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Abstract
Soil, rocks and rock masses dilate or compact when sheared, i.e., distortion necessitates volume change. This coupling

between distortional strains and volumetric strains, described by stress–dilatancy theories, endows soils with manifestation

of peculiar characteristics when they are subjected to shear. Stress–dilatancy theories have become central in describing the

mechanical energy dissipation mechanism and further establishing flow rules in constitutive modelling of soils. The

classical stress–dilatancy theories, such as Taylor’s and Rowe’s, are endowed with simplicity and descriptive power, but

they were developed for describing the dilatancy behaviour of soils subjected to loading in shear (mobilizing away from

isotropic stress state) and needed to be extended for describing plastic dissipation and shear-induced volumetric changes

when soils are subjected to cyclic shear. In this paper, hypothesis of complementarity of stress–dilatancy conjugates is

proposed as a unifying hypothesis for deriving stress–dilatancy relations for both loading in shear and unloading in shear.

Then, plastic potential functions are derived based on the resulting stress–dilatancy relations. In so doing, the resulting

stress–dilatancy relations and plastic potential functions are rendered with a quality to be used for the modelling of

deformation behavior of soils subjected to both monotonic and cyclic shearing. The theoretical framework is applied first

for plane strain and axisymmetric stress–strain conditions; and then extended for the general stress condition considering

the Lode angle dependency of the shear strength of soils, using the multilaminate framework and applying the Matsuoka–

Nakai spatial mobilized plane.
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1 Introduction

Elastoplasticity builds on additive decomposition of strain

rates into elastic and plastic. The decomposition of the

strain rate into elastic and plastic requires that each com-

ponent be described with certain assumptions. The elastic

portion of the strain rate is assumed to be uniquely deter-

mined by the corresponding stress increments, where the

elastic moduli are assumed known. For metals, a positive

definite elastic stiffness tensor with constant moduli is

often assumed. For soils, rocks and similar materials, the

elastic moduli are assumed to depend on several factors

such as the void ratio, effective confining pressure and

history of loading [37]. In addition, the definition of elas-

ticity for discontinuous materials such as soils is somewhat

arbitrary—it might rather be considered an elastic ten-

dency. On the other hand, the plastic strain rate is assumed

to depend on the current stress state in some way (not on

the stress increment). This property was originally postu-

lated by Saint-Venant [9]. Later, von Mises proposed a

potential function of stress whose gradient with respect to

stresses is assumed to give the direction of plastic flow.

Assumption of coaxiality of principal stresses and principal

plastic strain rates was then introduced. Drucker [10] pre-

sented his postulate of material stability in which the

plastic potential function has to be identical to the yield

function which a stress state obeys and that the yield

function has to be convex. This branch of elastoplasticity

where the yield function serves as a plastic potential
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function as well is called associated plasticity. Even though

associated plasticity is a well-established theoretical

framework with several elegant mathematical theorems

and its success in its application for metals, with yield

functions that are based on Coulomb’s shear strength the-

ory, the application of associated plasticity to the mod-

elling of soils, rocks and concrete leads to unrealistic

plastic volumetric strains during plastic deformation [42].

This necessitated establishing a plastic potential function

that is different from the yield function for realistic pre-

diction of shear induced plastic volumetric strains. This

second type of plasticity framework is called non-associ-

ated plasticity. Technically, associated plasticity is a spe-

cial class of non-associated plasticity. The limitation of

associated plasticity to reproduce the observed deformation

behavior of soils and similar materials is often identified as

a limitation of the framework itself. This is not necessarily

true. For the most part, it is the limitation of Coulomb’s

formula for the description of shear strength of soils—

which is also carried over to several of its extended forms.

This limitation was recognized when Schofield and Wroth

[31] established the original Cam clay model and in part

the original Cam clay model was developed to correct the

pitfalls the Mohr–Coulomb yield function has when

employed in the associated plasticity framework.

Coulomb [6] described the shear strength of soils in

terms of their friction angle and cohesion as1

s¼1 rn tanuþ c¼2 ðrn þ aÞ tanu; ð1Þ

where rn is the effective stress normal to the s -plane, u is

the friction angle or angle of internal friction, c is cohesion

and a ¼ ccotu is attraction [15]. Coulomb’s shear strength

theory held a central place in traditional earth-pressure

theories, but it ignores the fact that soils contain grains

[35]—which renders them with certain peculiar properties

when sheared. Reynolds [26] recognized the limitation of

Coulomb’s shear strength theory after his discovery of the

property of dilatancy which manifests from the particulate

nature of sands. Reynolds then envisaged that the consid-

eration of the property of dilatancy would place earth-

pressure theories on a true foundation.

The first attempt to apply the principles of dilatancy to

earth pressure problems appear in Jenkin [17]. Shortly

after, Casagrande [4] discussed the dilatancy behavior of

sands in line with his critical state porosity concept. One of

the earliest attempts to describe dilatancy behavior of

frictional materials in terms of the energy dissipation was

due to Taylor [34]. Reynolds also considered a work

hypothesis, but he was rather interested in frictionless

particles. The work of Taylor has been a basis of various

dissipation equations and stress–dilatancy formalisms. The

other interesting theoretical framework for describing the

relationship between stress ratio and dilatancy ratio is due

to Rowe [27]. Rowe developed his theory for plane strain

and axisymmetric deformation modes based on hypothesis

of minimum energy ratio. Taylor’s and Rowe’s theories are

endowed with simplicity and descriptive power and have

been modified, extended and reinterpreted in the literature

[41]. The former has also been used for establishing a

plastic potential function in the associated plasticity

framework [31]. Both consider loading in shear, i.e.,

mobilizing away from isotropic stress state. This is one of

the major drawbacks of these theories for application in the

modelling of deformation behaviour soils subjected to

cyclic shear.

In this paper, a theoretical framework is put forward as a

unifying viewpoint and for tackling the limitation of the

stress–dilatancy theories for the modelling of deformation

behavior of soils under cyclic shear. Both loading and

unloading in shear are explicitly considered while estab-

lishing stress–dilatancy relations and further when deriving

plastic potential functions. Towards this end, first plastic

dissipation is discussed in its generality, stress–dilatancy

conjugates contained in the plastic work are identified and

the role of stress–dilatancy relations in the plastic dissi-

pation is pointed out. Hypothesis of complementarity of

stress–dilatancy conjugates is then put forward. With this

hypothesis, the writer aims at establishing a common

viewpoint for both Taylor’s work hypothesis, and Rowe’s

minimum energy ratio hypothesis and further extending

and generalizing them. Then, stress–dilatancy relations are

derived considering both loading and unloading in shear

first for axisymmetric and plane strain conditions and fur-

ther for the general stress–strain conditions. Loading and

unloading in shear are identified through a state variable

which assumes a value of 1 when a stress state is tending

away from isotropic stress condition and assumes a value

of -1 when a stress state is tending towards isotropic stress

condition.

Note that:

• Strain rates defined in this paper refer generally to an

artificial time increment and can likewise be considered

infinitesimal strain increments.

• All stress quantities are effective without distinguishing

them with a prime or not necessarily using the adjective

‘‘effective’’.

