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Abstract 

Rain-induced man-made slope failures pose great threats to public safety as most man-made slopes are formed 

in densely populated areas. A critical step in managing landslide risks is to predict the time, locations, and 

consequences of slope failures in future rainstorms. Based on comprehensive databases of in-service man-made 

slopes, rainstorms, and landslides in Hong Kong in the past 35 years, a spatio-temporal landslide forecasting 

model for man-made slopes is developed in this study within a unified machine learning framework. With a 

storm-based data integration strategy and multiclass classification on landslide scales, the framework 

incorporates landslide time and consequences into landslide susceptibility mapping to successfully achieve 

spatio-temporal landslide forecasting. The machine learning-based landslide forecasting model is validated 

against historical landslide incidents both temporally and spatially and through a case study of the June 2008 

storm, and significantly outperforms the prevailing statistical rainfall-landslide correlations in the prediction 

accuracy. The model can predict the real-time evolution of probabilities, scales, and spatial distribution of 

landslides during the progression of a rainstorm, which can never be achieved by statistical methods. It can 

serve as an essential module for state-of-the-art landslide risk assessment and early warning. 

Keywords: artificial intelligence; landslides; slopes; statistical analysis; uncertainty, reliability & risk 
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INTRODUCTION 

Slope safety is an essential issue in Hong Kong owing to its mountainous topography and 

subtropical monsoon climate. The long rainy season lasts from April to October, and the 

rainfall intensity can be high, with 50 to 100 mm per hour and 250 to 350 mm in 24 hours 

being not uncommon. On average about 300 landslide incidents were reported annually, and 

the majority of them were triggered by rainstorms (e.g., Au, 1998). Compared with natural 

terrain landslides in remote areas, man-made slope failures in urban areas usually pose 

greater threats to public safety. A vast number of man-made slopes formed before 1977 

without much engineering input are particularly vulnerable to rainstorms. Records show that 

hundreds of man-made slopes could fail in a single severe rainstorm. For example, the 6-9 

June 2008 rainstorm, whose 4-h rainfall corresponded to a return period of about 1000 years, 

triggered 221 man-made slope failures. The Geotechnical Engineering Office (GEO) of the 

Hong Kong SAR Government has taken many engineering and non-engineering measures to 

mitigate landslide risks, among which establishing a regional landslide early warning system 

(Kong et al., 2020; Cheung, 2021) is of great importance. The success of such a warning 

system highly relies on a reliable landslide forecasting model. 

Most regional landslide early warning systems in the world adopt rainfall thresholds 

(e.g., intensity-duration relations) as landslide indicators, while only a few take statistical 

rainfall-landslide correlations or physically-based distributed models to predict landslides 

(Piciullo et al., 2018; Guzzetti et al., 2020). Although physically-based models (e.g., Crosta 

and Frattini, 2003; Baum et al., 2010; Chen and Zhang, 2014; Shen et al., 2018) can simulate 

the whole spatio-temporal process of landslides by incorporating the physical mechanisms of 

slope failure, such models may be less suitable for prompt prediction of impending landslides 

because of high computational demands. Data-driven approaches such as rainfall thresholds 
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(e.g., Guzzetti et al., 2007; Segoni et al., 2018) and rainfall-landslide correlations (e.g., Dai 

and Lee, 2001; Yu et al., 2004; Ko and Lo, 2016; Gao et al., 2018) are able to forecast 

landslides in real time, providing the temporal variation of the total number of landslides. 

Hong Kong took the lead in applying multiple statistical correlations between rainfall 

intensity and landslide frequency regarding different types of man-made slopes to its 

landslide early warning system. From the perspective of landslide risk assessment (e.g., Fell, 

1994; Dai et al., 2002; Cheung and Tang, 2005; Lacasse and Nadim, 2009; Corominas et al., 

2014; Li et al., 2016; Xiao et al., 2016), the total number of landslides may not be a perfect 

measure of landslide risk due to the lack of spatial distribution and consequences; for 

instance, a large landslide occurring in a densely populated area certainly can pose a higher 

risk than a small landslide occurring in a remote area. Therefore, the desired model shall be a 

spatio-temporal forecasting model that predicts not only the temporal variation of the number 

of landslides but also the landslide location, type, scale, runout path, and elements at risk so 

that the landslide consequences can be properly assessed. 

Machine learning has recently emerged as a powerful data-driven tool in landslide 

science. From the simplest logistic regression to emerging deep learning, the machine 

learning methods have broad applications in landslide displacement prediction (e.g., Lian et 

al., 2014; Krkač et al., 2017; Zhou et al., 2018; Yang et al., 2019), landslide 

detection/identification (e.g., Stumpf and Kerle, 2011; Ghorbanzadeh et al., 2019; Su et al., 

2021; Wang et al., 2021b), and landslide susceptibility mapping (e.g., Dai and Lee, 2002; 

Frattini et al., 2010; Ching et al., 2011; Van Den Eeckhaut et al., 2012; Goetz et al., 2015; 

Bui et al., 2016; Lombardo et al., 2020; Huang et al., 2020; Merghadi et al., 2020; Wang et 

al., 2021a). As represented by the landslide susceptibility mapping, machine learning 

methods are good at predicting the spatial distribution of landslides by fusing multi-source 
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data of rainfall and various geographic factors governing slope stability. Opposite to 

statistical correlations, previous machine learning applications did not determine the time of 

landslides in different rainstorms, hence were rarely ultilised for landslide early warning. To 

achieve a spatio-temporal prediction of landslides, it is necessary to integrate the advantages 

of statistical correlations in temporal prediction and machine learning techniques in spatial 

mapping. 

This study aims to develop a spatio-temporal landslide forecasting model for man-

made slopes in Hong Kong within a unified machine learning framework. Comprehensive 

databases of man-made slopes, rainstorms, and landslides in the past 35 years are compiled 

and integrated storm by storm to connect man-made slope failures to their triggering 

rainstorms. A multiclass machine learning model is trained on the storm-based integrated 

dataset to simultaneously predict landslide time, locations, and consequences. The machine 

learning-based landslide forecasting model is validated against historical landslide incidents 

temporally and spatially and compared with statistical rainfall-landslide correlations. The 

most influential factors controlling man-made slope failures are also identified. 

