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Abstract. We propose a nonlinear lagrangian model that takes into account the dynamic interactions between the
soil and a n-storey plane frame, which may be subjected to a seismic excitation through the soil. First, the interaction
of the soil with the structure is modeled through a combination of springs and dampers representing the charac-
teristics of the soil. In this model, the masses and stiffnesses of the structure elements are condensed to facilitate
the analysis. Second, the Euler-Lagrange equations of the system are formulated and generalized for n floors. Third,
these equations are discretized using the finite difference method to solve them using the Newton-Raphson method
at each time step, during and after the seismic excitation, thus, determining the positions of each concentrated mass
of the system. In addition, a linearization of the governing equations is performed in order to compare these results
with those of the nonlinear model. Finally, the nonlinear model is used for the analysis of a 10-storey building, which
has already been designed for linear geometric and material behaviors. For this analysis, the corrected acceleration
record of the 2016 Pedernales (Ecuador) earthquake is used.

Keywords: soil-structure interaction, lagrangian model, seismic excitation, large displacements.

1. Introduction

In the seismic resistant analysis of buildings, one of the fundamental parts corresponds to the analysis of the soil where the
building will be supported, since the design of the foundation will depend on this. For this reason, the study of the soil-structure
interaction is fundamental for an adequate seismic resistant design. For example, the so-called ”stick models” have failed in an
adequate prediction of the structural behavior under a given seismic excitation [1], since the foundations are considered as rigid
plates, i.e., the effects of soil-structure interaction are completely omitted [2].
At the end of the 1970s, with the appearance of the first commercial computers, authors such as Chopra [3] and Whitman [4], put
more emphasis on the incorporation of the interaction between soil and the structure in the analysis of structures subjected to a
seismic excitation [5, 6]. The effect of the soil on the structure has an important effect on the dynamic behavior of the structure,
which is reflected in an increase in the fundamental period, as well as in an increase in the damping of the system compared to the
fixed base model that does not consider interactions with the ground [8, 7].
On the other hand, it is commonly assumed that the soil-structure interaction is detrimental to the structural response of buildings,
which is not entirely true. In some cases, the consideration of soil-structure interaction can be favorable. This is the case of rigid
structures, which work only within the elastic range. In rigid structures, the consideration of soil-structure interaction will generally
be beneficial in the mechanical response of the structure.
Under the considerations mentioned so far, it is clear the importance of the soil-structure interaction at the moment of carrying out a
seismic resistant design. A precise knowledge of the soil-structure interaction and how it can affect the response of the building un-
der a seismic event can contribute to safer designs, while, optimizing materials and resources. Within the field of seismic-resistant
design,in recent years, more emphasis has been placed on the analysis of soil interaction with the structure. However, most of
the methods assume a regime of small ground deformations and displacements. In the best case, some models assume the soil-
structure interaction as a linear behavior in each of the parts.
Nonetheless, in general, the methods used in the modeling of nonlinear deformations in structures (where the soil-structure inter-
action is included) are not simple nor user-friendly enough to be assumed as a base for design in engineering [9, 10, 11, 12, 13, 14].
This is why the use of Lagrangian mechanics theory allows a greater generalization and abstraction of structural models than its
Newtonian counterpart [15].
The study of nonlinear dynamic behavior may allow to create a reliable and practical physical-mathematical model that simplifies
the interpretation of the influence of the soil on the structure.

2. Physical-mathematical model

The problem to be analyzed consists of a n-storey plane frame that is subjected to a horizontal movement at its base due to
a seismic force (see Fig. 1). The model starts from the idealization of the frame by concentrating the mass of each level, which is
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(a) (b)

Fig. 1. Physical-mathematical model of a n-storey plane frame: a) plane portal frame of an n-storey building with slab foundation, where Li is the height
of the i-th floor and mi is the mass of each floor. The building is subjected to a seismic event, applied to its base (foundation slab), b) mathematical
physical model of the nonlinear mechanical behavior of the flat portal frame (a) due to large displacements, where ki is the stiffness of the i-th floor.
Moreover, ci is the damping constant of the i-th floor. The interaction of the soil with the structure is modeled by the system of springs and dampers
at the base, connected to the mass m1 corresponding to the foundation slab. The external forcing a(t) is applied to the foundation by means of the
aforementioned system of springs and dampers representing the soil underneath the base slab.

supported by a “single column” without mass and with effective stiffness equivalent to that of the columns between consecutive
levels [15] (see Fig. 1 (b)). Hence, such stiffness is a function of the column cross-sections’ geometric characteristics, the material of
the portalized system, and the type of restraint at the nodes (e.g., beam-column joints).