• Sign convention of soil mechanics is adopted, i.e.,

compression is positive.
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2 Plastic dissipation and complementarity
of stress–dilatancy conjugates

For an isothermal condition, the average energy variation

in a deforming body may be written as

_F þD� _W ¼ 0; D� 0 ð2Þ

where _F is the rate of Helmholtz free energy, D is the rate

of dissipation and _W is the rate of work.

The general conception is that the free energy can

depend on both elastic and plastic strains. Under certain

assumptions, the free energy can be decomposed into

elastic and plastic parts. Furthermore, considering that the

elastic free energy is equal to the elastic rate of work, one

ends up with the result that the plastic rate of work is the

sum of the plastic free energy rate and the dissipation rate.

The physical basis of the plastic part of the free energy rate

for geomaterials is explained in [5, 45] for example. This

framework is considered a convenient approach for kine-

matically hardening elastoplastic models with the back

stress playing a stress like variable associated with the

plastic part of the Helmholtz free energy rate.1

Considering the additive decomposition of the strain rate

into elastic and plastic, the rate of work of a continuum

body may be written as

_W ¼ rij _eij ¼ rij _e
e
ij þ rij _e

p
ij ¼ p _eev þ ceDq _e

e
q þ p _epv þ cpDsq _e

p
q

ð3Þ

where

• rij is Cauchy’s stress tensor, p ¼ 1
3
rijdij is the isotropic

stress, also called mean effective stress, effective

confining stress or effective confining pressure, dij is

Kronecker’s delta with a property dij ¼ 1; i ¼ j and

dij ¼ 0; i 6¼ j and Einstein’s summation rule over

repeated indices applies.

• sij ¼ rij � rijdij=3 is the deviatoric stress tensor, it is a

traceless tensor that contains all the shear components.

The magnitude of the deviatoric stress is given by

jjsjj ¼ ffiffiffiffiffiffiffiffi

sijsij
p ¼ q

ffiffiffiffiffiffiffiffi

2=3
p

, and q is called deviatoric

stress.

• _ev ¼ _eijdij is the volumetric strain rate.

• _eij is distortional or deviatoric strain rate tensor which is

the deviation from mean isotropic straining. It is thus

obtained by subtracting the mean normal strain rate

from the total strain rate tensor as _eij ¼ _eij � _evdij=3,

and its magnitude is given by jj _ejj ¼
ffiffiffiffiffiffiffiffiffi

_eij _eij
p

¼
ffiffiffiffiffiffiffiffi

3=2
p

_eq,
where _eq is the deviatoric strain rate.

• cD is the degree of coaxiality between the respective

stress and strain increments (cD ¼ 1 when they are

coaxial.)

• s is a state variable and assumes a value of 1 for stress

state mobilization away from isotropic stress condition

(for shear loading) and assumes a value of –1 for stress

states mobilizing towards isotropic stress condition

(shear unloading).

• The superscripts e and p, respectively, indicate elastic

and plastic.

Elastic strain increments are often assumed to be coaxial

with stress increments, i.e.,

ceD ¼
ffiffiffiffiffiffiffiffi

3=2
p sij _sij

q k _sij k
¼

ffiffiffiffiffiffiffiffi

2=3
p _q

k _sij k
; for k _sij k [ 0:

ð4Þ

Let us define, according to Gutierrez and Ishihara [14],

sij ¼ q ~mij and _epij ¼ _epq ~nij ð5Þ

such that

cpD ¼k ~mij ~nij k; s ¼ sgn ~mij ~nij
� �

; ð6Þ

where sgnðÞ denotes a signum function, and emij and enij are,

respectively, given by

~mij ¼
2

3
Tr
i1T

r
j1 sin hr þ 4p=3ð Þ þ Tr

i2T
r
j2 sin hr þ 2p=3ð Þ

h

þTr
i2T

r
j2 sin hrð Þ

i

; and

ð7Þ

~nij ¼ T _ep
i1T

_ep
j1 sin hp_e þ 4p=3

� �

þ T _ep
i2T

_ep
j2 sin hp_e þ 2p=3

� �

þ T _ep
i2T

_ep
j2 sin hp_e

� �

: ð8Þ

Tr
ik and T _e

ik are matrices that transform the stress tensor

and the plastic strain rate tensors into their respective

principals, hr is the Lode angle of the stress tensor; hp_e is

the Lode angle of the plastic strain rate tensor. If Tr
ik 6¼ T

_ep
ik ,

then principal stresses and principal plastic strain rates are

said to be non-coaxial and the condition is referred to as

non-coaxiality.

Let us focus on the plastic part of the energy rate in

Eq. (2). We assume that the total plastic dissipation is due

to mobilization of interparticle friction, dilation and cohe-

sion. Interparticle friction resists interparticle gliding and

its mobilization relates to the stress ratio in the soil body.

On the other hand, dilation depends on the ratio of

transversal plastic strain increments in the soil body and

indirectly measures the amount of energy invested to

overcome interlocking (geometric interference). Cohesion

between soil particles tends to resist interparticle gliding.

1 One of the main challenges to making the Helmholtz free energy a

function of plastic strains is, in thermodynamics, the Helmholtz free

energy is a state variable, and therefore it should be a function of

other state variables which are independent of a reference system.

However, plastic strains are quite often reference dependent [11].
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One of the most convenient interpretations of cohesion is in

terms of Janbu’s attraction, as shown in Eq. (1). Attraction

acts to suppress plastic work and dilatancy in just the same

manner as an effective confining pressure does—the dif-

ference is that confining pressure/stress is external to the

material and attraction is internal, innate behaviour of the

material. Attraction can be envisaged as an internal force

that exerts a pullback force when particles tend to move

apart from each other. In other words, attraction works

against plastic volumetric expansion and suppresses

mobilization of friction. Attraction may then be introduced

as added isotropic compression which tends to resist

interparticle gliding and volumetric expansion and may

consequently be introduced as an isotropic shift in effective

stresses such that the plastic dissipation is written as

Dp ¼ pcpDd _e
p
q � 0; d ¼ _epv

cpD _e
p
q
þ s

q

p
; p ¼ pþ a ð9Þ

where in addition nonnegativity of the plastic dissipation

rate, i.e., Dp � 0 is assumed, d is here called a stress–di-

latancy function and contains the stress ratio, (q=pÞ, and its

conjugate dilatancy ratio, _epv=c
p
D _e

p
q. In this paper, non-

coaxiality will not be considered in further details and

accordingly cpD is set to unity, i.e., principal stresses and

principal plastic strain rates are assumed coaxial; and we

will focus on the coaxial plastic dissipation in terms of

other convenient stress and conjugate plastic strain incre-

ments or their invariants, and for special modes of defor-

mation of interest.

The work hypotheses due to Taylor [34] is based on

consideration of deformation of a sand sample in a direct

shear box test apparatus. Figure 1(left) and (right) are from

Taylor’s book [34] and, respectively, illustrate the typical

stress–strain behavior observed in a direct shear box test

and in a drained triaxial compression tests of a sand sample

of different initial void ratios.

