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Abstract

This paper discusses several issues related to the mathematical and

physical formulation of entrainment in depth-averaged models of gravity

mass flows (GMF) such as snow avalanches and landslides. (1) The relation

between system boundaries, boundary conditions and entrainment-related

source terms in the momentum balance and the equation of motionis clari-

fied for different types of GMFs occurring in nature. (ii) Continuous depo-

sition from a GMFrequires that the bed exerts a larger shear stress than the

interior of the flow can sustain. This is shown to imply that a GMF cannot

accelerate due to deposition, contrary to some claimsin theliterature. (iii)

Entrainment and deposition differ with respect to the boundary condition

for the shear stress at the bed. (iv) The entrainment rate depends onthe in-

stantaneous flow conditions, the bed properties and the GMFrheology and

thus cannot be specified independently of the latter. More specific results

are obtained by limiting attention to basal erosion and assuming perfectly

brittle behavior of the bed, characterized byits shear strength 7.. Forslid-

ing block models, å simple explicit expression for the entrainmentrate is

derived in terms of the bed friction law and 7.. For a quasi-stationary, uni-

form flow of a Bingham fluid over a brittle bed, the erosion rate and the

modified velocity and shear-stress profiles are obtained analytically. Al-

though the model cannot directly be applied to GMFs, entrainmentrates

consistent with estimates from field measurements are obtained for pa-

rameter values typical of snow avalanches. An extension of the theory

to non-stationary flows and more general rheologies is proposed, but nu-

merical studies will be needed to assess the accuracy of the approximations

involved.



1 Introduction

Entrainment of ambient fluid or bed material has long been recognized as an im-

portant process in many types of gravity mass flows (GMFs). For example,field

studies of snow avalanches (Issler et al., 1996; Sovilla et al., 2001) revealed that

the moving mass may increase by an order of magnitude over the mass released

initially. Interesting recent studies of granular flows (Barbolini et al., 2005) and

snow avalanches (Sovilla, 2004) have begun to shed some light on the erosion

and entrainment mechanisms. This experimental work has motivated new at-

tempts at modeling entrainment in dense flows (Sovilla and Bartelt, 2002; So-

villa, 2004; Sailer et al., 2002; Naaim et al., 2004; Cherepanov and Esparragoza,

2008). Some of these models are based on Russian work from the 1960s to

1980s, where entrainmentat the front or along the bottom of the flow was mod-

eled by invoking an analogy either with shocks in gas dynamics (Briukhanov

et al., 1967; Grigorian and Ostroumov, 1977) or with the theory of mixing at

the interface in a stratified flow (Eglit, 1983). Other recent models that treat the

GMFas a granular flow are inspired by Boutreux et al. (1998).

We address four key problemsin this paper:

1. How is entrainment or deposition reflected in the momentum balance of

depth-averaged GMF models?

2. What boundary conditions should be postulated?

3. Is deposition simply the reverse of entrainment?

4. Are there general consistency constraints on entrainment models?

Thefirst point gave rise to an instructive debate whether an extra term is needed

in the momentum balance to prevent the flow from accelerating due to deposition

(Cannon and Savage, 1988; Hungr, 1990; Cannon and Savage, 1990; Erlichson,

1991). Some recent papers (Sovilla and Bartelt, 2002; Naaim et al., 2004) argued

for a decelerating "entrainment force” in the momentum balance equation,

Oe = Ge, (1)

where g. Is the entrainment rate and u the depth-averaged velocity. However,

this term is absent in the above-mentioned Russian analyses and some other

recent papers (Sovilla et al., 2007) and computational models such as MN2D

(Mohamed Naaim, pers. comm., 2007). Determining the correct formulation of

the momentum equations is by no means an academic pastime: Mean entrain-

mentrates 44 = O(50kgm*s-!) at mean velocities around 50ms"in large

snow avalanches (Gauer and Issler, 2004) would mean an entrainment traction

of —2.5 kPa, whichis of the same orderas the gravitational traction

Og = (Pr — pa)ghsind (2)
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for typical avalanche tracks; estimates based on observations of debris flows lead

to similar conclusions. pr is the depth-averaged flow density, pa the density of

the ambientfluid, g the gravitational constant and Ø the local slope angle. We will

call stresses acting at the bed-flow interface "traction”in this paper, for lack of a

better term; tractionsor stresses divided by the flow density will be denoted with

a caret henceforth. The key to determining the correct form of the momentum

balance equation is precise definition of the system boundaries and imposing

mathematically consistent and physically reasonable boundary conditions on the

velocity and the stress. In Sec. 2, we propose simple boundary conditions that

should be suitable for many rapid or very rapid GMFs. This discussion is a

prerequisite for settling the mentioned dispute whether a flow can accelerate as

a consequence of deposition.