On the other hand, the interaction between soil and the structure is modeled taking into account previous research such as the
work by Gazetas and Wolf [16, 17]. They proposed to model the behavior of the ground as a system with one degree of freedom,
idealized by springs on an rigid deck representing the bearing ground. Similarly, to model the dissipative capacity of the system,
dampers [18] are used, viscoelastic behavior of the columns and the soil represented by a Kelvin-Voigt model for each mass are also
assumed, where the spring and the damper act in parallel [19] as shown in Fig. 1 (b).

3.Model application of Lagrangian mechanics

The complexity of the model shown in Fig. 1 (b) is in its generalization for n floors, hence the use of traditional methods in
structural engineering, such as those based on Newtonian mechanics can become tedious [20]. This is the reason for the need to
use equivalent formulations, but with greater advantages that can formulate mechanical phenomena in a mathematical way such
as that offered by Lagrangian mechanics, based on variational principles [21].

3.1 Kinetic energy of the system

The geometric position of each mass mi in Fig. 1 (b) is given by expressions (1), which are a function of the degrees of freedom
θi. Note that, θ1 represents the horizontal displacement, and that θi for i = 2 : n represents the rotational degrees of freedom of the
system. Then,



xi = θ1 +
i∑

j=2

Lj sin θj

yi =

i∑
j=2

Lj cos θj

(1)

where the velocities of the masses mi in each Cartesian coordinate are obtained from the time derivative of equations (1) and given
by equations (2):
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

ẋi = θ̇1 +

i∑
j=2

Lj θ̇j cos θj

ẏi = −
i∑

j=2

Lj θ̇j sin θj

(2)

Thus, from equations (2), the tangential velocity is given by:

v2i = ẋi
2 + ẏi

2

Then, the kinetic energy T of the system is the sum of the kinetic energy of each mass mi [22], as follows:

T =
1

2

n∑
i=1

mi

(
ẋi

2 + ẏi
2
)

and substituting equations (2) into the last equation, we end up with:

T =
1

2

n∑
i=1

mi

θ̇1 +

i∑
j=2

Lj θ̇j cos θj

2

+

 i∑
j=2

Lj θ̇j sin θj

2 (3)

3.2 Potential energy of the system

The potential energy of the system is the sum of the potential energies of each mass, in turn, the potential energy of each mass
is the sum of the gravitational potential energy and the elastic potential energy of the springs. The model synthesized graphically
in Fig. 1 (b) takes into account the nondissipative interaction of the soil with the structure through springs, such that, for m1 (the
foundation’s mass) the potential energy is given by:

V1 =
1

2
kshθ

2
1 + (

1

2
ksv(L1 sin θ1)

2)2 =
1

2
kshθ

2
1 + ksvL

2
1 sin

2

θ1 (4)

where ksh is the horizontal stiffness of soil, ksv the vertical stiffness of soil, L1 half of the foundation’s horizontal length (see Fig. 1),
and θ1 the horizontal rotation of mass m1. Similarly, the potential energy of the masses mi for i = 2 : n is given by:

Vi =
1

2
kiL

2
i sin

2θi +mig
i∑

j=2

Lj cos θj (5)

where, Li is the floor length and θi the angular displacement for i = 2 : n. Finally, the potential energy of the system is given by:

V =
1

2
kshθ

2
1 + ksvL

2
1 sin

2

θ1 +

n∑
i=2

1

2
kiL

2
i sin

2θi +

n∑
i=2

mig

i∑
j=2

Lj cos θj (6)

3.3 Lagrangian model of the system

Once the total potential energy (6) and the total kinetic energy of the system (3) have been computed, the Lagrangian of the
system L = T − V ends up as follows:

L =
1

2

n∑
i=1

mi

θ̇1 +
i∑

j=2

Lj θ̇j cos θj

2

+

 i∑
j=2

Lj θ̇j sin θj

2−
1

2
kshθ

2
1

− ksvL
2
1 sin

2

θ1 −
1

2

n∑
i=2

kiL
2
i sin

2θi −
n∑

i=2

mig
i∑

j=2

Lj cos θj

From this Lagrangian, n Euler - Lagrange equations, one for each degree of freedom of the structure θi, which satisfies the
Stationary-action principle [22], are obtained.