Considering deformation of sand in a direct shear box,

Taylor [34] hypothesized that part of the strain energy used

to overcome interlocking and result in volume expansion is

supplied by a portion of the total shear stress. This allowed

Taylor to split the total strain energy rate into energy

expended due to shear and due to dilation, which led him to

write a relationship between dilatancy ratio and stress ratio

such that their sum is a constant. Let us look this more

closely by writing the plastic dissipation for a soil

specimen subjected to normal stress, rn; and shear stress, s,

in a direct shear box, as

Dp ¼ rndT j _cpj � 0; rn ¼ rn þ a; dT ¼ _epn
j _cpj þ s

jsj
rn

; ð10Þ

where _epn and _cp are the corresponding work conjugate

plastic strain rates, dT is the stress–dilatancy function and

contains the conjugate stress ratio (
jsj
~rn

) and dilatancy ratio

(
_epn
_cp). In simple terms, Taylor’s work hypothesis is setting dT

a constant. However, Taylor considered only loading in

shear and therefore s =1 which makes the resulting stress–

dilatancy relationship applicable only to conditions that

involve loading in shear (mobilizing away from isotropic

stress condition.)

Taylor’s work hypothesis may be generalized for an

arbitrary stress state using the multilaminate framework

[12, 25, 29, 44, 46]. Suppose a virtual sphere of unit radius

is assumed around the stress point and the unit sphere is

divided into several planes; and further each plane is

assigned a weight factor, say wi, according to the propor-

tion of its sector relative to the unit sphere. The stress

tensor can be transformed into a normal stress and a shear

stress on arbitrary plane k with a unit normal

n ¼ n1 n2 n3½ �T , the traction on the surface is defined

by t ¼ rbn, Figure 2. The scalar product between the

traction and the unit normal gives the normal stress,

rn ¼ tbn. With further consideration of symmetry of the

stress tensor, the normal stress can be written as

rn ¼ n2
1r11 þ n2

2r22 þ n2
3r33 þ 2n1n2r12 þ 2n2n3r23

þ 2n1n3r13: ð11Þ

The normal stress rn can alternatively be written as

rn ¼ r :
orn
or

¼ r : n̂; ð12Þ

where bn is obtained as

n̂ij ¼
orn
orij

¼ n2
i ; i ¼ j

2ninj; i 6¼ j

�

ð13Þ

The shear stress on the plane is obtained by subtracting

the normal stress vector from the traction vector as

s ¼ t� ðnrnÞn ¼ sn ð14Þ

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1s11 þ n2r12 þ n3r13ð Þ2þ n2s22 þ n1r12 þ n3r23ð Þ2þ n3s33 þ n1r13 þ n2r23ð Þ2
q

; ð15Þ
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and its magnitude, s ¼ jjsjj is given by

where sij ¼
rij � rndij; i ¼ j
0; i 6¼ j

�

.

The shear stress on the plane can alternatively be written

as

s ¼ r :
os
or

¼ r : n: ð16Þ

The vector n can be specified by differentiating

Eq. (15) with respect to stress, r as

nij ¼
os
orij

¼ 1

s
niti � n2

i rn; i ¼ j
njti þ nitj � 2ninjrn; i 6¼ j

�

; s 6¼ 0: ð17Þ

The plastic dissipation on each plane can be obtained as

a scalar product of the transformed stresses on each plane

and their codirectional plastic strain increments multiplied

by the weight factor, wi, of the plane. Suppose the plastic

strain increments in the normal and tangential directions

are denoted, respectively, by _epn and _cp, the total plastic

dissipation may then be given as

Dp ¼
X

m

i¼1

rnidTij _cpi jwi � 0; dTi ¼
_epni
j _cpi j

þ s
jsij
rni

; ð18Þ

where m is the number of integration planes. In such a way,

the Multilaminate framework may offer a comprehensive

way of generalizing Taylor’s work hypothesis, but it can be

relatively computationally costly. We may choose shear

stresses and effective normal stresses on a single ‘‘repre-

sentative’’ plane instead of multiple planes. One of such

planes which is conveniently employed in constitutive

modelling of geomaterials is the spatial mobilized plane

proposed by Matsuoka and Nakai [22]. The Matsuoka–

Nakai’s spatial mobilized plane, Figure 3, is a plane that is

formed by planes of maximum mobilization due to com-

binations of principal stresses r1; r2, r2;r3 and r1; r3, and

is thus defined by a unit normal vector

n ¼
ffiffiffiffiffiffi

I3r
I2r

r r�1=2
1

r�1=2
2

r�1=2
3

8

>

<

>

:

9

>

=

>

;

ð19Þ

Fig. 1 Left: Typical –plots of direct shear tests: Samples of Ottawa Sand, Right: Plots of typical triaxial compression tests: Samples of Fort Peck

Sand(after Taylor [34])

Fig. 2 Global stress components in a Cartesian coordinate system and

depiction of the traction vector, the normal and shear stresses on an

arbitrary plane
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Substitution of Eq. (19) into Eqs. (11) and (17) and

dropping rij terms with i 6¼ j leads, respectively, to a nor-

mal stress

rn;MN ¼ 3
I3r
I2r

; ð20Þ

and a shear stress

sMN ¼ 1

I2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1rI2rI3r � 9I2
3r

q

; ð21Þ

where I1r, I2r and I3r are the first, the second and the third

stress invariants which are given in terms of the principal

stresses, respectively, as I1r ¼ r1 þ r2 þ r3, I2r ¼ r1r2 þ
r2r3 þ r3r1 and I3r ¼ r1r2r3.

Considering the Matsuoka-Nakai spatial mobilized

plane, the plastic dissipation may be written as

Dp ¼ rn;MNdMN _epc � 0; dMN ¼ _epn
_epc
þ s

sMN

rn;MN

; ð22Þ

where rn;MN and sMN, respectively, are the effective normal

stress and the shear stress on the Matsuoka–Nakai spatial

mobilized plane, _epn and _epc are the corresponding work

conjugate plastic strain rates.

We have so far shown how Taylor’s work hypothesis,

which was conceived based on deformation in a direct

shear box apparatus, could be adopted to a general stress

state. The other work hypothesis of interest in our further

discourse is Rowe’s [27]. Rowe [27] looked at triaxial

compression and plane strain deformation modes in for-

mulating his minimum energy ratio hypothesis. For a plane

strain and triaxial conditions, the plastic dissipation may be

written as

Dp ¼ r1r1 _e
p
1 þ r3r3 _e

p
3 ¼ r1r1 _e

p
1dR � 0; dR ¼ 1 þ ms

r3

r1

_ep3
_ep1
ð23Þ

wherein ri ¼ ri � a and _epi are principal stress and plastic

strain rate components respectively (i ¼ 1 for major, and

i ¼ 3 for minor) and are assumed coaxial, ri depend on

mode of shear ðr1 ¼ r3 ¼ 1 for plane strain, r1 ¼ 2r3 ¼ 2

for triaxial extension and 2r1 ¼ r3 ¼ 2 for triaxial com-

pression), ms ¼ r3

r1
and a is attraction [15], and r3

r1
¼ r3þa

r1þa is

the shifted stress ratio that is conjugate to the dilatancy

ratio
_ep
3

_ep
1

.

The minimum energy ratio hypothesis that Rowe [27]

proposed for linking the stress–dilatancy conjugates, in

effect, is setting the stress–dilatancy function, dN , a con-

stant, which in principle agrees with that of Taylor’s except

their difference in form.