Eglit and Demidov (2005) applied a variety of empirical entrainment parame-

terizations from different areas of application to an idealized snow avalanche

and found the run-out distance and velocity to depend but weakly on the choice

of parameterization. Atfirst sight, this seems to imply that the fourth question

aboveis irrelevant. However, their result may well be a consequence of assum-

ing a rather small mobilizable mass. On physical grounds, the entrainmentrate

should be determined uniquely by the rheology of the flow (or the bed friction

law) and the properties of the bed material. We investigate this for two types of

models. Thefirst type, which we call sliding-slab models, is characterized by å

uniform velocity profile and friction law implementing a slip boundary condi-

tion at the bed interface; the Voellmy, PCM and Savage-Hutter models belong to

this category (Sec. 4). The second type comprises depth-averaged models with

specified rheology that allows to compute the velocity profile, at least for steady

flows. We analytically solve an idealized steady-flow situation of an entraining

Bingham fluid in Sec. 5 and discuss an additional principle that can be invoked

to extend this toy model to non-stationary flows in Sec.6.

Entrainment and deposition are complex phenomena that manifest themselves

in many different ways. It does, therefore, not seem possible to capture them

comprehensively with one simple model. In order to make progress, we focus on

selected aspects in this paper: First, we consider basal erosion only and disregard

frontal plowing even though the latter mechanism may often be dominant, e.g.,

in wet-snow avalanches as well as in many debris flows or dry-snow avalanches

(Sovilla, 2004). Second, we adopt a fluid-mechanical approach and explore con-

straints arising from inertia, in contrast to many geotechnically inspired attempts

that derive erosion rates from stability considerations of the bed. Indeed, a cen-

tral assumption in the second part of this paperis that the bed behaves as a per-

fectly brittle material with a well-defined shear strength 7.. However,if the shear

stress exceeds that value at the bed—flow interface, the bed should fail throughout

its entire depth because the shear stress increases with depth. We defer a detailed

study of this question to future work and postulate for the time being that the

strength equals 7. at the instantaneous interface to the flow and increases at å
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sufficient rate with depth.

Muchofour workis inspired by experience gained from studying snow avalanches,

and our comparisons of estimated entrainment rates with observed onesrefer to

snow avalanches, where presently the best experimental information is available.

However, ourresults in the first part (Secs. 2—3) are applicable to many types of

eroding or depositing GMFs. The results presented in Secs. 4—6 depend strongly

on the assumption or idealisation that the bed materialis brittle and fails incre-

mentally at the bed-flow interface, and it needs to be determined to which degree

bed materials in other types of GMFscan be describedin this way.

9 System boundaries, boundary conditions, and the difference be-

tween erosion and deposition

The shear stress that a fluid or particulate flow exerts on an erodible bed may

exceed the binding strength of the bed particles. The breaking of the bondsis a

rapid process (treated as instantaneous here) that we will call erosion, following

the terminology of Gauer and Issler (2004). We reserve the term entrainment for

the process that accelerates the eroded bed material and mixesit into the flow.

Erosion may occur either locally and intermittently (inside turbulent eddies or

during impactof particularly energetic particles) if the mean shear stress is below

the bed shear strength, or quasi-continuously over large areas otherwise. In the

first case (comprising, e.g., river flows), we call the flow erosion-limited, in the

second case entrainment-limited. GMFs mayfall into either category, depending

on the flow and bed conditions.

There is often some arbitrariness in drawing the boundary between flow layers

in multi-layered flows, but the choice made has consequences when formulating

the balance equations. For example, high-speed videos of granular flows over

granular beds (M. Barbolini and M. Pagliardi, personal communication, 2005)

or of mudflows over a muddy bed (H. Breien and M.Pagliardi, personal commu-

nication, 2006) show that the bed may be set into slow shearing motion before

erosion and entrainment occur or even if entrainment does not occur at all. If

one considers åa bed particle eroded and part of the flow as soon as its velocity

differs from zero, eroded particles do not add momentum to the flow. Alterna-

tively, if one considers the particle to become part of the flow only after it has

been completely ripped out of the bed texture, the velocity at erosion is non-zero

and erosion is accompanied by a particle-borne momentum flow from the bed

to the current. While the bed shear can usually be neglected, the velocity at the

interface of, e.g., å Submarine debris flow and the turbidity current riding on it

is non-Zero, and the momentum exchange connected with mass exchange cannot

be neglected.

A different situation is encountered in sand and snow drift: Particles in the salta-
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Figure 1. Schematic representation of a quasi-stationary gravity mass flow over

an erodible bed. The interface shown is that between bed particles at rest and

flowor bed particles in motion. (a ) Qualitative velocity profile. (b) Qualitative

acceleration profile. (c) Qualitative shearstress profile, showing the (integrated)

contributions due to the weight of the flowing material (dashed line) and the

inertial pseudo-force from the acceleration of the eroded bed material (dotted

line). The resulting net shear stress (full line) tends to the threshold value 7, at

the erosion interface.