COMPREHENSIVE DATABASES FOR HONG KONG 

Machine learning emerges as an attractive alternative to statistical correlations because a 

large amount of data on in-service man-made slopes (Fig. 1, since 1977), rainfall (Fig. 2, 

since 1884), and landslides (Fig. 3, since 1984) are available in Hong Kong. For consistency, 

the time span is selected from 1984 to 2017 for all databases in the present study. 

The Slope Information System (SIS) managed by GEO had registered more than 

60,000 sizeable man-made slopes, as shown in Fig. 1. In Hong Kong, man-made slopes refer 

to cut slopes, fill slopes, and retaining walls; A retaining wall could be an independent feature 

or associated with a fill/cut slope. After data cleansing, a total of 59,763 man-made slopes are 
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available with complete information on man-made features, geometry, location, formation 

time, slope materials, slope covers, and drainage conditions. The majority of the slope 

population are cut slopes (59%), followed by retaining walls (37%) and fill slopes (22%). 

There are 81% of slopes made up of soil material only, 16% of both soil and rock materials, 

and 3% of rock material only. As counted in Fig. 4(a), 86% of slopes are lower than 15 m, 

81% are sloping between 30° and 70°, and more than 90% of retaining walls are lower than 

10 m and nearly vertical (i.e., wall angle ≥ 80°). 

The spatial distribution of the mean annual rainfall amount in Hong Kong (1990-

2010) is illustrated in Fig. 2, ranging from about 1400 mm in the northeast to more than 3000 

mm in Tai Mo Shan. The latest rain gauge network comprises 50 HKO (Hong Kong 

Observatory) rain gauges and 91 GEO rain gauges, with an average density of 10 km
2
/gauge. 

In the period of 1984-2017, 419 major rainstorm events (see Appendix 1) have been 

identified from the annual reports on rainfall and landslides published by GEO, as shown in 

Fig. 5. In the same period, 7933 man-made slope failure incidents were reported to GEO, of 

which 5063 were triggered by the 419 rainstorms according to their failure time (i.e., amid 

the rainstorm or one day after the end of rainstorm). Among these landslides, 2127 man-made 

slopes had been registered in SIS at the time of failure. Spatially distributed as shown in Fig. 

3, these failed slopes are sorted in a sequence of triggering storms, as shown in Fig. 5. Only 

these cases will be considered in this study, as complete information on both slope and 

rainfall features is available. 

The catalogue of landslide incidents includes feature ID (if in SIS), failure location, 

time, type, and volume, as well as landslide consequences to persons, roads, and buildings. 

Figure 6 illustrates an example of a landslide incident that was a major failure of a retaining 

wall (6SW-C/CR797) during the 6-9 June 2008 storm (Lam et al., 2012). It involved the 

Downloaded by [ NORGES GEOTEKNISKE INSTITUTT] on [02/02/22]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgeot.21.00160 

 

collapse of a 25 m long, 2.8 m high concrete retaining wall and part of the slope behind the 

wall, leading to two fatalities. The landslides are categorised into four failure scales 

according to their volumes (Fig. 4(b)), i.e., very minor (landslide volume V < 5 m
3
) (45.0%), 

minor (5 m
3
 ≤ V < 50 m

3
) (44.0%), major (50 m

3
 ≤ V < 500 m

3
) (9.4%), and very major (V ≥ 

500 m
3
) (1.6%) failures. Major failure types include sliding, washout, rockfall, and wall 

failure. Sliding (65.2%) is the primary failure type, followed by washout (16.4%) and rockfall 

(11.0%); the frequencies of wall and other failures are relatively low. Washout and rockfall 

are usually associated with much smaller failure volumes compared to sliding and wall 

failure. 

In addition to slope, rainfall, and landslide databases, geographic databases of terrain, 

geology, land cover, and infrastructure are also utilised in this study. As shown in Table 1 

and Appendix 1, 43 input learning features and one output landslide feature are eventually 

extracted from the abovementioned databases to form a record of landslide or non-landslide. 

Features like slope information, terrain, geological condition, land cover, location, and annual 

rainfall (i.e., SF1-AR, 29 features) change little temporally, while those storm-related rolling 

and antecedent rainfall features and landslide scale (i.e., R1h-LS, 15 features) vary 

significantly from one storm to another. They are referred to as static data and dynamic data, 

respectively. The various uncertainties associated with geomaterials (e.g., El-Ramly et al., 

2005; Lloret-Cabot et al., 2014; Wang and Zhao, 2017; Xiao et al., 2018, 2021; Hicks et al., 

2019; De Gast et al., 2021) and rainstorms (e.g., Yuan et al., 2019; Qiang et al., 2020) are not 

considered. 
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SPATIO-TEMPORAL LANDSLIDE FORECASTING USING MACHINE 

LEARNING 

Machine learning framework 

The Hong Kong landslide database, with the time of man-made slope failures recorded, 

provides an ideal opportunity to bring landslide time into conventional landslide 

susceptibility mapping. Lombardo et al. (2020) made progress in this aspect by directly 

taking the landslide time as one of the prediction features using machine learning techniques. 

This manner, however, can only predict the time within the provided categories. By contrast, 

the statistical rainfall-landslide correlations (Fig. 7) (Yu et al., 2004; Wong et al., 2014; Xiao 

and Zhang, 2020) employed in the landslide early warning system of Hong Kong relate the 

landslide time indirectly through rainstorms, i.e., the maximum rolling 24-h rainfall amount 

of the triggering storm. Inspired by this, a unified machine learning framework is proposed 

for spatio-temporal landslide forecasting, as shown in Fig. 8. It consists of three major 

components: (1) storm-based data integration to link the pairwise dynamic data, i.e., rainfall 

and landslide data in different storms, as shown in the upper part of Fig. 8; (2) a machine 

learning-based landslide forecasting model for predicting a well-chosen landslide feature that 

characterises landslide consequences, as shown in the lower central part of Fig. 8; and (3) 

spatio-temporal forecasting of the probabilities, locations, and consequences of landslides 

over time given a sequence of rainfall forecasts, as shown in the lower part of Fig. 8. 