∂L
∂θi

−
d

dt

(
∂L
∂θ̇i

)
=
∑

Fdis−m
i

(7)

where, the right-hand term of the equation corresponds to the dissipative forces in the system, from the dampers with a linear
viscous model [25], given by:

Fdis−m
i
= −ciẋi

here, ci is the damping coefficient and ẋi is given by expression (2). Finally, from the Lagrangian equations (7) we get:
For q = 1, (

n∑
i=1

mi

)
θ̈1 +

n∑
j=2

 n∑
i=j

mi

Lj cos θj θ̈j −
n∑

j=2

 n∑
i=j

mi

Lj sin θj θ̇j
2
+ kshθ1 + cshθ̇1 = f (t) (8)
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For q = 2,

(
n∑

i=2

mi

)
L2 cos θ2θ̈1 +

(
n∑

i=2

mi

)
L2
2θ̈2 +

n∑
j=3

 n∑
i=j

mi

L2Lj cos (θ2 − θj) θ̈j

+

n∑
j=3

 n∑
i=j

mi

L2Lj sin (θ2 − θj) θ̇j
2
+ ksvL

2
1 sin (2θ2) +

1

2
k2L

2
2 sin (2θ2)

−
(

n∑
i=2

mi

)
gL2 sin θ2 + 2csvL1 cos θ2θ̇2 + c2θ̇1 + c2L2 cos θ2θ̇2 = 0

(9)

For q = 3 : n,

 n∑
i=q

mi

Lq cos θq θ̈1 +

n∑
j=2
j ̸=q


j < q ⇒

 n∑
i=q

mi


j > q ⇒

 n∑
i=j

mi



LqLj cos (θq − θj) θ̈j

+

 n∑
i=q

mi

L2
q θ̈q +

n∑
j=2
j ̸=q


j < q ⇒

 n∑
i=q

mi


j > q ⇒

 n∑
i=j

mi



LqLj sin(θq − θj)θ̇j
2

+
1

2
kqL

2
q sin(2θq)−

 n∑
i=q

mi

 gLq sin θq + cq θ̇1 +

q∑
j=2

cqLj cos θj θ̇j = 0

(10)

where q is the equation number within the system of n equations for q = 1 : n. The first two equations, q = 1 and q = 2, have a
different generalization than the others because the masses m1 and m2 are intrinsically in contact with the soil, and where csh and
csv represent the horizontal and vertical damping coefficients of the soil, respectively.

On the other hand, note that on the right-hand side of equation (8) is a function of time f(t) representing an external force term
given, that (in this model) is given, for example, by a seismic excitation acting on the bearing ground with mass m1. In the case that
one wants to apply other external forces, for instance, the forces exerted on the structures by the action of the wind, it would be
enough to add to the right side of the equality of the equations (9) and/or (10) (the function of the corresponding external forces) to
the equations corresponding to the upper masses.

4. Numerical solution of the system

Since this is a system of highly nonlinear ordinary differential equations it is impossible to solve it analytically. The nonlinearity
is clearly of geometric origin, due to large deformations produced by an external forces in the soil. Hence, the only way to solve
the system given by the numerical expressions (8), (9), and (10) [23]. Specifically, here we use the finite difference method for this
purpose.

4.1 System discretization by the finite difference method

In this case, we adopt for the first derivatives in a forward finite difference scheme given by:

θ̇i =
θi,p+1 − θi,p

∆t
+O (∆t) (11)

In addition, a central finite difference scheme is used for the second derivatives:

θ̈i =
θi,p+1 − 2θi,p + θi,p−1

∆t2
+O

(
∆t2

)
(12)

Substituting the equations (11) and (12) into the expressions (8), (9) and (10) result in the following system of equations:
For q = 1,

(
n∑

i=1

mi

)
(θ1,p+1 − 2θ1,p + θ1,p−1)−

n∑
j=2

 n∑
i=j

mi

Lj sin θj,p (θj,p+1 − θj,p)
2

+

n∑
j=2

 n∑
i=j

mi

Lj cos θj,p (θj,p+1 − 2θj,p + θj,p−1) + kshθ1,p∆t2

+ csh (θ1,p+1 − θ1,p)∆t− f (t)∆t2 = 0

(13)
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For q = 2, (
n∑

i=2

mi

)
L2 cos θ2,p (θ1,p+1 − 2θ1,p + θ1,p−1) +

(
n∑

i=2

mi

)
L2
2 (θ2,p+1 − 2θ2,p + θ2,p−1)

+
n∑

j=3

 n∑
i=j

mi

L2Lj cos (θ2,p − θj,p) (θj,p+1 − 2θj,p + θj,p−1)

+

n∑
j=3

 n∑
i=j

mi

L2Lj sin (θ2,p − θj,p) (θj,p+1 − θj,p)
2 + ksvL

2
1 sin (2θ2,p)∆t2

+
1

2
k2L

2
2 sin (2θ2,p)∆t2 −

(
n∑

i=2

mi

)
gL2 sin θ2,p∆t2 + 2csvL1 cos θ2,p (θ2,p+1 − θ2,p)∆t

+ c2 (θ1,p+1 − θ1,p)∆t+ c2L2 cos θ2,p (θ2,p+1 − θ2,p)∆t = 0

(14)