Tr

pr

() Od) (c)

Figure 2. Schematic representation of the mass and momentum exchange pro-

cesses between an erodible bed and a layer of saltating particles. Particles im-

pacting on the bed may be absorbed (a ) or rebound (b), and bed particles may

be ejected with non-zero initial velocity as a result of the impact(C).

tion layer impact on the bed at velocities close to the mean flow velocity and may

be absorbed by the bed (Fig. 2). The impact may also cause bed particles to be

ejected with non-zero initial velocity. In either case, the mass exchanged across

the interface also carries momentum. In the literature, the so-called grain-borne

shearstress is therefore distinguished from the shear stress exerted by the ambi-

ent fluid. Examples of the resulting momentum balance equations can be found

in (Issler, 1998; Issler et al., 2000; Gauer, 2001).

Many presently used dynamic models assume shear to be concentratedin a thin

bottom layer, which is then idealized as a slip interface between the bed and the

flow. The velocity profile of the flow is assumed uniform, u,(x, 2,t) = U;(2,t)
for b(x,t) < 2 < s(æ,t), where b(x,t) and s(x,t) are the instantaneous bottom
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and top surfaces of the flow. If there is entrainment (or deposition), the velocity

discontinuity at 2 = b(x, t) requires a corresponding jump in the shearstress,

A02z = o(&+) — oe), (3)

where the superscript(5. ) means that the stress is evaluated at 2 = bi, approach-

ing the interface from above (+) or below (—). We will pursue the implications

for the dynamics in Sec. 4 and stress here that the system boundary can be cho-

sen either at b- or bj. At b., the eroded material enters the system with zero

momentum and the boundary condition on the shear stress is 012), which must
be determined by the physical properties of the bed material. If one chooses b.,

the entrained material adds momentum at a rate 4,7 while the shearstress o(8+)
is determined by the flow properties, which are summarized by the friction law

in this type of model.

Lé and Pitman (2009) proposed an instructive variant on this theme to resolve

the ambiguity in the choice of the system boundary by assuming a very thin but

non-vanishing entrainment layer and identifying the system boundary with its

middle. There they find ul” = u,/2 and correctly include the momentum flow

across that boundary. This is an equally valid—and equally arbitrary—choice.

We will briefly discuss the dynamical aspects of their model in Sec. 5.

In models with non-uniform velocity profile, there is no need for a slip veloc-

ity nor for a discontinuity in the shear stress. However, entrainment modifies

the velocity profile: Eroded particles must be accelerated, which implies that a

net force is acting on them and that the shear stress is reduced compared to the

non-entraining case, especially near the bottom. Neglecting horizontalstress gra-

dients, the momentum balance in the flow direction x at height 2 perpendicular

to the bed yields

Fa 2 pr(gsind — Dwur)dz < prg(s — 2) sin (4)PI s

since the material derivative Du, = Gu; +U: Vu, > 0 in the bottom layer; see

the schematic shear stress profiles in Fig. 1.

In order to determine the boundary condition on the shear stress, we consider

flow materials for which the shear stress is an increasing function of the shear

rate. In this case, there is a fundamental feedback mechanism: If the erosion

rate is too small, the gravitational traction is not completely balanced by the bed

shear stress and the inertial forces due to the acceleration of eroded material,

hence the flow velocity will increase. By this, the shear stress increases and

raises the erosion rate. Conversely, if the erosion rateis too large for entrainment

to be sustained by the current shearstress, the flow is decelerated so that the bed

shear stress and thus the erosion rate diminish.

By combining microscopic and macroscopic considerations, appropriate bound-

ary conditions may be suggested: On average, a minimum shear stress (depend-

ing on the bed and flow materials) is needed to break a particle out of the bed
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surface, 0; > Tec. Right after a particle has broken loose, a force arising from

the shear stress gradient near the bed (cf. Fig. 1) acts on it and acceleratesit. If

the time required to break the inter-particle bonds is much shorter than the time

required to move the particle through the layer near the bottom with a high shear

stress gradient, the erosion rate is limited by the entrainment process. Accord-

ingly, the erosion rate attains the largest value that leaves the bed shear stress

at its threshold value 7.. This is expected to be the case for materials that ex-

hibit brittle behaviorat the particle scale, among them snow or weakly cohesive

sands under the action of rapid flows. Only if the bed material is very ductile

so that breaking it requires relatively long time and large deformations, will the

supply of eroded particles be too low to diminish the bed shear stress to its mini-

mum value. We conclude that for manyif not most rapid gravity mass flows, the

required boundary conditionis

ttbrDid rå (5)

Owen (1964) used very similar reasoning in the context of sand and snow drift.