The storm-based data integration plays a pivotal role in connecting each man-made 

slope failure to its triggering rainstorm so that landslide time can be incorporated into 

machine learning to realise temporal prediction. The traditional data integration in machine 

learning (Fig. 9(a)) treats the 2127 landslides as 2127 failure records and then randomly 

selects the same number of safe examples to form a dataset with 2127×2 records. This 
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method significantly underestimates the safe records. In fact, every slope has been subjected 

to numerous repeated ‘landslide tests’ during hundreds of past rainstorms, as shown in Fig. 

9(b). More specifically, the 59,763 man-made slopes, having experienced 419 major 

rainstorms, result in a total of about 22 million ‘testing’ records in the integrated dataset (i.e., 

59,763×419, exclusive of invalid records that one slope was not registered at the time of a 

specific rainstorm). The 22 million records comprise 44 features as shown in Table 1, in 

which the 29 static slope features need to duplicate 419 times in different storms to match the 

15 dynamic rainfall and landslide features. Since only 2127 landslides occur in the 22 million 

records, the ratio of negative samples (i.e., non-landslides) to positive samples (i.e., 

landslides) exceeds 10,000, which is extremely imbalanced. The class imbalance is further 

intensified as these landslides are categorised into four classes with different failure scales. 

Figure 9 plots the box-and-whisker statistics of dynamic rainfall features in the storm-

based integrated dataset. The median rainfall amounts of landslide records are significantly 

higher than non-landslide records, particularly in terms of rolling rainfall features. The 

difference increases as the failure scale enlarges from ‘very minor’ to ‘very major’ category. 

The ratios of median values converge when the rolling rainfall duration is longer than 12 h 

for very minor and minor failures, while the ratios increase continuously for major and very 

major failures. This coincides with the engineering experience that long-duration heavy 

rainstorms are more likely to trigger man-made slope failures with larger volumes. 

Landslide forecasting model 

Six candidate machine learning algorithms are adopted to develop potential landslide 

forecasting models, including logistic regression, neural network, bootstrap aggregating 

(Bagging), adaptive boosting (AdaBoost), random under-sampling boosting (RUSBoost), and 

the subspace method. Besides, several statistical rainfall-landslide correlations have been 
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developed (Fig. 7), such as Yu et al. (2004) using the storm and landslide data in 1984-1995, 

Wong et al. (2014) in 1996-2010, and Xiao and Zhang (2020) in 1984-2017. This study takes 

the latest correlations in 1984-2017 to benchmark the machine learning models. After a 

preliminary comparison among the six machine learning methods, as provided in Appendix 2, 

the logistic regression is finally chosen as a representative of machine learning methods to 

develop a spatio-temporal landslide forecasting model within the proposed framework. 

The logistic regression, an example of the generalised linear model (e.g., Bishop, 

2006; Dobson and Barnett, 2018), is of high interpretability and can provide the probability 

of landslide occurrence that coincides with the landslide frequency adopted in statistical 

rainfall-landslide correlations. These advantages allow the machine learning model to replace 

the statistical model in an existing landslide early warning system without revising warning 

criteria. In previous studies that deal with only the occurrence of landslides (i.e., two classes, 

no failure or failure) but do not involve many landslide features, the landslide prediction is 

taken as a binary classification problem, and the probability of landslide occurrence can be 

described using a binomial logistic regression as: 

 
 
 

T

T

exp
1 ;

1 exp
P y  



x
x

x





  (1) 

where x is a vector of 43 learning features (i.e., SF1-A15d) as listed in Table 1; y is the 

landslide feature (i.e., LS) and y = 0 and 1 stand for non-landslide and landslide, respectively; 

and θ is a vector of model parameters. 

To empower the prediction of landslide consequences in the meantime, the landslide 

scale, which is an important indicator of consequences, must also be predicted, leading to a 

multiclass classification problem with five classes (i.e., no failure and four failure scales). 
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The probabilities of non-landslide and landslides in the four failure scales can be described, 

respectively, through a multinomial logistic regression as: 
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where ns is the number of failure scales (ns = 4); y = 0, 1, 2, 3 and 4 stand for no failure, very 

minor, minor, major, and very major failure scales, respectively; and Θ = {θi, i = 1, 2, …, ns} 

is the ensemble of all model parameters. The maximum likelihood estimates of the model 

parameters can be obtained through the iteratively reweighted least squares method (Dobson 

and Barnett, 2018) as: 

       
1

+1 T Tm m m m


   
   

 X W X X W Z  (3) 

where Θ
(m+1)

 is the vector of parameter estimates at (m+1)th iteration; X is the matrix form of 

learning features; W
(m)

 is a ns×ns diagonal weight matrix related to Θ
(m)

; and Z
(m)

 is a vector 

depending on Θ
(m)

, W
(m)

, and the estimated prediction error at mth iteration. The iteratively 

reweighted least squares method fits the generalised linear model efficiently, typically within 

tens of iterations. 

Eventually, a multinomial landslide forecasting model is trained with all the 22 

million records in the storm-based integrated dataset and 44 features shown in Table 1. 

Figure 11 plots a radar chart to showcase the estimated model parameters corresponding to 

the 43 learning features and with respect to the four failure scales. The model parameters are 

standardised by the standard deviations of respective features and then normalised by the 

norm of parameters regarding the same failure scale. A larger radius indicates a higher impact 

of a feature. The rolling rainfall amounts (i.e., R1h-R48h) are the most influential features, 
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followed by man-made features (i.e., SF1-SF2), slope geometries (i.e., SH-SA), slope 

materials (i.e., SM1), and geological conditions (i.e., GEO1-GEO3). The areas under the 

receiver operating characteristic curve (AUC), a common measure of model performance in 

machine learning, for the developed landslide forecasting model range from 0.93 to 1.00 for 

the non-landslide class and the four landslide classes of different scales (Fig. 20(b) in 

Appendix 2), indicating its power to distinguish between classes. 