In general, the stress–dilatancy function, di, that con-

tains the stress ratio and its conjugate dilatancy ratio can be

established by rearranging the plastic dissipation system-

atically. The stress–dilatancy formalism seeks for the

relationship between the stress–dilatancy conjugates in the

stress–dilatancy function. One of the simplest relationships

is when the stress–dilatancy function, di, is just a constant,

and this is the underlying hypothesis in both Taylor’s and

Rowe’s stress–dilatancy theories. This may be stated in a

more generalized hypothesis as follows.

Let di be the stress–dilatancy function that contains the

stress–dilatancy conjugates in the plastic dissipation as

described above. Then, for a soil mass that is subjected to

continuous shearing, the variation of the stress–dilatancy

function, i.e., ddi, vanishes and the plastic dissipation is

nonnegative both when the stress state mobilizing away

from isotopic stress state (loading in shear) and when the

stress state is mobilizing towards isotropic stress state

(unloading in shear.)

According to this hypothesis, the stress–dilatancy con-

jugates contained in the stress–dilatancy function di com-

plement/supplement each other such that di is a constant.

That is, they interplay in such a way that when one is less

the other is more for di to be a constant. This hypothesis is

here called complementarity of stress–dilatancy conjugates

or in short complementarity hypothesis. The complemen-

tarity hypothesis yields stress–dilatancy relations depend-

ing on the choice of the stress–dilatancy conjugates. The

hypothesis agrees with both Taylor’s work hypothesis and

Rowe’s minimum energy ratio hypothesis and generalizes

them for the case of loading and unloading in shear and it is

also found suitable for introducing non-coaxiality between

eigen directions of stresses and plastic strain rates and

critical state into the stress–dilatancy theories [37–39].

Spatial mobilized plane
Mobilized plane

Fig. 3 The Matsuoka–Nakai spatial mobilized plane [22]
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3 Relations between stress–dilatancy
conjugates and derivation of plastic flow
potential

Next, the complementarity hypothesis is employed to for-

mulate stress–dilatancy relations and further deriving

plastic potential functions in the associated plasticity

framework. First, plane strain and axisymmetric conditions

are considered. The theoretical framework is applied for

the general stress–strain condition considering Lode angle

dependency of the shear strength of soils, the multilaminate

framework and the Matsuoka–Nakai spatial mobilized

plane.

3.1 Plane strain and axisymmetric

Consider the Mohr–Coulomb theory for describing the

shear strength of soils (illustrated in Fig. 4). The relation-

ship between principal stress components may then be

written as

r1 þ a ¼ Nuðr3 þ aÞ ð24Þ

where Nu is the shifted stress ratio.

We also assume that orthogonal plastic strain rates are

related as

_ep3 ¼ �Nw _e
p
1; ð25Þ

where Nw is the dilatancy ratio. The plastic dissipation in

Eq. (22) can now be written as

Dp ¼ r1ðr1 þ aÞ _ep1dR; ð26Þ

where dR is the stress–dilatancy function given by

dR ¼ 1 � ms
Nw

Nu
; ms ¼ r3=r1: ð27Þ

The complementarity hypothesis implies that the stress–

dilatancy function, dR, is a constant or its variation is zero,

i.e.,

ddR ¼ �NudðmsNwÞ þ msNwdNu ¼ 0 ð28Þ

which yields [37]

CNmsNw ¼ Nu; ð29Þ

where CN is a ‘constant’ which may have different values

for different modes of shearing, fabric and sample density.

As stated earlier, although phrased in a more advantageous

form, the variation in Eq. (28) is equivalent to Rowe’s

minimum energy ratio or least work hypothesis.

From Eqs. (26) and (29), the plastic dissipation is

obtained as

Dp
N ¼ r1 r1 þ að Þ _ep1

CN � 1

CN

� �

� 0: ð30Þ

Assuming nonnegative plastic dissipation, the inequality

CN ¼ h�siCU
N þ hsiCL

N ; s ¼ sgn _ep1
� �

; 0\CU
N ¼ 1

�

CL
N � 1

ð31Þ

is proposed in [37, 38], where hi is the Macaulay bracket,

the superscripts L and U, respectively, indicate loading and

unloading in shear. Note that CU
N does not need to be the

inverse of the CL
N but its value must be less than unity for

making sure that the plastic dissipation is nonnegative

during unloading. The inverse relationship is just one of the

possibilities.

Considering the stress–dilatancy relation in Eq. (29) and

further assuming r1dr1 _e
p
1 þ r3dr3 _e

p
3 ¼ 0, i.e., assuming that

the stress increments are orthogonal to the plastic strain

increments (associated plasticity) we get

Critical plane

Fig. 4 a Normalized Mohr’s stress circle, dimensionless quantities and Coulomb’s criterion [16], b Illustration of angles and orientation of

principal stresses in critical elements in the active Rankine and passive Rankine zones in classical geometry of bearing capacity mechanism of a

vertically loaded foundation; r1 and r3 are, respectively, the major and the minor effective principal stresses [37]
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CN
dr1

dr3

¼ Nu; msNw ¼ dr1

dr3

: ð32Þ

The solution of this differential equation is:

r1 þ a ¼ C r3 þ að Þ
1
CN ; ð33Þ

where C is the constant of integration which may be

established by considering a boundary condition along the

curves described by Eq. (33). A boundary condition con-

sidered here is where along the curve defined by Eq. (33)

the stress state is isotropic, i.e., r1 ¼ r3 ¼ pc. pc is here

called the apparent pre-consolidation stress and the con-

stant of integration C can now be specified as

C ¼ pc þ að Þ
CN�1

CN : ð34Þ

Combining Eqs. (33) and (34), we have:

r1 þ a

pc þ a
¼ r3 þ a

pc þ a

� � 1
CN

: ð35Þ

The stress ratio, Nu, can now be given as:

Nu ¼ r1 þ a

r3 þ a
¼ r3 þ a

pc þ a

� �

1�CN
CN

: ð36Þ

Or, the plastic potential function, which is here called a

Cyclic State Dilatancy (CStaD) plastic potential function,

can be written as

f ¼ r1 þ a

pc þ a
� r3 þ a

pc þ a

� � 1
CN

¼ 0: ð37Þ

For a given stress state defined by stress components

ðr1; r3), suppose the apparent pre-consolidation stresses of

the respective loading and unloading plastic potential pairs

are, respectively, pcl and pcu, one finds the identity

ðr1 þ aÞðr3 þ aÞ
ðpcl þ aÞðpcu þ aÞ ¼ 1: ð38Þ

Here, plastic potential pairs are defined as loading and

unloading curves that intersect at a given stress state for

that stress state.

The mobilized dilatancy angle may also be written as

sinwm :¼ msNw � 1

msNw þ 1
¼ � r3 þ að Þ

1�CN
CN �CN pc þ að Þ

1�CN
CN

r3 þ að Þ
1�CN
CN þCN pc þ að Þ

1�CN
CN

:

ð39Þ

Conversely, the apparent pre-consolidation stress can

also be related to the dilatancy angle as

pc þ a ¼ 1

CN

1 � sinwm

1 þ sinwm

� �

CN
1�CN

r3 þ að Þ: ð40Þ

The plastic potential function in Eq. (36) is visualized in

Figs. 5 and 6. In Figure 5, the plastic potential function is

plotted both for shear loading and shear unloading for CN

=3 and pc ¼ 400kPa. The figure shows the conjugate

dilatancy ratio and the stress ratio as geometric properties

of the plastic potential function. In the figure, the curve that

lies above the isotropic axis is valid for stress states where

the effective radial stress rrð Þ is less than the radial

effective stress ðraÞ while the conjugate curve that lies

bellow the isotropic axis is valid for stress states ra\rr.
The extension of each yield function beyond pc is valid for

unloading in shear. For the case of loading, the stress-states

contained within phase transformation lines are for con-

tractive states where as the stress-states on the outside of

the phase transformation lines are for the dilative states.