Evidently, Eq. (5) represents å simplification in that fluctuations in the shear

stress exerted by the flow will allow limited erosion to occur for mean shear

stresses below 7.. Also, 7. may depend on the loading rate and thus on the details

of the fluctuation spectrum ofthe flow. In general,it is to be expected thatthereis

a significant spatial and temporal variability in the value of 7.. In subaerial debris

flows, the soil type will usually vary along the path as well as the degree of water

saturation, which is moreover a strong function of time. In snow avalanches, the

snow properties vary significantly between avalanche occurrences in the same

path, and they vary both on the large scale (e.g., due to temperature differences

of up to 10* C between the release area and the run-out zone of large avalanches

and strong winds at high altitudes) and the small scale (differing expositions to

the wind and the sun). In many situations, 7. will moreover show pronounced

dependence on the depth within the erodible bed. In the following, we will ex-

plore the consequences of the simplest case, namely Eq. (5), and assumethat

the spatial variability of 7. will be taken into account in practical applications as

appropriate.

In models with slip boundary conditions, the condition (5) applies at z = b(2,1).

The shear stress at z = b, (x,t) is given by the friction law specific to the model.

However, one should expect that entrainment modifies the friction law because,

from å micro-mechanical point of view, the interface in reality consists of one or

several layers of particles that are being accelerated. Hence, the relative velocity

between the slab and the uppermost particle layer in the interface is significantly

smaller than the slab velocity.

While the fundamental condition for erosion to occur is that the flow exerts åa

shear stress exceeding the strength of the bed material, deposition will only oc-

cur if the bed is able to exert a larger shear stress than the flowing material can
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sustain internally. Otherwise, the bed friction would merely cause the entire flow

to decelerate and eventually stop. Deposition, in contrast, is the process where

the flow velocity changes but slowly while the bed arrests particles from the bot-

tom layerof the flow. This condition on the shearstressis notin itself sufficient;

it is equally necessary that the arrested particles immediately become part of

the bed and assumeits properties, in particular the higher strength compared to

the flowing material. Rapid sintering under pressure, as is known to occur in

snow, Is å candidate mechanism. The near absence of shear in the bed is prob-

ably a prerequisite for sintering to occur, as may be the presence of sufficiently

large roughness elements to hold the stopped particles in place while sintering

progresses. Observations from dry-snow or powder-snow avalanches suggest a

variant of this mechanism where large particles from the fluidized flow impact

the snow cover surface in a nearly ballistic fashion and get stuck in the impact

crater they produce (Issler et al., 1996, P. Gauer, personal comm. 2006).

Considering the intricacies of the deposition process, we conjecture that in many

cases deposits found in the path of GMFsrepresent the stopped tail of the flow

rather than material from the bottom of the main body. For example, high-speed

video recordings of subaerial and subaqueous laboratory mudflows show how

the tail of the flow is immobilized when the flow depth falls below a limiting

value that is related to the yield strength of the slurry. Such flow behavior can

be described adequately (except in point-mass models) without invoking any de-

position model. In contrast, gradual settling-out of particles (often accompanied

by normal grading of the deposits), as is observed in powder-snow avalanches,

turbidity currents and sandy debris flows, can be considered deposition.

In most cases it will not be possible to state the stress boundary conditions for

deposition as simply as Eq. (5) because the maximum stress sustained by the flow

is expected to depend on the flow velocity. In a cohesionless granular assembly,

00?) and o(%+) maybe tentatively relatedto the static and dynamicfriction angle,
respectively:

ag = å tan stat and ox) FT oc tan ØGayn: (6)

Can deposition cause the flowing mass to accelerate? This question was raised

by Hungr (1990), who noted the similarity of the model proposed by Cannon

and Savage (1988) with the equations for rocket motion. The center-of-mass

equation of motion of the GMF, d(mv)/dt = F.xq, can be written as

m—= Fy Fy— —y, (7)

F;, is the componentof the gravitational force along the path, Fj the bed friction

and vthe velocity. The flow acceleratesif v dm/dt < F, — Fy or, equivalently,

Våge < 09—000), with q. taking negative valuesfor deposition, and 0, = Øghsin 0.
Indeed,this equation is the sameas the rocket equation in a variable gravitational
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field (F, — Fr)/m(t) if the combustionrate is identified with the deposition rate
and the exhaust speed relative to the rocket were always exactly equal to the

rocket speed v(t). The challengers of applying Eq. (7) to GMFs argued thatit
must be wrong because it would allow a GMF to accelerate like a rocket even if

Fr > EF, provided it sheds enough mass.

In order to demonstrate intuitively why Eq. (7) is indeed correct but lacks å con-

straint, we idealize the GMFas a solid block sliding over an abrasive surface.