For q = 3 : n,  n∑
i=q

mi

Lq cos θq,p (θ1,p+1 − 2θ1,p + θ1,p−1) +

 n∑
i=q

mi

L2
q (θq,p+1 − 2θq,p + θq,p−1)

+
n∑

j=2
j ̸=q


j < q ⇒

 n∑
i=q

mi


j > q ⇒

 n∑
i=j

mi



LqLj cos (θq,p − θj,p) (θj,p+1 − 2θj,p + θj,p−1)

+

n∑
j=2
j ̸=q


j < q ⇒

 n∑
i=q

mi


j > q ⇒

 n∑
i=j

mi



LqLj sin(θq,p − θj,p) (θj,p+1 − θj,p)
2

+
1

2
kqL

2
q sin(2θq,p)∆t2 −

 n∑
i=q

mi

 gLq sin θq,p∆t2 + cq (θ1,p+1 − θ1,p)∆t

+

q∑
j=2

cqLj cos θj,p (θj,p+1 − θj,p)∆t = 0

(15)

Note that equations (13), (14), and (15), form a system of n nonlinear algebraic equations with n unknowns subject to initial
conditions, which has to be solved for each time step (denoted in the discretized variables by the subscript p).

4.2 Numerical solution to the system of discretized equations

In order to solve the system of equations given by (13), (14) and (15), it is necessary to discretize the initial conditions [23], in
other words:



θ1,p−1 = α1 θ̇1,p−1 = V1

θ2,p−1 = α2 θ̇2,p−1 = V2

... ...

θi,p−1 = αi θ̇i,p−1 = Vi

... ...

θn,p−1 = αn θ̇n,p−1 = Vn

where, the values of αi and Vi represent the initial conditions of the kinematic state of the structure and p is the time index ranging
from 2 to m. Thus, for the discretization of θ̇i,p−1 we use the progressive finite difference scheme (11), from which we obtain:

V1 =
θ1,p − θ1,p−1

∆t
⇒ θ1,p = V1.∆t + θ1,p−1

V2 =
θ2,p − θ2,p−1

∆t
⇒ θ2,p = V2.∆t + θ2,p−1

· · ·

Vi =
θi,p − θi,p−1

∆t
⇒ θi,p = Vi.∆t + θi,p−1

· · ·

Vn =
θn,p − θn,p−1

∆t
⇒ θn,p = Vn.∆t + θn,p−1

(16)

with, θi,p−1 = 0 → i = 1....n. Then, when combining the system of nonlinear algebraic equations (13), (14) and (15) with the
discretized initial conditions (16), one must solve such system for each time step to obtain the values of θi,p+1 for p = 2 : m time
steps, where m represents the number of time steps to be analyzed with ∆t increments.
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Finally, the Newton-Raphson numerical method [24] is used to solve the system of equations given by the expressions (13), (14)
and (15) subject to the initial conditions (16). The associated iterative process is given by:



θ1,p+1

θ2,p+1

...

θi,p+1

...

θn,p+1



(k+1)

≈



θ1,p

θ2,p

...

θi,p

...

θn,p



(k)

−



J1,1 J1,2 ... J1,j ... J1,n

J2,1 J2,2 ... J2,j ... J2,n

... ... ... ... ... ...

Ji,1 Ji,2 ... Ji,j ... Ji,n

... ... ... ... ... ...

Jn,1 Jn,2 ... Jn,j ... Jn,n



(k)

f1

f2

...

fi

...

fn



(k)

(17)

where, k denotes the iteration number. In this case, by the nature of the iterative method, it is necessary to set a tolerance for the
solution. In addition, fi is the residual of each of the algebraic equations (13), (14) and (15), and Ji,j is the Jacobian of the system
given by:

Ji,j =
∂fi

∂θj,p+1

∣∣∣∣(k) (18)

Thus, from equations (13), (14), (15) and (18) we obtain:
For row 1, column 1:

J1,1 =
n∑

i=1

mi + csh∆t

Row 1, column j, for j = 2 : n:

J1,j =

 n∑
i=j

mi

Lj cos θj,p − 2

 n∑
i=j

mi

Lj sin θj,p (θj,p+1 − θj,p)

Row 2, column 1:

J2,1 =

(
n∑

i=2

mi

)
L2 cos θ2,p + c2∆t

Row 2, column 2:

J2,2 =

(
n∑

i=2

mi

)
L2
2 + (2csvL1 + c2L2) cos θ2,p∆t

Row 2, column j, for j = 3 : n:

J2,j =

 n∑
i=j

mi

L2Lj cos (θ2,p − θj,p) + 2

 n∑
i=j

mi

L2Lj sin (θ2,p − θj,p) (θj,p+1 − θj,p)

Row q, for q = 3 : n, column 1:

Jq,1 =

 n∑
i=q

mi

Lq cos θq,p + cq∆t

Row q, for q = 3 : n, column j, for j = 2 : n and j ̸= q:

Jq,j =


j < q ⇒

 n∑
i=q

mi


j > q ⇒

 n∑
i=j

mi



LqLj cos (θq,p − θj,p)

+ 2


j < q ⇒

 n∑
i=q

mi


j > q ⇒

 n∑
i=j

mi



LqLj sin(θq,p − θj,p) (θj,p+1 − θj,p)

+ cqLj cos θj,p∆t = 0

Row q, column q, for q = 3 : n:

Jq,q =

 n∑
i=q

mi

L2
q + cqLq cos θq,p∆t

It is worth noticing that each term from the Jacobian matrix has also been generalized for n floors. Then, the position of each
mass mi is obtained by solving the system given by equations (13), (14) and (15) for each time step with a Newton-Raphson scheme.

Finally, Fig. 2 presents a flow diagram of the numerical solution for the mathematical-physical model in Fig. 1 (b), represented
by equations (8), (9) and (10), and which are subjected to the initial conditions (16).
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START

Input data: n, ki, Li, ci, tol,
Tt, dt, m, g, f(t), initial condi-
tions of the problem; θi,1, Vi

Newton-Raphson method for each time
step and p = 3 : m, (13), (14) y (15)

Evaluate the residual vector r(θi,p)
equations: (13), (14) and (15)

Jacobian matrix assembly: (17)

θ
(k+1)
i,p+1 = θ

(k)
i,p − J(θi,p)

(k)r(θi,p)
(k)

error =
∥∥∥r(θi,p)∥∥∥

error ≤ tol Print θi,p+1

END

no yes

p = m

p = p+ 1

Fig. 2. Flowchart of the numerical solution for a nonlinear lagrangian model of a n-storey plane frame.
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5.Model linearization

In this section, equations (14), (15), and (16) are linearized. In practice, this implies assuming that the structure will be subjected
exclusively to small deformations and displacements, which are usually within the norms of structural design in civil engineering.

Mathematically, this implies that one can safely assume that the angles of the rotational degrees of freedom of the system are
small (i.e. θi ≃ 0), which, in turn, imply that:


sin θi ≃ θi

cos θi ≃ 1

Furthermore, small rotation angles in a structure with high stiffness elements also imply that the angular velocities of the
rotational degrees of freedom of the system can also be assumed to be “small”, hence:

θ̇i
2 ≃ 0

Thus, applying these assumptions to the expressions (8), (9) and (10), we get:
For q = 1, (

n∑
i=1

mi

)
θ̈1 +

n∑
j=2

 n∑
i=j

mi

Lj θ̈j + kshθ1 + cshθ̇1 = 0 (19)

For q = 2, (
n∑

i=2

mi

)
L2θ̈1 +

(
n∑

i=2

mi

)
L2
2θ̈2 +

n∑
j=3

 n∑
i=j

mi

L2Lj θ̈j

+2ksvL
2
1θ2 + k2L

2
2θ2 −

(
n∑

i=2

mi

)
gL2θ2 + 2csvL1θ̇2 + c2θ̇1 + c2L2θ̇2 = 0

(20)

For q = 3 : n,

 n∑
i=q

mi

Lq θ̈1 +

n∑
j=2
j ̸=q


j < q ⇒

 n∑
i=q


j > q ⇒

 n∑
i=j



LqLjθ̈j +

 n∑
i=q

mi

L2
q θ̈q + kqL

2
qθq

−

 n∑
i=q

mi

 gLqθq + cq θ̇1 +

q∑
j=2

cqLjθj θ̇j = 0

(21)

Note that in this system of n ordinary differential equations with n unknowns, i.e., θi(t), given by the expressions (19), (20) and
(21), all the differential equations are linear. We compute the numerical solution using finite differences and the expressions (11)
and (12) as previously done to solve the nonlinear model, from which we obtain:

For q = 1,

((
n∑

i=1

mi

)
+ csh∆t

)
θ1,p+1 +

n∑
j=2

 n∑
i=j

mi

Ljθj,p+1 =

(
n∑

i=1

mi

)
(2θ1,p − θ1,p−1)

