singe data point does not affect our epistemic uncertainty stemming

from the complete pooling model. On the other hand, having a single
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site-specific observation results in substantial reduction of posterior
uncertainty in the partial pooling model. This is essentially the A of
a site with no data (New site in Fig. 2) being updated to the A of the
Aquatic Park site.

The second case is also from a site with a single observation and
shows a similar pattern to the first example. Observing a (smaller than
overall average) site-specific data point updates the partial pooling
model so that not only posterior uncertainty is reduced, but also that
posterior mean is pulled towards the site-specific observation, ruling
out larger predicted values for skin friction. As to the first example,
the complete pooling model exhibits only minor adjustments in light
of the newly observed data point.

The third example in Fig. 7 is one of the outliers detected in Fig. 3.
This is a site with two observations. The leave-one-out prediction from
the complete pooling model (𝑁 = 38) fails to capture this observation.
Adding back the left-out observation results in a slight increase in the
variance of the prediction but not enough to capture this data point.
Prior predictions from the partial pooling model (𝑁 = 38) on the other
hand are informed by the second observation from this site, and thus
perform better when predicting the left-out data; the updated partial
pooling prediction generally shifts towards larger values of skin friction
and shows reduced posterior uncertainty.

So far, we discussed examples where the partial pooling model
outperformed the complete pooling model. The last example is one
where the partial pooling model fails to predict the left-out observation:
this is observation 36 in Fig. 4 discussed in Section 3. The left-out data
point is from a site (Maskinongé) with three pile load measurements
and is included within the 90% predictive interval of the complete
pooling prediction (using 𝑁 = 38). On the other hand, the posterior
predictive distribution of the partial pooling model severely under-
predicts this data point. Including the left-out data point in the analysis
results in a slight improvement in the complete pooling prediction. The
posterior predictive distribution of the partial pooling model moves
towards the site-specific observation and indicates a probability of
about 0.03 for this data point. More insight into these predictions
can be gained by examining the other two observations from this site
(observations 37 and 38 in Fig. 5). These observations exhibit bias
values close to unity. On the other hand, the bias for observation 36
is much larger (about 1.4). Such a difference between the biases for
data in one site is alarming and could be indicative of issues like
site heterogeneity (i.e. the three observations should have not been
grouped together for the partial pooling analysis) or perhaps unreliable
measurements. Therefore, while it fails to predict the left-out data, the
partial pooling model is still useful in that it points out discrepancies
that warrant further investigation. Pursuing such an investigation is
beyond the scope of this paper. Nevertheless, it is worth mentioning
that the Maskinongé pile load tests are amongst those with the smallest
weights (i.e. subjective measure of load test reliability) assigned by the
JIP Team of experts assessing the quality of the pile load tests included
in the Unified database [19].

The above leave-one-out analyses are examples of one of the fea-
tures that makes the Bayesian framework attractive for geotechnical
probabilistic design, namely, Bayesian updating. Bayesian updating
has been discussed in the geotechnical literature, mostly with focus
on the underlying theory and concepts and Bayesian computation
(e.g. [12,33,34]). On the other hand, systematic and formal formula-
tion of geotechnical prior distributions is less-studied, and priors are
constructed (often simplistically) from historical parameter ranges and
summary statistics. Complete and no pooling models are also sometimes
used (e.g. [34]).

The above analyses illustrate the importance of quantifying the
uncertainties in the context of updating a model with site-specific
data. The analyses also emphasise how the allocation of uncertainties
in the two complete and partial pooling models results in different
prior distributions and subsequently different (updated) posteriors.

They particularly highlight how the assumption of zero between-site
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variation in complete pooling models results in narrow priors that
are good overall representations of the analysed database but hardly
exploit newly observed data. The hierarchical model on the other hand
explicitly models between-site variations, resulting in wider – but still
informative – prior distributions that can be meaningfully updated in
view of observing data from a new site.

5. Summary and conclusions

This paper explored formulating geotechnical model calibration as
a hierarchical Bayesian regression problem. A model and database for
axial capacity of piles in clay were used as an example. The analyses
focused on two aspects of uncertainty quantification that are often over-
looked in the geotechnical engineering literature, namely, statistical
parameter uncertainty and potential variations between sub-groups of
a generic database.

The fitted hierarchical model was compared with the more com-
monly used complete pooling model, and it was shown to provide a
more nuanced assessment and quantification of uncertainties by allow-
ing group-specific parameters that vary from one another while simul-
taneously borrow information from each other. Furthermore, examples
from a leave-one-out analysis revealed limitations of the complete pool-
ing modelling approach particularly when it comes to combining past
experience (i.e. a generic database) with (potentially limited) project or
site-specific data. The hierarchical model on the other hand was shown
to be better suited for summarising the generic database in the form
of prior distributions that do not over-fit the database and thus can be
meaningfully updated considering limited project or site-specific data.