We may distinguish a top domain with mass Mper unit area and velocity V and

a thin bottom domain with mass mper unit area and velocity v. The thickness

of the bottom domain is chosen such thatit corresponds to the material abraded

within the time interval At, coming to rest from its initial velocity V. Each do-

main is subjected to gravity, and the abrasion layer additionally to the bed shear

stress 71?) = 05. The shear stress at the interface betweenthe layers is designated

by 01? = 0. The equations of motionfor the two layers are

MAV/At = Mgsind — 6, (8)

m Av/At = mg sin 0 + 0; — 0. (9)

According to the assumptions, Av = —V, and m/At = qg is the abrasion or

deposition rate. Letting At — 0, which implies m — 0, we obtain

MV = Mg sin9 — 9;, (10)

mv = —qaV = 0; — 05 > —0» (11)

if 0; > 0, which is the case since the internal stresses must be dissipative in

a frictional flow. Note that mg sind — 0 as At — 0, but mv tends to the

finite value 0; — 05 < OQif the sliding block is abraded. We will return to this

point in Sec. 4. The motion of the top domain is determined by the shear stress

transmitted inside the material, and there is no unphysical acceleration. When we

add the two equations, Eq. (7) results, which is essentially the equation used by

Cannon and Savage andis also correct for deposition. It has to be supplemented,

however, by the condition that the bed must exert a larger shear stress on the

bottom domain than can be transmitted inside the blockitself. If this condition

is not met, deposition or abrasion is not possible. The abrasion rate is governed

by the difference between the bed shear stress and the internal shear stress near

the bed. Equation (11) implies a (loose) upper limit on the deposition rate q4,

whichis sufficient to prevent unphysical acceleration. The same arguments can

be applied to GMFs behaving asfluids.

3 Momentum balance and equation of motion with entrainment

In a depth-averaged formulation of a gravity-driven mass flowing over an erodi-

ble bed, entrainment or deposition are described by means of mass and mo-

mentum fluxes through the bottom layer boundary (and also the top boundary



si

Time t Time t+4t

V(t+At)  

   
deposit

Fe

Figure 3. Block sliding over abrasive plane. wq: abrasion speed, 05: shear sress

exerted by ground, 0;: maximum shearstress sustained within block.

  
 

 

in the case of multi-layered flows). The flow is divided into slices of infinites-

imal length Ax that extend over the entire depth of the layer (Fig. 4; we limit

ourselves to the two-dimensional case for simplicity of notation). In the Euler

representation, the boundaries I and 3 are fixed,i. &., their velocities w13 = 0.

The boundaries 2 and 4 are moving with velocities

wolz,t) = köblæ,t), wa(z,t) = kös(a,t) (12)

expressed in termsofthe functions b(x, t) and s(x,t) describing the location of
the interfaces. The orthonormalbasis vectors i, k are defined as tangent and

normal to the slope, respectively. (If the slope angle is variable, additional terms

related to the curvature arise, but we disregard this complication here. For a

treatment of these geometrical effects see e. g. (Eglit, 1983; Savage and Hutter,

1991; Gray et al., 1999).) The conservation equations for mass and momentum,

integrated over the slice, are

dTfjavp+fdaAptu-w)-å=0, (13)

dEu dy $ Apu(u—w)-fTL pu + ar pu(u—w)-n

favog+ å då e å. (14)
V ov

Several authors have detailed the correct evaluation of these integrals, most re-

cently Tai and Kuo (2008), whotreat a rather general case with entrainment and

time-varying curvilinear coordinates. Therefore we do not repeat this deriva-

tion in detail here, but concentrate on the interpretation and application of their

results.

The volume integrals do not pose any difficulty; density-weighted averagingis

used for u. The surface integrals are decomposed into terms associated with the

boundaries I to 4, see Figure 4. The integration over the boundaries 2 and 4

takes into account their movement, Eq. (12), and their lengths, 1/1 + (0,0)?Az

and 1/1 + (0,8)?Az,respectively. The fields p, u and ø may be discontinuous
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Figure 4. Definition sketch of the integration volume used in the derivation of

the mass and momentum balance equations in the presence of bed entrainment

(or deposition to the bed).

at the boundaries 2 and 4 so that the jump conditions

[ø(u— w) : A]] = 0, (15)

[pu(u—w)- å] = [0-å]] (16)

have to be used to ensure mass and momentum conservation; here

[f(2=db)]=Ff(0+)-F0-) with bi Nb, b-7D 7)

and analogously at z = s(2,t).