Spatio-temporal forecasting 

Once a landslide forecasting model has been trained, the computational time for predicting 

landslides in a future rainstorm can be as short as few seconds. The prediction is performed 

directly on all the man-made slopes in Fig. 1 rather than the discretised cells as often used in 

a natural terrain landslide analysis. Those static slope features remain unchanged, and the 

antecedent rainfall features have been measured at the time of prediction. The only required 

inputs are the rolling rainfall features evaluated from both measured and predicted rainfall 

amounts. As illustrated in Fig. 8, the machine learning-based landslide forecasting model can 

produce the spatio-temporal evolution of man-made slope failures given a sequence of 

rainfall forecasts. Its preliminary output is the probabilities of each man-made slope falling in 

one of the four failure scales over time (i.e., Eq. (2)), which inherently provides the 

information of occurrence time, locations, and consequences of landslides. Although the 

predicted failure probability of a single slope cannot be verified directly, the failure 

probabilities of multiple slopes in a certain area can be summarised as the expected number 

of landslides and validated against historical landslide observations. For this purpose, the 

territory of Hong Kong is divided into a grid of 3294 cells (Fig. 12), each 750 m from east to 

west and 600 m from north to south, according to the gridding system of the Survey and 

Mapping Office. Figure 12 shows the spatial distribution of man-made slopes converted from 
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Fig. 1 in the grid. There are 2062 cells containing man-made slopes with a maximum number 

of 350 in one cell. The expected number of landslides in a cell, either total or summed up 

across different failure scales, is a preferable indicator to characterise the spatial distribution 

of landslides and to identify the most landslide-prone areas in a storm, as will be illustrated 

later. Similarly, the predicted failure probabilities of all slopes can also be summarised over 

the progression of a rainstorm to be comparable with the statistical correlations. 

VALIDATION AGAINST HISTORICAL LANDSLIDE INCIDENTS 

Validation on spatio-temporal distribution of landslides 

The performance of the machine learning-based landslide forecasting model is validated 

against the historical landslide incidents in the period of 1984-2017 (i.e., Fig. 5) both 

temporally and spatially. Owing to the class imbalance of the storm-based integrated dataset 

and the quantity-sensitive nature of landslide forecasting, model performance indices derived 

from the confusion matrix of classification may not be satisfactory, as illustrated in Appendix 

2. Instead, a storm-based index, namely the correlation coefficient (ρ) between the observed 

and predicted numbers of landslides in all rainstorms, is used to measure the performance of 

the landslide forecasting model. 

Figure 13(a) compares the predicted numbers of landslides by the machine learning 

model and the observed numbers of landslides in all storms using a bubble chart, in which the 

bubble size reflects the number of overlapping data points. The correlation coefficient 

increases from 0.85 for very minor failures to as high as 0.99 for very major failures, 

indicating a high prediction accuracy of the machine learning model as the landslide risk 

increases. The predicted total number of landslides in every storm is further compared with 

those from statistical correlations in Fig. 13(b). The data points of the machine learning 

model are more concentrated along the 45° line (i.e., perfect prediction) with a much higher 
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correlation coefficient of ρ = 0.93 than the statistical model (ρ = 0.80). Also included in Fig. 

13(b) are the predicted landslides amid the ten major rainstorms in 2018 from an independent 

dataset. The correlation coefficient of the machine learning model only slightly decreases to 

0.91, still much higher than the statistical model. 

Figure 14 compares the observed and predicted spatial distributions of landslides in 

the prescribed grid, indicated by the cumulative number of landslides per cell from 1984 to 

2017. The observed and predicted distributions are highly consistent, especially for Hong 

Kong Island and Kowloon, the two most landslide-prone areas. Such a spatial distribution 

cannot be obtained via statistical correlations. By comparison, the machine learning-based 

landslide forecasting model significantly outperforms the prevailing statistical rainfall-

landslide correlations, not only in the prediction accuracy but also in the ability to predict 

both landslide locations and consequences. 

Case study of the 6-9 June 2008 storm 

The 6-9 June 2008 storm is one of the most severe rainstorms in the history of Hong Kong, 

with 1-h, 4-h, and 24-h rainfall amounts all falling in the top 5 rainstorms ever recorded. The 

storm triggered 221 man-made slope failures, including 65 very minor, 75 minor, 15 major, 

and 7 very major failures registered in SIS. The recorded rainfall amounts of all rain gauges 

during the June 2008 storm are given in Fig. 15. Taking 00:00 on 6 June as the starting time, 

the rainfall intensity amplified dramatically from 30 h to 34 h, with a maximum 4-h rainfall 

amount of 373 mm at gauge N19 located on the western Lantau Island. The total number of 

landslides predicted by the statistical rainfall-landslide correlations exceeds 15 at 30 h and 

reaches a maximum value of 162 around 44 h. 
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With the machine learning-based landslide forecasting model, the spatio-temporal 

evolution of landslides in the June 2008 storm is presented in Fig. 16. Hardly any landslide 

occurs before time t = 30 h. The western Lantau Island is the first area to witness many 

landslides at t = 32 h. Afterwards, landslides rapidly outbreak on the north-western Hong 

Kong Island and western Kowloon. The shifting of landslide areas is due to the compound 

effect of the concentration of man-made slopes and the movement of the storm centre. The 

final predicted landslide distribution at t = 96 h is consistent with the observations as shown 

in Fig. 16, with a total of 191 predicted landslides, including 64 very minor, 98 minor, 23 

major, and 6 very major landslides, which also agree well with the observed man-made slope 

failures in SIS. Nearly 70% of the landslides are triggered within the most critical four hours 

(i.e., t = 30-34 h). This highlights the importance of real-time landslide forecasting. A 

landslide warning was issued by GEO and HKO at t = 25 h, successfully reducing potential 

losses to landslides. 