Although available for decades, hierarchical Bayesian modelling
has only recently gained some popularity in the field of probabilistic
geotechnical engineering. Results from this paper and other recent
work (e.g. [8,9,17,18]) highlight the relevance and potential of hi-
erarchical modelling for becoming a standard approach for analysing
geotechnical engineering data, particularly in the context of the on-
going challenge of formulating informative prior distributions from past
data and experience. We believe this potential warrants establishing
protocols and guidelines tailored to analysis of geotechnical data, and
initiatives for re-analysing available data using hierarchical models.
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Table A.1
Details of pile load test in Unified database (from [22]).
𝑁 Site name Test Type Borehole

depth (m)
Tip depth
(m)

teq (days) 𝐷 (m) 𝐷𝑖 (m) 𝐿∕𝐷 Qm (MN)

1 Onsoy A1–02 CET 5.0 15 26 0.22 45.7 0.091
2 Onsoy A3–02 CET 20.0 30 54 0.22 45.7 0.224
3 Onsoy B1–02 OET 5.0 15 81 0.81 0.79 12.3 0.427
4 Onsoy C1–02 CET 5.0 35 50 0.22 137.0 0.407
5 Onsoy C2–02 CET 5.0 35 51 0.22 137.0 0.487
6 Pentre A6-02a CET 25.0 32.5 32 0.22 34.2 0.351
7 Pentre LDP OEC 15.0 55 44 0.76 0.73 52.5 6.32
8 Tilbrook A1 CET 3.0 12.9 61 0.22 45.2 1.246
9 Tilbrook B1 CET 17.5 25.6 59 0.22 37.0 1.741

10 Tilbrook C1 CET 3.0 17.5 59 0.22 66.2 2.045
11 Tilbrook D1 OET 3.0 17.5 73 0.27 0.24 53.1 2.039
12 Tilbrook LDP-C OEC 0.0 30 130 0.76 0.70 39.4 16.5
13 Cowden A OEC 0.0 9.2 30 0.46 0.42 20.1 1.18
14 Cowden B CEC 0.0 9.2 30 0.46 20.1 1.42
15 AquaticPark S2–1 OET 57.9 80.5 60 0.76 0.69 29.7 10.5
16 Kontich B OEC 1.5 23.5 21 0.61 0.56 36.1 5.07
17 Kansai T1a OEC 0.0 32.8 35 1.50 1.46 21.9 9.47
18 Kansai T2 OEC 0.0 48.3 42 1.50 1.46 32.2 17.00
19 SintKatelijne A1 CEC 1.0 7.4 92 0.35 18.3 0.975
20 SintKatelijne A4 CEC 1.0 11.6 89 0.35 30.3 1.66
21 WestDelta LS1 OET 0.0 71.3 116 0.76 0.72 93.6 4.29
22 Onsoy2 O1–1 OET 1.4 19.1 78 0.51 0.50 34.8 0.519
23 Cowden2 C2–1 OET 1.0 10 119 0.46 0.43 19.7 1.02
24 Femern F2–1 OET 0.0 25 34 0.51 0.47 49.2 3.12
25 Stjordal S2–1 OET 1.0 23.6 50 0.51 0.50 44.5 0.64
26 Merville D1 OEC 0.0 9.4 44 0.51 0.48 18.5 1.165
27 Merville2 B1S1 CEC 4.0 13 57 0.41 22.2 1.55
28 Merville2 B3S1 CET 4.0 13 62 0.41 22.2 1.4
29 Klang TP1A OEC 0.0 35.5 26 0.25 0.14 142.0 0.635
30 Riau G1-T1 OEC 0.0 24 73 0.35 0.20 68.6 0.425
31 Riau G10-T1 OEC 0.0 30 71 0.35 0.20 85.7 0.5
32 Riau G6-T1 OEC 0.0 36 68 0.35 0.20 102.9 0.7
33 GoldenEars SC CEC 0.0 36 120 0.36 100.8 2.8
34 LuluIsland UBC1 CEC 2.0 14.3 82 0.32 38.0 0.225
35 Quebec 9 CET 2.3 18.1 66 0.32 49.5 0.426
36 Maskinongé p3 CEC 0.0 23.8 58 0.23 103.5 0.61
37 Maskinongé p4 CEC 0.0 23.8 58 0.22 0.21 108.7 0.4
38 Maskinongé p5 CEC 0.0 37.5 58 0.23 163.0 0.88
39 Goteborg a CEC 2.0 18 34 0.24 68.1 0.23
Appendix. Pile load test database

See Table A.1.
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