+
n∑

j=2

 n∑
i=j

mi

Lj (2θj,p − θj,p−1) +
(
csh∆t− ksh∆t2

)
θ1,p − f (i)

(22)

For q = 2,

((
n∑

i=2

mi

)
L2 + c2∆t

)
θ1,p+1 +

((
n∑

i=2

mi

)
L2 + 2csvL1∆t+ c2L2∆t

)
θ2,p+1

+

n∑
j=3

 n∑
i=j

mi

L2Ljθj,p+1 =

(
n∑

i=2

mi

)
L2 (2θ1,p − θ1,p−1)

+

(
n∑

i=2

mi

)
L2
2 (2θ2,p − θ2,p−1) +

n∑
j=3

 n∑
i=j

mi

L2Lj (2θj,p − θj,p−1) + c2∆tθ1,p

+

(
(2csvL1 + c2L2)−

(
2ksvL

2
1 + k2L

2
2 −

(
n∑

i=2

mi

)
gL2

)
∆t

)
∆tθ2,p

(23)
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START

Data input n, ki, Li, ci, tol,
Tt, dt, g, f(t), initial condi-

tions of the problem; θi,1, Vi

Solve system of linear equations (22), (23)
and (24). Gauss method for p = 1 : m

PRINT: θi,p+1

END

p=p+1

p = m

Fig. 3. Flowchart of the numerical solution for the linear Lagrangian model of a n-storey plane frame.

For q = 3 : n,  n∑
i=q

mi

Lq + cq∆t

 θ1,p+1 +

 n∑
i=q

mi

L2
q + cqLq∆t

 θq,p+1

+


n∑

j=2
j ̸=q


j < q ⇒

 n∑
i=q

mi


j > q ⇒

 n∑
i=j

mi



LqLj +

q−1∑
j=2

cqLj∆t

 θj,p+1 =

 n∑
i=q

mi

Lq (2θ1,p − θ1,p−1)

+

 n∑
i=q

mi

L2
q (2θq,p − θq,p−1) +


n∑

j=2
j ̸=q


j < q ⇒

 n∑
i=q

mi


j > q ⇒

 n∑
i=j

mi





LqLj (2θj,p − θj,p−1)

+ cq∆tθ1,p−1 +

q∑
j=2

cqLj∆tθj,p +

 n∑
i=q

mi

 gLq − kqL
2
q

∆t2θq,p

(24)

Finally, Fig. 3 shows a flow diagram of the numerical solution for the linearized model in Fig. 1 (b), represented by equations
(22), (23) and (24), and which are subjected to the initial conditions (16).

6. A 10-storey building design evaluation

In this section, the developed model is applied to the 10-storey building shown in Fig. 4.
Figure 5 (a) represents the central frame of the building with its geometry and the effective stiffness corresponding to the other

frames parallel to it. Fig. 5 (b) represents the idealized model of the 10-storey structure, with masses concentrated for each level,
and with effective stiffness between two consecutive stories, which represents the force required to produce a unit displacement
[25].

The constitutive values of the springs of the structure (which are given by the lateral stiffness of each floor and shown in Fig.
5 (b)), were obtained as the effective stiffness of all columns between two consecutive levels (assuming that the soil are infinitely
stiff). The total effective stiffness for each floor is calculated by the following expression:

ke = 12

nc∑
i=1

EcIi

Li

where, ke is the effective stiffness of the floor i, nc is the number of columns between every two consecutive levels, Ec is the modulus
of elasticity of concrete, Li is the length of the columns at the i− th level, and Ii is the area moment of inertia of the section of the
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Fig. 4. 10-storey building with reinforced concrete frames and a stiff plate foundation.

columns at the i − th level. The ground stiffness for both ksh and ksv is calculated as an axial stiffness given by ks = EsLc, where
Es is the modulus of elasticity of the soil, and Lc is the length of the foundation soil in the N-S direction.

The damping constants of the structure ci and of the soil csh and csv were obtained as constants proportional to the stiffness,
through the following expression [25]:

cs = 2ξmi

√
ki

mi

where, ξ represents the percentage of critical damping, using 5% for reinforced concrete, while for the horizontal and vertical ground
damping we assumed 10% [26]. The concentrated masses were calculated for each floor by adding its own weight and the corre-
sponding dead and live loads, according to the geometry and usage of the building. The parameters of the 10-storey building to be
analyzed according to the model in Fig. 1 (b) are detailed in Table 1 below.