This case study demonstrates the excellent performance of the landslide forecasting 

model in predicting the real-time spatio-temporal evolution of landslides to save adequate 

time for the public to protect themselves from impending landslides and for the responsible 

authorities to take necessary actions. Landslides occurring in densely populated urban regions 

(e.g., Hong Kong Island and Kowloon) and sparsely populated remote regions (e.g., Lantau 

Island) pose different levels of risk. To manage landslide risk better, it is necessary to 

upgrade the prevailing landslide warning criteria based on the total number of landslides to 

new criteria based on the landslide risk, with proper consideration of elements at risk and 

landslide consequences in space. The spatio-temporal landslide forecasting model reported in 

this paper is the first to provide such information in a unified machine learning framework. 
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DISCUSSIONS 

Importance ranking of influence factors 

To facilitate an improved understanding of landslide mechanisms, it is essential to rank the 

importance of the 43 learning features considered in machine learning (Table 1). The 

permutation importance technique is favoured to evaluate the feature importance without 

model retraining but may underestimate the importance of strongly correlated features (e.g., 

rainfall features). Alternately, a group-based permutation importance technique is proposed, 

which classifies learning features into several groups according to their physical meanings, 

such as slope property (i.e., SF1-AR), rolling rainfall (i.e., R1h-R48h), and antecedent rainfall 

(i.e., A2d-A15d). The group importance, defined as the relative reduction of model score, 

e.g., correlation coefficient introduced in the previous section, is then evaluated when one 

specific group is randomly shuffled. Figure 17 presents the permutation importance of the 

three groups. The rolling rainfall group is far more critical than the other two groups. This is 

not surprising as the correlation coefficient is a storm-based index but all features in the slope 

property group are static. These static features are useful to identify landslides spatially in 

one storm but insufficient to differentiate landslides temporally in different storms. 

Within the most influential rolling rainfall group, Fig. 17 further explores the impact 

of the number of rolling rainfall features on the model performance. The landslide forecasting 

model is repeatedly trained with only a part of rolling rainfall features (excluding other 

features for simplicity). Ten of all possible combinations are randomly selected for cases with 

two, four, and six rolling rainfall features. When the number of rolling rainfall features 

increases from one to nine, the model performance significantly improves from about 0.7 to 

0.9 on average but with a decreasing rate. Further improvement by adding more rolling 

rainfall features (e.g., 5-, 6- and 7-h, or 72- and 96-h) becomes limited owing to the high 
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correlation among the rainfall features. Particularly for the case with only one rainfall feature, 

an apparent boundary exists between the short-duration (i.e., ≤ 8-h) and long-duration (i.e., ≥ 

12-h) rainfall features. Features with longer durations on both sides (e.g., R8h and R48h) 

have greater influences because they inherently contain the information from features with 

shorter durations (e.g., R1h and R12h). The maximum rolling 24-h rainfall performs second 

best, supporting GEO’s choice to develop statistical correlations based on it. The boundary 

implies different failure mechanisms of man-made slope under short- and long-duration 

rainstorms (i.e., shallow failure and deep failure) and highlights the need to utilise both short- 

and long-duration rainfall features to improve landslide forecasting, which advocates 

machine learning techniques again. 

Suggestions when applied to data-scarce regions 

The machine learning framework proposed in this study can be easily applied to other 

landslide-prone regions worldwide for developing region-specific, spatio-temporal landslide 

forecasting models. A major obstacle may be the scarcity of data. Compared with the 

relatively easy-to-obtain rainfall and geographic data, databases for existing slopes and 

landslide incidents are not always available. However, it is never too late to compile 

databases in the era of big data. Based on the experience of Hong Kong, the spatial location 

of slopes and the failure time of landslides are the top two critical data in developing a spatio-

temporal landslide forecasting model, and hence should be given higher priority in data 

collection. The model will gradually converge when more and more data are fed in and after 

the slopes concerned have suffered several severe rainstorms. Additionally, state-of-the-art 

machine learning techniques such as transfer learning (e.g., Yang et al., 2020) may provide 

tools to deal with the data scarcity problem with the help of a pre-trained source model of 

Hong Kong presented in this paper. 
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SUMMARY AND CONCLUSIONS 

Based on comprehensive databases of man-made slopes, rainstorms, and landslides in the 

past 35 years, an advanced spatio-temporal landslide forecasting model was developed within 

a unified machine learning framework to predict the probability, scale, and spatial 

distribution of rain-induced man-made slope failures over time. The major conclusions are as 

follows: 

(1) With a storm-based data integration strategy and multiclass classification on landslide 

scales, the proposed machine learning framework incorporates landslide time and 

consequences into conventional landslide susceptibility mapping to successfully 

achieve spatio-temporal landslide forecasting. 

(2) The machine learning-based landslide forecasting model significantly outperforms the 

prevailing statistical rainfall-landslide correlations, not only in the prediction accuracy 

but also in the ability to predict both landslide locations and consequences. Among six 

candidate machine learning models, logistic regression is the best for landslide 

forecasting. 

(3) Validated against historical landslide incidents both temporally and spatially and 

through a case study of the June 2008 storm, the machine learning-based landslide 

forecasting model demonstrates excellent performance in predicting the real-time 

spatio-temporal evolution of landslides, which provides a powerful tool for state-of-

the-art landslide risk assessment and early warning. 