For this framework, mobilizing towards isotropy (unload-

ing in shear) is always contractive. The curves are also

plotted in Fig. 6 in s� t space (defined in the figure) where

the dilatancy angle is interpreted as a tangent to the plastic

potential curves. In Fig. 7, plastic potential curves descri-

bed by Eq. (36) are plotted in ra � rr space (left) and s� t

space (right) for both loading and unloading for a constant

CN and varying values of apparent pre-consolidation stress

(pc). The increase in the apparent pc results in an increase

in the size of the plastic potential function. In Fig. 8, the

plastic potential function is plotted, for pc = 400 kPa and

varying values of CN ; for both loading and unloading in

shear. The part of the curves that is produced beyond pc are

valid only for unloading. A general picture may be

obtained by recognizing the plot of plastic potential pairs

through the same apparent pc give a picture that resembles

fish form (a fish curve) where the tail is valid for unloading

in shear and the rest is valid for loading in shear.

The tangent line anywhere along the plastic potential

function defined in Eq. (37) is:

r1 ¼ 1

CN

r3 þ a

pc þ a

� �

1�CN
CN

r3 þ ca; msNw

¼ � 1

CN

r3 þ a

pc þ a

� �

1�CN
CN

; ð41Þ

where ca is called the apparent cohesion and is given as

ca ¼ Nu � Nw
� �

r3: ð42Þ

Equation (41) may serve as both a yield function and a

plastic potential function [19] given the apparent cohesion

is incrementally derived according to Eq. (42).

The critical state can now be investigated by considering

msNw ¼ 1, which leads to

r1ct þ a ¼ CNð Þ
1

1�CN pc þ að Þ and r3ct þ a

¼ CNð Þ
CN

1�CN ðpc þ aÞ: ð43Þ

The stress ratio at the critical state is therefore as

expected
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r1ct þ a

r3ct þ a
¼ CN : ð44Þ

The writer’s concern in this paper is mainly loading and

unloading in shear. Purely isotropic compression loading

is, therefore, outside the scope of the theory laid out here.

But, it may be worth pointing out one aspect of the theory

when considering isotropic compression. Let us consider

the direction of plastic strain increment for a purely iso-

tropic compression stress state at p ¼ pc. At this point,

considering normality of the plastic strain increment to the

plastic potential for loading in shear alone, the plastic strain

increment appears to have a shear component as well.

However, at this point, both loading and unloading are

equally legitimate and, therefore, Koiter’s rule [6] may be

considered such that:

sinwm ¼ sinwm;L

	

	

at pc
þsinwm;U

	

	

at pc
¼ 1 � CN

1 þ CN
þ CN � 1

1 þ CN

¼ 0;

ð45Þ

i.e., the net effect is such that there will not be plastic shear

strain increment for isotropic stress increments.

Let us consider a Mohr–Coulomb (MC) material where

the mobilized stress ratio and the critical state stress ratio

are defined as

NMC
u ¼1 1 þ sinum

1 � sinum

andCL;MC
N ¼2 1 þ sinuc

1 � sinuc

; ð46Þ

in which um and uc are, respectively, the mobilized friction

angle and the critical state friction angle. The stress–dila-

tancy relationship can now be derived for both loading and

unloading in shear considering Eq. (46)1,2 into Eq. (39).
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Acta Geotechnica

123



0 50 100 150 200 250 300 350 400 450 500
s = (σ

a
+σ

r)/2+a [kPa]

-100

-80

-60

-40

-20

0

20

40

60

80

100

s =
 (σ

a
σ r)/

2+
a  [k

Pa
]

Phase transforma�on line (ψm=0)

Phase transforma�on line

ϕm<ϕc ϕm= ϕc ϕm> ϕc

Unloading

Unloading

Dila�ve

Contrac�ve
-sinψm

>0
-sinψm

<0

1

1

s
l
s

u
=-1

Fig. 6 Plots of the CStaD plastic potential curves in s-t space for CN ¼ 3. Geometric interpretation of dilatancy angle, identification of dilative

and contractive regions. The solid lines are for shear loading (mobilizing away from stress isotropy) and the dotted lines are for shear unloading

(mobilizing towards stress isotropy)

0

50

100

150

200

250

300

350

400

0 200 400

σ a
+ 

ak
Pa

]

σr + a[kPa]

p'c = 200
250
300
350
400

-100
-80
-60
-40
-20

0
20
40
60
80

100

0 100 200 300 400

t =
 (σ

a-σ
r/2

s =(σa + σr)/2 +a

CS

Fig. 7 CStaD plastic potential curves for loading (solid lines), unloading (dotted lines) for varying pc values and constant CN ¼ 3 and CS is

phase transformation /critical state line

Acta Geotechnica

123



3.1.1 Mobilizing away from isotropy (loading in shear)

The stress–dilatancy relationship is obtained by substitut-

ing the relations in Eq. (46) into Eq. (29) as

CL;MC
N msNw ¼ NMC

u ð47Þ

Then, the negative of the sine of the mobilized dilatancy

angle is given as [41]

� sinwm ¼
NMC
u � CL;MC

N

NMC
u þ CL;MC

N

: ð48Þ

After some simple rearrangement one is led to:

� sinwm ¼ sinum � sinuc

1 � sinum sinuc

: ð49Þ

For uc ¼ ul, where ul is interparticle friction angle,

Eq. (49) simplifies to the original Rowe’s stress–dilatancy

relationship. Rowe [27, 28] established his stress–dilatancy

relationship for granular materials by considering the

kinematics and the stress state of a pack of orderly arranged

steel rods, Fig. 9. The relationship has been widely applied

in constitutive models for soils either as it is or with some

modifications, for example in [30, 32, 40, 43]. It has also

been re-derived from some other assumptions, for example

[8, 24].

3.1.2 Mobilizing towards isotropy (unloading in shear)

For the case of unloading in shear, considering Eq. (29),

i.e., CU
N ¼ 1

CL
N
, the stress–dilatancy relationship is obtained

as

� sinwm ¼
NMC
u CL;MC

N � 1

NMC
u CL;MC

N þ 1
: ð50Þ

Considering the definitions in Eq. (46), Eq. (50) sim-

plifies to

� sinwm ¼ sinum þ sinuc

1 þ sinum sinuc

: ð51Þ

Note that the minus sign in Eq. (49) changes into a plus

sign in Eq. (51). According to Eq. (51), the plastic strain

increments in plastic shear unloading are strictly contrac-

tive. The loading and unloading stress–dilatancy relations

can then be combined as [37]

� sinwm ¼ sinum � s sinuc

1 � s sinum sinuc

; ð52Þ

where s ¼ 1 during loading in shear and s ¼ �1 during

unloading in shear (in general slsu ¼ �1, in which the

subscripts l and u represent loading and unloading in shear

respectively).