Table 1. Parameters of the 10-storey building

Level Floor Li (ft) Mass mi

(lbs)
Stiffness ki
(lb/ft)

Damping coef-
ficient (ci)

0.00 1 47.49 71,051.75
13.12 2 13.12 44,131.75 1.54E+08 2.34E+05
26.24 3 13.12 44,131.75 1.54E+08 2.34E+05
39.36 4 13.12 44,131.75 1.54E+08 2.34E+05
52.48 5 13.12 42,578.63 8.71E+07 1.72E+05
65.60 6 13.12 42,578.63 8.71E+07 1.72E+05
78.72 7 13.12 42,004.72 6.50E+07 1.47E+05
91.84 8 13.12 42,004.72 6.50E+07 1.47E+05

101.68 9 9.84 15,591.22 2.97E+07 5.97E+04
111.52 10 9.84 14,120.56 2.97E+07 5.59E+04

Table 2 gives the characteristics of the foundation soil.

Table 2. Bearing ground parameters

USCS Classification: GW-GC
Elasticity Module Es: 73.099,15 lb/ft2

Horizontal Soil Stiffness ksh: 6.49E+06 lb/ft

Vertical Soil Stiffness ksv : 6.49E+06 lb/ft

Damping Coefficient csh: 1.40E+05
Damping Coefficient csv : 1.40E+05

For the numerical application of the model, the building will be subjected to a real seismic excitation. The seismic acceleration
is applied to the base of the structure. To apply the seismic record to our model, the right-hand term of the equation (13), f(t),
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(a) (b)

Fig. 5. Equivalent system of concentrated masses: a) plane portal frame of a real 10-story building of which its effective physical and geometrical
parameters such as column stiffnesses, inertia of the column cross-sections, floor heights, slab masses, and dampings are listed in Table 1, b) physical-
mathematical stick-ball model equivalent to the plane portal frame of the 10-story building in where the masses of the slabs and stiffnesses of the
floors are “concentrated”, and to which an excitation (of magnitude 7.8Mw) is applied by means of its base.

is given by the product of the total mass of the building

(
n∑

i=1

mi

)
and the acceleration of the earthquake at each time step. As a

result, the proposed model determines the position of each of the masses at each time step, resulting from the action of the seismic
acceleration.

In this example, the seismic record obtained from the National Network of Accelerographs of Ecuador RENAC (Red Nacional de
Acelerógrafos) [27] is used, specifically from the APED N-S station in Pedernales. The magnitude of the earthquake was 7.8 Mw and
the hypocenter was located in front of Pedernales (Manabí), 20 km deep [28].

The processing of the acceleration seismic record data was performed with the support of PRISM software, which is freely
available for the analysis of the seismic response of single degree-of-freedom systems, developed by the engineering department of
INHA University, South Korea [29]. The corrected acceleration and velocity seismic record of the Pedernales earthquake is shown in
Fig. 6

6.1 Results

First, a simulation of the building in Fig. 4 being forced by the Pedernales seismic event (see Fig. 6), with the characteristics
of both the structure and the soil described in Tables 1 and 2. The results shown in Fig. 7, both for the linear model and for the
nonlinear model.

Table 3 summarizes the maximum values of each floor of both the nonlinear model and the linear model, and the percentage
difference of the two models for each degree of freedom.

Table 3. Maximum values of the displacements of each floor for nonlinear and linear models

FLOOR LINEAR
MAX DISP.

NON LINEAR
MAX DISP.

DIFFERENCE

1 0.570 ft 0.570 ft 0.06
2 0.261 º 0.262 º 0.17
3 0.718 º 0.721 º 0.38
4 0.662 º 0.663 º 0.07
5 0.920 º 0.921 º 0.04
6 0.894 º 0.894 º 0.00
7 1.320 º 1.321 º 0.07
8 1.076 º 1.080 º 0.37
9 2.464 º 2.473 º 0.33

10 1.763 º 1.767 º 0.26

From Figure 7 and Table 3, note that the results of the nonlinear model and the linear model are very similar with differences in
the order of 0.38%.
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Fig. 6. Velocities and accelerations recorded in the Pedernales earthquake, 2016, Ecuador, magnitude 7.8 Mw, at 27 km depth.

(a) Degree of freedom θ1 (b) Degree of freedom θ4

(c) Degree of freedom θ7 (d) Degree of freedom θ10

Fig. 7. Trajectories θi(t) for i = 1, 4, 7, 10 (building in Fig. 4) when subjected to the recorded seismic acceleration of the Pedernales earthquake, Ecuador,
2016.
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Fig. 8. Convergence of Newton-Raphson method at different time steps: n = 10s; n = 30s y n = 40s, with a tolerance of 1E − 10.