(4) The rolling rainfall features are critical factors governing slope stability. It is 

necessary to utilise both short- and long-duration rainfall features to consider different 

failure mechanisms of man-made slopes. 
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APPENDIX 1. FEATURE EXTRACTION IN DATASET 

Table 2 provides the sources of data for this study, most of which are open to the public. As 

shown in Table 1, man-made features, formation time, slope materials, slope covers, slope 

characteristics, and wall characteristics are directly read from the man-made slope database in 

Fig. 1. The annual rainfall amounts at locations of man-made slopes and landslide scales are 

extracted from Figs. 2 and 3, respectively. With respect to the storm-related rainfall features, 

Fig. 18 lists the 419 major rainstorms according to GEO’s criterion, i.e., daily rainfall 

exceeding 50 mm before 2011 or 100 mm after 2012. To characterise the temporal patterns of 

a rainstorm in both short- and long-duration (e.g., Gao et al., 2018) and the antecedent rainfall 

(e.g., Rahardjo et al., 2020), the maximum rolling 1-, 2-, 4-, 8-, 12-, 18-, 24-, 36-, and 48-h 

rainfall amounts and the cumulative 2-, 4-, 7-, 10-, and 15-day antecedent rainfall amounts 

are evaluated. High positive correlations exist among these rolling and antecedent rainfall 

features. Rainfall features at locations of man-made slopes are spatially interpolated from the 

rain gauges using the inverse distance weighting approach. 

In addition to slope, rainfall, and landslide databases, geographic databases of terrain 

(Fig. 19(a)), geology (Fig. 19(b)), land cover (Fig. 19(c)), and infrastructure (Fig. 19(d)) are 

also utilised. All feature values are extracted at the locations of man-made slopes as parts of 
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slope properties. The terrain information, geological conditions, and land cover information 

are supplements to slope characteristics, materials, and covers, respectively, to avoid 

oversimplification. Additionally, distances of man-made slopes to faults, waterbodies (e.g., 

streams, reservoirs, and the sea), roads, and buildings are evaluated as four location features. 

The distance to faults or waterbodies reflects the potential danger of slopes, while the 

distance to roads or buildings indirectly reflects the protection level of slopes as man-made 

slopes near roads or buildings are more likely to be well protected using engineering 

measures like soil nails and wire meshes. 

Last but not least, all numerical variables are scaled to a similar magnitude, and the 

qualitative features described by categorical variables are converted to binary vectors through 

a dummy encoding strategy, as shown in Table 1. Taking the geological classification as an 

example, the four geological conditions are converted to three variables: [1, 0, 0] for granitic 

rock, [0, 1, 0] for volcanic rock, [0, 0, 1] for superficial deposit, and [0, 0, 0] for others. 

APPENDIX 2. COMPARISON OF CANDIDATE MACHINE LEARNING MODELS 

This appendix compares the performances of six candidate machine learning models (i.e., 

logistic regression, neural network, Bagging, AdaBoost, RUSBoost, and the subspace 

method), as well as the statistical correlations (Xiao and Zhang, 2020), in binary landslide 

classification (i.e., non-landslide or landslide) without considering the landslide scale. Among 

the six methods, RUSBoost and the subspace method are particularly designed for class-

imbalanced problems. Bagging, AdaBoost, RUSBoost, and the subspace method are 

ensemble learning methods (e.g., Zhou, 2012) that combine several simple base models to 

produce one optimal predictive model. The first three take decision trees as weak learners, 

while the subspace method uses linear discriminant analysis. For simplicity, structures of all 

the models follow commonly-used options without tuning of hyperparameters; for example, 
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the neural network has one hidden layer with ten neurons, and the maximal number of branch 

node splits per tree is 20 in AdaBoost and RUSBoost and 10,000 in Bagging. Five machine 

learning methods except for RUSBoost can provide posterior probability as a classification 

score, treated as the failure probability of man-made slopes in a storm. 

The storm-based integrated dataset is randomly split by a ratio of 70/30 into training 

and test sets (i.e., 15 million records with 1489 landslide records in the training set and 7 

million records with 638 landslide records in the test set). All six models are trained on the 

same training set, and their performances on both training and test sets are evaluated. Figure 

20(a) demonstrates the receiver operating characteristic curves for the six models. Except for 

Bagging, the AUC values of all machine learning models are similar, falling in a narrow 

range from 0.93 to 0.97. This indicates the similar high ability of the machine learning 

models to distinguish between classes. The AUC of Bagging approaches 1.00 (i.e., perfect 

classification) for the training set but dramatically falls to only 0.64 for the test set, which 

means the Bagging model overfits the training data and is unsuitable for such a class-

imbalanced problem. 

Figure 21 presents the confusion matrices of classification for the six models, in 

which the left and right matrices are for the training and test sets, respectively, and the four 

numbers denote the numbers of true negative (TN), false positive (FP), false negative (FN), 

and true positive (TP), respectively. The logistic regression, neural network, and AdaBoost 

models cannot identify landslide records well, classifying almost all records into non-

landslides. In contrast, RUSBoost and the subspace method can successfully identify 82% 

and 13% of landslide records, respectively, but at the cost of classifying many non-landslide 

records into landslides. Such a result is expected for class-imbalanced problems. Numerous 

false positives (i.e., predicting a landslide when it is not) will trigger a large number of false 
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alerts in a landslide early warning system, which is unacceptable. Hence, although RUSBoost 

and the subspace method are designed for general class-imbalanced problems, they may not 

be suitable for landslide forecasting. In the context that many methods cannot identify 

landslide records, the posterior probability (i.e., the probability of landslide occurrence) is 

more useful than the predicted label of classification (i.e., landslide or non-landslide). The 

summation of landslide probabilities can represent the expected number of landslides over a 

certain time or area. Note that the extremely high class-imbalance makes many model 

performance indices derived from the confusion matrix unsatisfactory; for example, the 

accuracy, defined as (TN+TP)/(TN+TP+FN+FP), of the logistic regression is as high as 1.00, 

simply because the number of true negatives is far greater than others. 

Figure 22 compares the observed and predicted numbers of landslides (i.e., summing 

up the predicted failure probabilities of all man-made slopes in the same storm) in all 419 

rainstorms. The correlation coefficients of logistic regression, neural network, Bagging, 

AdaBoost, RUSBoost, and the subspace method are 0.92, 0.88, 0.99, 0.87, 0.76, and 0.85, 

respectively. For reference, the correlation coefficient of statistical correlations is 0.80. Most 

machine learning models perform better than statistical correlations because much more 

features are used in machine learning. Bagging is out of consideration due to the overfitting 

issue, and a significant overestimation of the number of landslides is observed when using 

RUSBoost and the subspace method. By comparison, logistic regression is the best landslide 

forecasting model among the six adopted machine learning models. 