Letting Ax — 0 in the depth-integrated mass balance equation, one obtains

O(hp) + e(hP Ur) = Go — Gs = Ge (18)

where 45, qs and q, are the bed entrainmentrate, the suspension rate from the top

surface, and the total entrainmentrate, respectively, which can take both positive

and negative values. The bed entrainmentrate is evaluated as

BD på) ig -- ul+)3,b — osb) E (19)

which reduces to 4 = —p!)0,b by virtue of the jump condition (15)if the bed
materialis at rest. The suspensionrate,

qs = p+) (utt! — ul8+)9,5 — 015) ; (20)

vanishes identically if the well-known kinematic boundary condition of a mate-

rial surface applies.
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Å corresponding calculation for the x-component of the momentum balance

equation, again using Eq. (16), results in two alternative formulations, which

coincide if velocity and shear stress are continuous at the bed interface:

OL (hp uz) + 1 (nu) — hpg sind — hö,0xx

=ogur QI)
EE og) — 024) — qsul-) GI gult) (22)

If the bedis at rest and the flow is eroding, 00) = 7, and ul?-) = 0 according
to Sec. 2, thus there is neither momentum influx nor outflux due to entrainment,

and the bed shear stress is locked at 7. as long as entrainment occurs. If depo-

sition and entrainment are due to particle impact and splashing (or to turbulent

suspension), the grain-borne momentum exchange between the flow and the bed

is taken into account by the last two terms in Eqs. (21) and (22).

It is instructive to convert the momentum-balance (21) or (22) to the equivalent

equation of motion by substituting the mass balance (18) into it, assuming that

P = const. in the flow and that there is no shearstress at the upper surface. Using

the advective derivative D; = 0 + U,01, the result is

1
Ta å ee ee 0)Diu, = gsind+ hø [hOrGar ao

-3, [h (2 — 22)] (23)

1
hø (get, +- qsul” - au”).

When applying this equation to models with slip boundary conditions, the appro-

priate limits b+, $+ have to be substituted for b and s. The second line vanishes

if the velocity profile is uniform, and is small in most cases. This equation of

motion indeed features an entrainment pseudo-force (the last term), which is

equivalent to a retarding stress —ge-ti, In case of entrainment (q- > 0) if the in-

terface velocities are zero. It is the reaction to the force exerted by the flow onto

the eroded particles that have to be accelerated to the speed i, through mixing.

It may be noted that the effect of entrainment on the momentum balance of the

flow in Eq. (21) is identical to the effect of entrained water from the melting of

ice from englacial tunnel walls on the momentum balance of sudden outburst

floods from glaciers, which are called jökulhlaups (Spring and Hutter, 1981, Eq.

22).
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4 Entrainmentin sliding slab models with slip boundary condition

In sliding-slab models, the velocity profile is assumed to be uniform, u,(2) = Up,

with a discontinuity at the bed interface. If there is entrainment and the stress

boundary condition o(* = 7,, discussed in the preceding section, is adopted, the

velocity discontinuity at 2 = b requires a discontinuity in the shear stress so that

an infinitesimally small amount of mass can be accelerated from rest to a finite

velocity within an infinitesimally small time interval. Å simple-minded deriva-

tion of the entrainment rate proceeds as follows: The shear stress immediately

below the interface is 0(%-) = 7,, whileits value right above the interfaceis given
by the friction law:

FE pf(up, h, 0) (24)

The jump in the shear stress across the interface is responsible for accelerating

the eroded particles to the speed u,, thus the entrainment rate should be

EDEEEEE (25)
: [up]

The weak point in the derivation presented above is that several physical quan-

tities could develop discontinuities across the interface that might combine to

produce effects that are not taken into account in Eq. (25). We address this point

by considering the dynamics of a thin shear layer, with thickness d that we will

let tend to zero in the end. Similar reasoning was used recently by Lé and Pitman

(2009), who assumedthat the rheology of the shear layer was given by the Jenk-

ins and Savage (1983) theory for rapid granular flows of nearly elastic uniform

spheres. Lé and Pitman were, however, only interested in the mean velocity in

the middle of the layer and did not pursue the dynamical implications for en-

trainment, since they assumeda heuristic equation for the entrainment rate from

the outset.

The boundary conditions at the top and bottom ofthe shear layer are

u(0,t) =90, uUdn="%8,

az(0,t)=7% Gar(d,t)= Fluplt), R(t)).

up is the velocity of the plug layer (2 > d) riding ontopof the entrainmentlayer.

At the interfaces 2 = 0 and z = d, the velocity and shear stress are continuous

while the shear rate jumps from 0 to 4(01,t) at z = 0 and from 7(d-,t) to 0 at

=o,

(26)

The mass balance equationis trivially satisfied in the shear layer with d = const.,

the material having a uniform bed-normal velocity u.(x,2,t) = we(t) and z-
independent longitudinal velocity u,(2,t) in the coordinate system that moves

in the slope-normal direction with the erosion front. The equation of motion in

the flow direction is

Diuz = g sind + 0.04», (27)



where the material derivative D; = 0 + u.0, + u.0, simplifies to 01 + w.0: in

our case. The left-hand side of Eq. (27) thus becomes wey(z,t) + Ouz(2,t). As
welet the shear-layer thickness tend to zero, * increases without bounds so that

du, (stemming from the acceleration of the slab) and g sin 0 (arising from the

weight of the material in the shear layer) can be neglected. Equation (27) may

now be formulated as

WeYy = OG2. (28)

This result does not depend on the particular rheology and is exactif the flow is

stationary. Integration of Eq. (28) across the shear layer then gives

Wellp = Oz; (Å) — 07:(0) = flup, h) — 72, (29)

which leads directly to Eq. (25). We will use the above analysis as ourstarting

point in Sec.5.