In addition, the convergence of the Newton-Raphson method is shown in Fig. 8, where the method converges in three iterations
for each of the analyzed time steps, i.e., it has a quadratic convergence, as expected.

6.2 Results by reducing the stiffness values

A second simulation is performed for the 10-storey building in Fig. 4 in which the same parameters are assumed for both the
earthquake and the soil characteristics, but reducing the value of the stiffness of each floor to one tenth, obtaining the results seen
in Fig. 9.

Table 4 summarizes the maximum values for each floor of both the nonlinear and linear models and the percentage difference
of the two models for each degree of freedom.

Table 4. Maximum displacement values of each floor for nonlinear and linear models

FLOOR LINEAR
MAX DISP.

NON LINEAR
MAX DISP.

DIFFERENCE

1 1.150 ft 1.154 ft 0.31
2 0.252 º 0.244 º 2.93
3 3.557 º 3.098 º 14.83
4 3.509 º 3.491 º 0.52
5 4.484 º 5.110 º 12.26
6 3.820 º 3.951 º 3.32
7 9.046 º 8.968 º 0.87
8 6.357 º 6.342 º 0.24
9 15.110 º 15.228 º 0.77

10 12.894 º 12.683 º 1.65

Similarly, from Fig. 9 and Table 4, the results of the nonlinear model and the linear model (with reduced stiffness values) begin
to have significant differences of up to 14.83%.

6.3 Results subject to initial conditions

A third test of the model is performed using the same parameters of the 10-storey building in Fig. 4 and Table 1 but this time,
without external forces (earthquake), but only subjecting the system to initial conditions: initial displacement of 15ft and initial
velocity of 6 ft/s, obtaining the results in Fig. 4 and Table 1, obtaining the results in Fig. 10.

Table 5 summarizes the maximum displacement values for each floor of both the nonlinear model and the linear model and the
percentage difference of the two models.

In this case, the differences in the application of the linear and nonlinear method are in the order of 0.89% (see Fig. 10 and Table
5).

7. Conclusions

A physical-mathematical model has been presented to determine the deformations of plane frames for any number of floors
subjected to an external force at their base, such as, for example, an earthquake. The model considers the geometric nonlinearity of
the system due to large deformations or displacements that can be produced by seismic events of considerable magnitude. In addi-
tion, the model considers the interaction of the soil with the structure through a system of springs and dampers, both horizontally
and vertically, generating a better approximation of the kinematic behavior of the structure.

The model is based on a powerful tool for modeling mechanical phenomena such as the theory of Lagrangian mechanics, through
which a nonlinear model for n number of floors is obtained. Once the differential equations are determined, the finite difference
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(a) Degree of freedom θ1 (b) Degree of freedom θ4

(c) Degree of freedom θ7 (d) Degree of freedom θ10

Fig. 9. Trajectory of the degrees of freedom of the building in Fig. 4 subjected to the reported seismic excitation of the Pedernales earthquake, Ecuador,
2016. Here, the stiffness values have been reduced to ten percent of the original stiffness values of Table. 1

(a) Degree of freedom θ1 (b) Degree of freedom θ4

(c) Degree of freedom θ7 (d) Degree of freedom θ10

Fig. 10. Trajectory of the degrees of freedom of the building in Fig. 4 subject to initial conditions.
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Table 5. Maximum displacements values of each floor for the nonlinear and linear model.

FLOOR LINEAR
MAX DISP.

NON LINEAR
MAX DISP.

DIFFERENCE

1 15.060 ft 15.060 ft 0.00
2 1.343 º 1.343 º 0.04
3 2.780 º 2.785 º 0.16
4 2.571 º 2.564 º 0.25
5 4.076 º 4.072 º 0.09
6 4.028 º 4.023 º 0.11
7 5.106 º 5.118 º 0.23
8 4.596 º 4.588 º 0.18
9 8.284 º 8.332 º 0.57

10 5.546 º 5.497 º 0.89

numerical method is applied for their numerical solution, generating a system of n nonlinear algebraic equations with n unknowns
(once the initial conditions of the phenomenon are taken into account) which is finally solved by the Newton-Raphson method.

In addition, the model is tested by applying it to a real 10-story building, where it is observed that for large stiffnesses, with
which buildings are usually designed, the solution of the nonlinear model is very similar to the solution obtained by linearizing
the model. However, for smaller stiffnesses, in fact, it is observed that when considering the nonlinearity there are considerable
differences with respect to the linear model.

The generalization of the system allows the kinematic analysis of plane building frames of any height and material, considering
the geometric nonlinearity produced by large deformations, which can be of great help for an effective pre-dimensioning in the
design of structures.
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