Notation 

AUC area under the receiver operating characteristic curve 

ns number of failure scales 

N number of landslides 

P probability of landslide occurrence 

W diagonal weight matrix 

x vector of learning features, such as slope information and rainfall 

X matrix form of learning features 
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y landslide feature, such as failure scales of landslides 

ρ correlation coefficient between the observed and predicted numbers of 

landslides 

θ vector of model parameters 

Θ ensemble of all model parameters 
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Table 1. Features extracted from comprehensive databases 

Feature 

category 

I

D 

Varia

ble 

Meaning Ty

pe 
b
 

Exam

ple 

Note 

Man-made 

feature 

1 SF1 Fill slope C, 

S 

[1, 0] A retaining 

wall could 

be an 

independe

nt feature 

or 

associated 

with a 

fill/cut 

slope, and 

it is 

described 

by wall 

characteris

tics. 

2 SF2 Cut slope C, 

S 

[0, 1] 

− SF3
 a
 Retaining wall C, 

S 

[0, 0] 

Formation time 3 FT Post-1978 C, 

S 

1 Man-made 

slope 

features 

formed 

after 1978 

correspond 

to a higher 

safety 

standard in 

− FT2
 a

 Pre-1977 C, 

S 

0 
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Feature 

category 

I

D 

Varia

ble 

Meaning Ty

pe 
b
 

Exam

ple 

Note 

Hong 

Kong.  

Slope material 4 SM1 Soil C, 

S 

[1, 0] [SM1, 

SM2] = [1, 

1] if a 

slope 

comprises 

both soil 

and rock 

materials. 

5 SM2 Rock C, 

S 

[0, 1] 

Slope cover 6 SC1 Percent of vegetation (%) N, 

S 

60 Slope 

covers, 

such as 

vegetation, 

help to 

improve 

slope 

stability. 

7 SC2 Percent of chunam, shotcrete or other 

covers (%) 

N, 

S 

30 

− SC3
 a
 Percent of bare surface (%) N, 

S 

10 

Slope 

characteristics 

8 SH Slope height (m) N, 

S 

20 All 

variables 

of slope 

characteris

tics are 

zeros for 

an 

independe

nt 

retaining 

wall 

without 

any slope. 

9 SA Slope angle (°) N, 

S 

30 

1

0 

SB Berms in slope C, 

S 

1 

1

1 

SW Weep holes in slope C, 

S 

1 

1

2 

SD Number of drainages in slope N, 

S 

5 

Wall 

characteristics 

1

3 

WH Wall height (m) N, 

S 

10 All 

variables 

of wall 

characteris

tics are 

zeros for a 

man-made 

slope not 

protected 

by a 

retaining 

wall. 

1

4 

WA Wall angle (°) N, 

S 

90 

1

5 

WB Berms in wall C, 

S 

0 

1

6 

WW Weep holes in wall C, 

S 

1 

1

7 

WD Number of drainages in wall N, 

S 

2 

Terrain 1

8 

TE Terrain elevation (m) N, 

S 

400 The terrain 

informatio

n is a 1 TI Terrain inclination (°) N, 30 
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Feature 

category 

I

D 

Varia

ble 

Meaning Ty

pe 
b
 

Exam

ple 

Note 

9 S supplemen

t to slope 

characteris

tics. 

Geological 

condition 

2

0 

GEO1 Granitic rock C, 

S 

[1, 0, 

0] 

The 

geological 

condition 

is a 

supplemen

t to slope 

materials. 

2

1 

GEO2 Volcanic rock C, 

S 

[0, 1, 

0] 

2

2 

GEO3 Superficial deposit C, 

S 

[0, 0, 

1] 

− GEO4
 

a
 

Other geological conditions C, 

S 

[0, 0, 

0] 

Land cover 2

3 

LC1 Cropland, shrub or grass C, 

S 

[1, 0] The land 

cover 

informatio

n is a 

supplemen

t to slope 

covers. 

2

4 

LC2 Forest C, 

S 

[0, 1] 

− LC3
 a

 Other land covers C, 

S 

[0, 0] 

Location 2

5 

DF Distance to faults (0.1 km) N, 

S 

10 The 

distance to 

faults or 

waterbodie

s reflects 

the 

potential 

danger of 

slopes, 

while the 

distance to 

roads or 

buildings 

indirectly 

reflects the 

protection 

level of 

slopes. 

2

6 

DW Distance to waterbodies (0.1 km) N, 

S 

5 

2

7 

DR Distance to roads (0.1 km) N, 

S 

1 

2

8 

DB Distance to buildings (0.1 km) N, 

S 

2 

Annual rainfall 2

9 

AR Annual rainfall amount (mm*12 

months) 

N, 

S 

150 The annual 

rainfall 

amount is 

related to 

the 

average 

groundwat

er table. 

Rolling rainfall 3 R1h Maximum rolling 1-h rainfall amount N, 60 The 
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Feature 

category 

I

D 

Varia

ble 

Meaning Ty

pe 
b
 

Exam

ple 

Note 

0 (mm) D maximum 

rolling 

rainfall 

amounts 

represent 

the 

temporal 

rainfall 

process in 

a storm. 