Formula (25) applies both in equilibrium and non-equilibrium situations. Ne-

glecting longitudinal gradients in h, the acceleration of the plug flow,

f (up, ha.)EE

is the sameasif there were no entrainment,i.e., if 7. were larger than the actual

friction. The last term on the right-hand side is interpreted as the sum of the de-

celerations —7./h (frictional traction) and —ge.up/(hpr) (acceleration of eroded
bed material).

Diu, = g sing — (30)

Figure 5 shows the shape of the entrainment rate function for, respectively, a

pure Coulombfriction law (7,- = 0», tand, with bed friction angle å as in the

 
Coulombfriction 

Coulombfriction + 'viscous' stress, case 1 ---------
Coulombfriction + 'viscous' stress, case 2

Voellmy model, case 1 ———
Voellmy model, case 2

 

 
Velocity

Figure 5. Qualitative velocity dependence ofthe entrainmentrateforflows with

slip boundary condition at the bed, uniform velocity inside theflow and different

friction laws, in arbitrary units. Cases I and 2 refer to the shearstress at u = 0

being larger or smaller, respectively, than the bed shearstrength.
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Savage-Hutter model), Coulombfriction combined with linear *viscous” friction

(722 = 0. tand + kj), and the Voellmy or Perla-Cheng-McClung (PCM)

model (02; = 02; tand + kapu2). Completely different high-velocity behavior

results for the different friction laws. Another noteworthy feature is the diver-

gence of the entrainment rate as u, — 0 if the shear stress remainslarger than

the bed shear strengthin this limit.

If one assumes (i) that the flow material has a characteristic strength 7; < Te.

above which it no longer deforms in åa controlled way, but breaks apart or is

abraded,(ii) that the friction on the bed can exceedthis threshold, and (iii) that

the bed is able to rapidly bond stopped flow material, the deposition rate can be

determined in the same way as the erosion rate (25):

Brå -)-7r
dd = fu | if Tr < Prfl...) Te» (31)

pP

Ås already mentioned in Sec. 2,it is to be expected from micro-mechanical con-

siderationsthat the friction traction is changed by the entrainment processitself.

The function /f(...) in Eqs. (25) and (31) is the one appropriate for entrain-
ment/deposition, but lack of knowledge will usually force one to replace it by

the one without entrainment.

It is instructive to compare the results obtained in this section to some of the

entrainment models proposedin theliterature:

One can beg the question of the correct formulation of the entrainment term by

resolving the bed-normal dimension instead of depth-averaging. This is carried

out most completely by e.g. Crosta et al. (2009), who modelthe stresses, not only

in the flow, but also in the bed and thus do not need to make assumptions about

the erosion rate. This approach requires, however, substantial computational re-

sources and a suitable formulation of the constitutive equations before and after

failure. Bovet et al. (2010) envisage a similar approach, but present simulations

in which the bed-normal dimension is resolved for the flow only. Like in this

paper, they assumethatthe shearstressat the interfaceis given by thestrength of

the bed material. They postulate the erosion rate to be proportional to the jump

of the shear stress across the interface, as in our Eq. (25) for sliding-slab mod-

els, even though the velocity profile is calculated explicitly. The proportionality

constant is, however, not specified in the paper. This differs from the work of

Issler and Pastor (2011), who numerically compute the velocity profile and the

entrainment rate without free parameters other than the bed shear strength in å

1-dimensional model (in the z-direction).

The majority of the existing depth-averaged models with entrainment use the

samefriction law as in the case without entrainment and do not include the en-

trainment traction in the momentum balance equation. In the formulation (21)

with the system boundary at b(x,t), this is equivalent to not adopting our pro-
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posed boundary condition (5). In the alternative formulation (22) with the system

boundary at bi (x,t), this amounts to neglecting the momentum carried into the

flow by the already accelerated eroded material. With all other elements of the

model equal, our boundary conditions would lead to higher flow velocities.

The "entrainmenttraction” —44, in the momentum balance equations proposed

by Sovilla and Bartelt (2002) and Naaim et al. (2004) is opposite in sign to our

result (in the formulation (22) with the system boundary at b;). These models

would therefore predict significantly lower velocities and lower entrainmentrates

than ours. Later versions of these models (e.g., (Sovilla et al., 2007), Naaim,

pers. comm. 200?) omit the "entrainment force” term.