The stress–dilatancy relationship may also be enhanced

by considering

NMC
u ¼1 1 þ sinum

1 � sinum

and ;

CL;MC
N ¼2 1 þ fsd sinuc

1 � fsd sinuc

; 0� fsd sinuc\1;

ð53Þ

here again um is the mobilized friction angle, uc is the

critical state friction angle, and f sd is an ad-hoc void ratio

dependency function introduced into Equation (46)2. The

corresponding stress–dilatancy relationship will then be

� sinwm ¼ sinum � sfsd sinuc

1 � sfsd sinum sinuc

: ð54Þ

Equation (54) is the enhanced form of Rowe’s [27]

stress–dilatancy equation proposed by Wan and Guo [43]

with one important difference, i.e., the stress–dilatancy

0

50

100

150

200

250

300

350

400

0 100 200 300 400

σ a
+a

[k
Pa

]

σr [kPa]

p'c = 300
CN= 1.2
1.5
2
2.5
3

-60

-40

-20

0

20

40

60

0 100 200 300 400

t =
 (σ

1-σ
3)/

2

s = (σa + σr)/2+a
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relationship in Eq. (54) takes into consideration both

loading and unloading in shear. In addition, f sdsinuc 2
ð0; 1Þ needs to be satisfied so as not to violate geometric

and physical properties. Furthermore, f sd needs to evolve to

unity when the stress state mobilizes towards the critical

state. The phase transformation point, defined as a point

where the deformation state changes from contractive to

dilative, can then be reached before reaching the critical

state. There are several candidate functions in literature

that can be used for f sd. One possible function that can be

used to define f sd is the Gudehus-Bauer [2, 13] void ratio

dependency function [37], which can be written in terms of

the Been and Jefferies [3] state parameter, W, as:

fsd ¼ 1 � W
Wmax

� �b

;W ¼ e� ec; Wmax ¼ ed � ec; ð55Þ

where ec and ed are, respectively, the critical sate void ratio

and the minimum void ratio at the current effective con-

fining pressure, b is a material parameter. At the minimum

void ratio, CN ¼ 1 is obtained. That is, implies no further

plastic volumetric contraction is allowed. In this way, the

minimum void ratio guarantees that unlimited volumetric

contraction will not be produced during high number

cycles of shear strains/ shear stresses. Introducing a non-

constant f sd overrules the constancy CN we set out postu-

lating. However, it seems to be the case that the stress ratio

at the phase transformation depends on the density of the

sample and on the fabric of the soil medium. If CN depends

on the initial void ratio, consistency demands that it must

also be dependent on subsequent void ratios during

shearing. The effect of fabric may be accounted by con-

sidering the Li-Dafalias [7, 21] state parameter which adds

a fabric term on the Been and Jefferies state parameter.

Let us demonstrate the working mechanism of the

enhanced model using symmetric and asymmetric cycles of

sinum in the following figures, Figs. 10, 11, 12, and 13. In

the example plots, a critical state friction angle of 30

degrees and f sd defined by the Gudehus-Bauer void ratio

dependency function in Eq. (55) are considered; the min-

imum void ratio and the critical state void ratio are

assumed to be pressure dependent and that both follow

Bauer’s compression rule [37]. The hardening rule is not

explicitly given here, as it requires a thorough treatment of

its own and, in the process, will take us away from the

central theme of this paper. For now, it suffices to state that

the hardening rule is a mathematical function that describes

incremental relationship between the mobilized friction

angle and the plastic shear strain. It is represented by the

sinum � apGc
p curves in the figures and the curves can, for

the present purpose, be considered as inputs to the model

(apG is a unitless parameter—may also be called normalized

plastic modulus).

3.2 General stress–strain condition

In the previous section, we have derived stress–dilatancy

relations and plastic potential functions considering

axisymmetric and plane strain conditions. The resulting

Fig. 9 Stress and kinematics of a pack of orderly arranged cylindrical bars (after Rowe [27])
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stress–dilatancy relations did not reflect the effect of

intermediate stress state. Here, we will consider other stress

invariants which are convenient for establishing stress–di-

latancy relations and plastic potential function in the gen-

eral stress space.

Considering Eq. (3) and assuming coaxiality between

eigen directions of stresses and plastic strain increments,

the plastic dissipation may be written as

Dp ¼ p _epv þ s cosðhr � hp_e Þq _epq ð56Þ

where hr is the Lode angle of the effective stress tensor; hp_e
is the Lode angle of the plastic strain increment tensor;

s ¼ 1 for loading in shear (mobilizing away from

stress isotropy) and s ¼ �1 for unloading in shear (mobi-

lizing towards stress isotropy) (in general slsu ¼ �1Þ.
Let Mh

r be the stress ratio mobilized for a given level of

plastic deviatoric strain (iso-distortional plastic strain

contours) and depend on the Lode angle (schematized in

Fig. 14) and Mh
w be the conjugate dilatancy ratio such that

q ¼ Mh
rp and _epv ¼ �Mh

w _e
p
q ð57Þ

From Eqs. (56) and (57), the plastic dissipation can be

written as

Dp ¼ p _epq cosðhr � hp_e ÞdM; ð58Þ

where

dM ¼ � ~Mh
w þ ~Mh

r ð59Þ

is a function that contains the stress–dilatancy conjugates,

eM
h
r ¼ Mh

r and eM
h
w ¼ Mh

w=cos hr � hp_e
� �

.

Postulating the variation ddM to vanish following the

complementarity hypothesis [37] yields dM a constant, say

dM ¼ Ch
M . The stress–dilatancy relationship is therefore

~Mh
w ¼ ~Mh

r � Ch
M ; ð60Þ

or

Mh
w ¼ cosðhr � hp_e Þ sMh

r � Ch
M

� �

: ð61Þ

Ch
M may be evaluated at _epv � _ev ! 0, i.e., assuming elastic

strain rates to be small. Equation (60) assumes that the sum

of the stress ratio and its conjugate dilatancy ratio is a

constant for a given mode of shear [23].

From Eqs. (58) and (61), the plastic dissipation is given

by

Dp
M ¼ pCh

M cosðhr � hp_e Þ _epq � 0; Ch
M � 0; ð62Þ
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Fig. 10 Accumulation of plastic volumetric strain (�epv) during cyclic mobilization of constant amplitude friction angle with plastic shear strain

(cp)
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and when hr ¼ hp_e and a ¼ 0, the original Cam clay

[31, 36] plastic dissipation is recovered.

As pointed out earlier for the stress–dilatancy relation-

ship in the axisymmetric and plane strain conditions, here

too, unloading in shear, i.e., mobilizing towards isotropic

stress condition, is necessarily contractive [37]. Let us see

this more closely. Considering the stress–dilatancy rela-

tionship in Eq. (61). For the same, the plastic dissipation

may be rewritten as

Dp
M ¼ p _epv

Ch
M

Ch
M � sMh

r

ð63Þ

For plastic unloading in shear, s ¼ �1 and Ch
M [ 0,

Ch
M � sMh

r [ 0 is always valid. This implies that for non-

negative plastic dissipation p _epv � 0 must be satisfied, where

sign convention of soil mechanics applies and therefore _epv
must be positive (i.e., contractive).