3

1 

R2h Maximum rolling 2-h rainfall amount 

(mm) 

N, 

D 

90 

3

2 

R4h Maximum rolling 4-h rainfall amount 

(mm) 

N, 

D 

140 

3

3 

R8h Maximum rolling 8-h rainfall amount 

(mm) 

N, 

D 

200 

3

4 

R12h Maximum rolling 12-h rainfall amount 

(mm) 

N, 

D 

300 

3

5 

R18h Maximum rolling 18-h rainfall amount 

(mm) 

N, 

D 

330 

3

6 

R24h Maximum rolling 24-h rainfall amount 

(mm) 

N, 

D 

350 

3

7 

R36h Maximum rolling 36-h rainfall amount 

(mm) 

N, 

D 

400 

3

8 

R48h Maximum rolling 48-h rainfall amount 

(mm) 

N, 

D 

400 

Antecedent 

rainfall 

3

9 

A2d Cumulative 2-day antecedent rainfall 

amount (mm) 

N, 

D 

0 The 

antecedent 

rainfall 

before a 

storm may 

raise the 

groundwat

er table. 

4

0 

A4d Cumulative 4-day antecedent rainfall 

amount (mm) 

N, 

D 

50 

4

1 

A7d Cumulative 7-day antecedent rainfall 

amount (mm) 

N, 

D 

50 

4

2 

A10d Cumulative 10-day antecedent rainfall 

amount (mm) 

N, 

D 

150 

4

3 

A15d Cumulative 15-day antecedent rainfall 

amount (mm) 

N, 

D 

250 

Landslide scale 4

4 

LS No failure C, 

D 

0 If only two 

slope 

stability 

conditions 

are 

considered

, LS = 0 

and 1 

stand for 

non-

landslide 

and 

landslide, 

respectivel

y. 

4

4 

LS Very minor failure (landslide volume V 

< 5 m
3
) 

C, 

D 

1 

4

4 

LS Minor failure (5 m
3
 ≤ V < 50 m

3
) C, 

D 

2 

4

4 

LS Major failure (50 m
3
 ≤ V < 500 m

3
) C, 

D 

3 

4

4 

LS Very major failure (V ≥ 500 m
3
) C, 

D 

4 

Note: 
a
hidden feature; 

b
N, C, S, and D for numerical, categorical, static, and dynamic 

variables, respectively. 
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Table 2. Sources of databases 

Database Figur

e 

Type Source 

Slope Fig. 

1 

Polygo

n 

GEO’s Slope Information System 

(https://hkss.cedd.gov.hk/hkss/en/facts-and-figures/slope-

information-system/sis/index.html; 

https://www.geomap.cedd.gov.hk/GEOOpenData/eng/Feature.as

px) 

Rainfall Fig. 

2 

Point 

+ time 

series 

Rain gauges of GEO 

(https://www.geomap.cedd.gov.hk/GEOOpenData/eng/Raingaug

e.aspx) and HKO (https://www.hko.gov.hk/en/cis/climat.htm) 

Landslide Fig. 

3 

Point GEO’s annual reports on rainfall and landslides 

(https://www.cedd.gov.hk/eng/publications/geo/geo-

reports/index.html) and list of landslide incidents 

(https://www.geomap.cedd.gov.hk/GEOOpenData/eng/Incident.a

spx) 

Terrain Fig. 

19(a) 

Raster Survey and Mapping Office 

(https://www.landsd.gov.hk/en/spatial-data/open-data.html) 

Geology Fig. 

19(b) 

Polygo

n 

GEO’s geological maps (https://www.cedd.gov.hk/eng/about-

us/organisation/geo/pub_info/memoirs/geology/index.html; 

https://www.geomap.cedd.gov.hk/GEOOpenData/eng/Geological

Map.aspx) 

Land cover Fig. 

19(c) 

Raster Planning Department’s land utilization map 

(https://www.pland.gov.hk/pland_en/info_serv/open_data/landu/i

ndex.html) or FROM-GLC10 (Gong et al., 2019; used in this 

study) (http://data.ess.tsinghua.edu.cn) 

Infrastructu

re 

Fig. 

19(d) 

Polygo

n 

Civil Engineering and Development Department (private 

communication; used in this study) or OpenStreetMap 

(https://www.openstreetmap.org) 

Grid Fig. 

12 

− Survey and Mapping Office 

(https://www.landsd.gov.hk/doc/en/mapping/paper-

map/index/index_1.pdf) 

 

Figure captions 

Fig. 1. Registered man-made slopes in Hong Kong 

Fig. 2. Distribution of rain gauges and mean annual rainfall isohyets (1990-2010) 

Fig. 3. Reported landslide incidents of man-made slope failures (1984-2017) 

Fig. 4. Cumulative frequencies: (a) geometry of slope/wall; (b) landslide volume 

Fig. 5. The 419 major rainstorm events and landslide incidents in the period of 1984-2017 

Fig. 6. An example of landslide incident (modified after Lam et al., 2012) 

Fig. 7. Statistical rainfall-landslide correlations 

Fig. 8. Machine learning framework for spatio-temporal landslide forecasting 

Fig. 9. Data integration: (a) traditional manner; (b) storm-based manner 

Fig. 10. Statistics of rainfall features in a storm-based integrated dataset (notation in Table 1) 

Fig. 11. Normalised model parameters in multinomial logistic regression (notation in Table 1) 

Fig. 12. Spatial distribution of man-made slopes in a grid (grid size: 750 m × 600 m) 
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Fig. 13. Comparison of observed and predicted numbers of landslides in all storms: (a) for 

different failure scales; (b) for machine learning and statistical correlation 

Fig. 14. Spatial distribution of landslides in all storms: (a) observation; (b) prediction 

Fig. 15. Rainfall process and predicted number of landslides during the 6-9 June 2008 storm 

Fig. 16. Predicted spatio-temporal evolution of landslides in the 6-9 June 2008 storm 

Fig. 17. Impact of learning features on model performance 

Fig. 18. List of 419 major rainstorms (1984-2017) 

Fig. 19. Geographic databases: (a) terrain; (b) geology; (c) land cover; (d) infrastructure 

Fig. 20. Receiver operating characteristic curves: (a) for different machine learning models in 

binary classification; (b) for multiclass classification using multinomial logistic 

regression 

Fig. 21. Confusion matrices of classification for different machine learning models 

Fig. 22. Predicted numbers of landslides in all storms using different methods 
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