Typical stress–strain results from cyclic undrained

simple shear and triaxial compression-extension tests show

a significant pore pressure generation during unloading in

shear under undrained conditions and volumetric contrac-

tion during drained unloading in shear, Figs. 15, 16, and 17

for instance. This constraint may need to be relaxed should

some anisotropic soil media are observed to behave dila-

tive during unloading in shear.

Let us find the plastic potential function assuming

associated flow, i.e., dp _epv þ cos hr � hp_�
� �

dq _epq ¼ 0 and

setting,

Mh
w

cosðhr � hp_e Þ
¼ dq

dp
¼ s

q

p
� Ch

M

� �

; ð64Þ

where p ¼ pþ a.

This leads us to a plastic potential function (holding

Ch
MaconstantÞ

f ¼ q� sCh
Mp 1 � ln

p

pcs

� �

¼ 0; ð65Þ

where pcs is the effective confining pressure at the critical

state, i.e., the critical state is to remain on q ¼ sCh
Mp line.

Note that when s ¼ �1, the critical state line is defined by

an image deviatoric stress q which has a negative value.

The plastic potential function in Eq. (65) is here called

Generalized Cyclic State Dilatancy plastic potential func-

tion and is abbreviated GCStaD. Note that when a ¼ 0 and

s ¼ 1, it reduces to just the original Cam clay yield func-

tion. The dilatancy ratio can now be obtained in the from

� ~Mh
w ¼ � dq

dp
¼ sCh

Mln
p

pcs
: ð66Þ
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Fig. 11 Accumulation of plastic volumetric strain (�epv) with plastic shear strain (cp) in one-sided oscillation of loading and unloading with a

decreasing amplitude of the mobilized friction angle
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Equation (65) implies that the plastic potential function

contains cohesion component defined by attraction, a,

frictional component defined by Ch
M and a dilatancy com-

ponent defined by eM
h
w.

Suppose we define the point at which the plastic

potential function defined by Eq. (65) intercepts the p-axis

as an apparent pre-consolidation stress, pc, the following

relation holds:

ln pcs ¼ ln pc � 1; ð67Þ

The plastic potential function can also be written in

terms of pc as

f ¼ qþ psCh
M ln

p

pc
¼ 0 ð68Þ

An interesting identity can be obtained considering the

loading and the unloading potential pairs. Suppose a stress

state whose loading and unloading plastic potential pairs

are described, respectively, by the apparent pre-consoli-

dation stresses pcl and pcu. Then, the square of the

shifted effective octahedral stress is the product of pcl and

pcu, i.e., p2=pcupcl ¼ 1. Considering this identity, the plastic

potential function for loading in shear, i.e., for s ¼ 1, can

be written as

f ¼ qþ Ch
M

ffiffiffiffiffiffiffiffiffiffiffi

pcupcl
p

ln

ffiffiffiffiffiffi

pcu
pcl

s

¼ 0: ð69Þ

Ch
M may be given as

Ch
M ¼ 6‘h

fsd sinuc

3 � fsd sinuc

� 0; ð70Þ

where uc is the critical sate friction angle for triaxial

compression condition, h is the Lode angle dependency

function and f sd is an ad hoc density dependency function

(given in Eq. (55) for instance.) For h ¼ 1, Ch
M defines the

stress ratio for the triaxial compression condition according

to the Mohr–Coulomb criterion. There are several Lode

angle dependency functions that have frequently been

applied in constitutive modelling of soils. For instance,

Bardet [1] derived a Lode angle dependent function

‘hB ¼
ffiffiffi

3
p

x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � xþ 1
p 1

cos#
ð71Þ

for the Matsuoka–Nakai criterion, where
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Fig. 12 Accumulation of plastic volumetric strain (�epv) during combined one-sided and two-sided loading-unloading mobilization of constant

amplitude friction angle with plastic shear strain (cp)
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x ¼ 3 � fsd sinuc

3 þ fsd sinuc

; ð72Þ

and the angle # is here defined in terms of the Lode angle

of the plastic strain increment tensor,hp_e , as

# ¼ p
3
hsgnhp_e i

� 1

6
sgnhp_e arccos �1 þ 27x2ð1 � xÞ2

2ðx2 � xþ 1Þ3
sin2 3hp_e

 !

;

ð73Þ

in which sgnhp_e ¼ hp_e= hp_e
	

	

	

	; hp_e 6¼ 0, is -1 for hp_e � 0 and ?1

for hp_e [ 0 and h:i is the Macaulay bracket with a property

hai ¼ a if a[ 0 and hai ¼ 0 if a� 0. For the case of
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Fig. 13 Accumulation of plastic volumetric strain (�epv) during small unloading-reloading steps superimposed on a varying amplitude

sinusoidally cyclic mobilization of friction angle with plastic shear strain (cp)

Fig. 14 a Plots of a linear yield line for the intermediate shear mode in p-q plane, b iso-distortional plastic strain contours in p-plane, TC: triaxial

compression, TE: triaxial extension, hr: Lode angle
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proportional monotonic loading, the Lode angle of the

effective stress and that of the Lode angle of the plastic

strain increment may be set equal.

The solutions provided here are generalization of the

original Cam clay yield function. One of the limitations

constitutive modellers looked away from the original Cam

clay yield function is the direction of plastic strain

Fig. 15 Plots of effective normal stress versus shear stress for cyclic undrained simple shear tests on Fraser Delta Sand of varying relative density

[33]

Fig. 16 Plots of a stress ratio versus deviatoric strain and b void ratio versus stress ratio of a constant effective confining pressure (at p =196 kPa)

unloading reloading drained triaxial compression test results on Toyoura Sand [20]

Fig. 17 Plots of a stress ratio versus deviatoric strain and b void ratio versus stress ratio of a constant effective confining pressure (at p =196 kPa)

cyclic triaxial compression extension tests under drained conditions of Toyoura Sand [20]
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increments during isotropic compression. When the origi-

nal Cam clay yield function is used as a plastic potential

function, pure isotropic compression loading would lead to

accumulation of deviatoric plastic strain increments which

seems unphysical. A new insight is obtained with the

consideration of unloading in shear. That is, it can be

clearly seen that the loading and unloading curves of the

same pc are intersecting along the isotropic axis and for any

plastic compression along this axis both are equally likely.

In other words, one direction is not any preferable than the

other and uniqueness of the direction of plastic flow is lost

for plastic deformation at this point. As we did for the

axisymmetric and plane strain case, we may then consider

Koiter’s rule [18] and sum the plastic strain increments in

both directions which then gives

� dq

dp

� �

L

þ � dq

dp

� �

U

¼ Ch
Mln

pc
pcs

� Ch
Mln

pc
pcs

¼ 0; ð74Þ

for the plastic shear strain increment. While this consid-

eration may remove one of the main limitations of the

plastic potential function derived here, this does not fully

address the limitation of the plastic dissipation for the case

of plastic volumetric deformations under isotropic stress

states, in which the model could accumulate plastic volu-

metric strain without any plastic dissipation. This may be

tackled by introducing additional terms into the plastic

dissipation such that it is a function of the plastic volu-

metric strain increment as well. This lies outside the

objective of this paper.

Example plots of GCStaD plastic potential curves for

loading in shear and unloading in shear for constant critical

state friction angle and varying apparent pre-consolidation

stress are presented in Fig. 18. Part of each curve that is

produced beyond its respective apparent pre-consolidation

stress is valid only for unloading in shear. Note here as

well that the plastic potential is of fish form where

unloading in shear is described by the tail and the rest is for

loading in shear. For this model, the hardening function

may conveniently be established in terms of the stress ratio,

Mh
r, instead of sinum, but with the same characteristics as

demonstrated in Figs. 10, 11, 12, and 13.

The theoretical framework laid out here can be utilized

in the multilaminate framework with a plastic potential

function given for each plane as

fi ¼ si þ sirni tanuci ln
rni
pci

¼ 0; ð75Þ

where i is plane counter, uci and pci, respectively, are the

critical state friction angle and the apparent pre-consoli-

dation for the i th plane. In this case, the possible aniso-

tropy of the critical state friction angle may be easily

accommodated. In addition, f sdtanuci may be used in place

Fig. 18 GCStaD plastic potential curves described by Equation (65). Considering the likeness of the geometric form with the fish curve, the

tails (broken lines) are valid for unloading in shear and manifest when the stress state mobilizes towards isotropic stress state and CS is phase

transformation /critical state line. Both the unloading and the loading plastic potential curves are continued to space defined by �q=Ch
M
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of tanuci, where f sd is a carefully chosen ad hoc void ratio

dependency function.

The theory can also be directly applied considering

shear stresses and effective normal stresses on the Mat-

suoka–Nakai spatial mobilized plane. Such a consideration

leads to a plastic potential function of the form:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1rI2rI3r � 9I
2

3r

q

þ 2s tanucI3rln 3
I3r

I2rpc

� �

¼ 0;

ð76Þ

which is here called GCStaD-MN, where I1r, I2r and I3r

are the first, the second and the third stress invariants which

are given in terms of the principal stresses, respectively, as

I1r ¼ ~r1 þ ~r2 þ ~r3, I2r ¼ ~r1 ~r2 þ ~r2 ~r3 þ ~r3 ~r1 and

I3r ¼ ~r1 ~r2 ~r3, in which ~ri ¼ ri þ a, uc is the critical state

friction angle, and as discussed above ad hoc void ratio

dependency function, say f sdtanuc, may be used in place of

tanuc for capturing density dependency of the friction

angle at the phase transformation.

4 Summary and conclusions

Soils can be subjected to repetitive (cyclic) loads of vary-

ing magnitude which may affect their stiffness and load

carrying capacity and further have consequences on the

state of the structures they carry. The modelling of defor-

mation behavior of soils subjected to repetitive (cyclic)

loading conditions has therefore been a subject of contin-

uous interest in the geotechnical engineering community.

Theoretical frameworks that were regarded to hold good

for the modelling of deformation behavior of soils sub-

jected to monotonic loading need to be reconsidered and

extended for the modelling of deformations under cyclic

loading. The stress–dilatancy theory is one of them. Sev-

eral advanced models do consider complex mathematical

functions for describing the stress–dilatancy behavior of

soils under cyclic loading conditions and succeeded to a

degree, but many of them lack clarity and descriptiveness

in their abstraction. The classical stress–dilatancy theories,

such as Taylor’s and Rowe’s have the clarity in their

abstraction and are endowed with descriptive power but

consider only loading in shear and therefore they fall short

for describing changes in volumetric strain of soil speci-

mens subjected to loading-unloading in shear or cyclic

shear. In this paper, a theoretical framework is put forward

for establishing stress–dilatancy relations and shear-in-

duced plastic dissipations in both loading in shear (mobi-

lizing away from isotropic stress state) and unloading in

shear (mobilizing towards isotropic stress state) while

maintaining the simplicity and descriptiveness of the

classical stress–dilatancy theories. The hypothesis of

complementarity of stress–dilatancy conjugates proposed

in this treatise proved useful for unifying and further

extending Taylor’s work hypothesis and Rowe’s minimum

energy ratio hypothesis. Then, cyclic stress–dilatancy

relations and plastic potential functions are established first

for axisymmetric and plane strain conditions and further

for the general stress–strain conditions. In the latter, Lode

angle dependency of shear strength of soils is considered.

The theory is also applied considering shear mobilization

in a multilaminate framework and further considering the

Matsuoka–Nakai spatial mobilized plane.

In the framework, plastic dissipation is considered

nonnegative in both loading and unloading in shear where

loading in shear is defined as mobilizing away from iso-

tropic stress condition and unloading in shear is defined as

mobilizing towards isotropic stress condition. The resulting

stress–dilatancy relations and plastic potential functions are

shown to have the following properties.

• The plastic potential curve that is produced beyond the

apparent pre-consolidation stress and its image mirrored

about the isotropic stress axis make a fish like shape

and, in that, the tail that lies beyond the pre-consoli-

dation stress is the part of the plastic potential curve that

is realized during unloading in shear (moving towards

stress isotropy) while the rest of the urve that is

contained within the pre-consolidation stress is realized

during loading in shear (moving away from stress

isotropy).

• While the plastic volumetric strain increments during

loading in shear can be either contractive or dilative

depending on the level of mobilization relative to the

phase transformation stress ratio, the plastic strain

increments during unloading in shear are contractive.

This implies, for undrained conditions, plastic unload-

ing in shear will generate pore pressures.

The cyclic stress–dilatancy relations are further

enhanced by introducing a void ratio dependency function

into the phase transformation stress ratio. For the same, the

Gudehus–Bauer void ratio dependency function, which can

further be linked to the Been and Jefferies state parameter,

is considered. With this enhancement, while the stress ratio

at the critical state is maintained unique for a given mode

of shear,

• Changes in the stress–dilatancy behavior and non-

uniqueness of the stress ratio at the phase transforma-

tion with different initial void ratio and effective

confining pressure of soil samples can be taken into

account.

• The amount of plastic volumetric contraction during

application of cyclic shear is limited by the minimum

void ratio contained in the Gudehus–Bauer void ratio
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dependency function. The introduction of minimum

void ratio helps avoid accumulation of unrealistically

high volumetric strain under application of several

cycles of shear streses/ shear strain amplitudes.

The explicit consideration of both loading and unloading

in shear extends the applicability of the framework in

constitutive models that aim at the modelling of the

deformation behavior of soils subjected to cyclic shear. The

plastic potential functions derived in this paper, having

similar geometric properties as that of the original Cam

clay plastic potential function, would have given an

unreasonable prediction of plastic shear strain increments

under isotropic stress condition if unloading in shear were

not considered. With the consideration of unloading in

shear, it is proven that the plastic strain increments are

purely volumetric when the stress state is purely isotropic.

This takes the framework one step closer to accommodat-

ing loading and unloading under isotropic stress states

which the writer wishes to follow up in more details in the

future. The writer also wishes to follow up the current

exposition with applications in examining soil stress states

created by unloading in shear and extension of the theory to

noncoaxial plastic flow and anisotropic conditions.
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family of soil models. Géotechnique 52(7):507–518

6. Coulomb CA (1776) Essai sur une application des regles des

maximis et minimis a quelquels problemesde statique relatifs, a la

architecture. Mem Acad Roy Div Sav, 7: 343–387

7. Dafalias Y and Li X (2013) Revisiting the paradigm of critical

state soil mechanics: fabric effects. In: IS Model. Beijing:

Springer-Verlag

8. De Josselin de Jong G (1976) Rowe’s stress-dilatancy relation
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