Tai and Kuo (2008) correctly obtain an equation corresponding to Eq. (21) or

(22). In order to arrive at a sliding-slab type model, they implicitly choose the

formulation with the boundary at b, by using ul?) = i,, assuming a uniform
velocity profile. They use the frictional traction as given by their friction law,

corresponding to its value at b;, and take into account the momentum influx

Gel. Specifying an entrainment rate different from Eq. (25), as they do, amounts

to postulating a stress boundary condition that differs from our proposal.

In the two-layer powder-snow avalanche model by Issler (1998), bed friction

is the result of momentum exchange due to particle absorption, rebounding and

ejection. The concept of an essentially constant bed shear stress does not apply in

this context dominated by particle impacts. At the interface between the saltation

and suspension layers, velocity and stress are continuous and the momentum

exchangerate is proportional to the mass exchangerate.

Generally, the published models use their specific friction law for non-entraining

flows, os = Prf(...), together with some heuristic entrainment rate function
de(- - .) that differs from Eq. (25). This could be interpreted in our frameworkin

termsof a variable bed shear strength 7. = Pr(. . .) and an effective friction law
in the presence of entrainment,fer. (...) = f (--.) +Ge(:--)up|/Pr-

5 Relation between the entrainment rate and the velocity profile in

quasi-steady flow

In order to study the subtle interplay between the shear stresses and the entrain-

ment or deposition rate, let us build åa toy model, using å hypothetic material that

behaves as a solid with a shear strength 7., above which it disintegrates into a

cohesive granular fluid with a yield strength 7, < 7. and (Bingham) kinematic

viscosity v:

 

 

0, Fax] < Ty;
z) = 0,4, = g 325 ) sen.) le > Ty: ( )
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In order to concentrate onthe essential points and to obtain analytic solutions, we

consider an infinitely extended slope with inclination Ø, on which an infinitely

long sheet of depth h (measured perpendicular to the slope) flows at constant

speed. This assumption eliminates the gradients of the longitudinal normalstress

and momentum flux. We further postulate that the eroded bed material is imme-

diately replenished from below so that the interface between bed and flow is

inclined at the same angle 0. Also, let material be removed from the top of the

flow (without application of shear stresses) at the same rate as it is entrained

from below so that the total flow depth and the plug-layer depth remain constant.

Underthese conditions, a steady flow is possible and the flowing material has a

constant velocity component we. = u. = q/pr normalto the bed; momentum is

taken away from the system at the rate —pru;(h)we.

The plug-layer extends from the surface of the flow to a height r above the bed:

 JR (33)
gsind

In the absence of entrainment, the shear stress profile would be linear,

FO (2) = g(h — 2) sin$, (34)

the shear rate would diminish linearly from the bed to the height r,

g(r—2) sind 2
ET,FOM) å | v (35)
0, Z >,

and the velocity profile would be parabolic in the shear layerif thereis no sliding

at the bed,

u0 (2 å
2v

gsnb ,.2 AG OG

genl (2rz—22), zr;
)

2v 2

With entrainmentin our idealized situation, the velocity profile will remain con-

stant in time, but deviate from Eq. (36).

The equation of motion for a fluid element results from Eq. (27) with Du, =

we' as in the derivation of Eq. (28) by substituting for 0.0,-:

GanST løren G7)
vV

 

The boundary condition (1) = 0 leads to the solution

We28ng (2 -JEPUR:
ME (38)

0 PE HEN,
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Figure 6. Non-dimensionalized profiles of (a) shear-stress and (b) velocity for

stationary flows of Newtonian and Bingham fluids on an inclined plane, with

and without entrainment or deposition. The parameter values are $ = 0.5for the

Binghamfluid, W. = T./04 = 0.7 for the entraining flows, and 04-(0)/04 = 1.5
for the depositing flows. (c) Velocity profiles for non-entraining, entraining and

depositing Newtonian and Binghamfluids, scaled with their surface velocity. The

same parameter values are used as in Fig. 6. (d) Dependence ofthe entrainment

rate on the bed shearstrength 7, for various values ofthe yield strength 7,, of the

Bingham fluid. All quantities are non-dimensionalized according to Eq. (43).
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from which we obtain the following velocity and shear-stress profiles if we as-

sume noslip at the bed:

gsind v ve et O<'2< 7;
mr å ET

vr] | pr (39)
ms r-2(1-e v Jf FAK h,

We

å =Ge(r—2)
Fy + 2288 (1—e 3 )- ge Får: (40)

g(h — 2) sin 9, r<z<h,

By expanding the exponential functions to second order, one easily verifies that

Eqs. (38)-(40) reduce to Eqs. (34)-(36)in the limit we. — 0.

Subjecting Eq. (40) to the shear-stress boundary condition 6(?) = 7,, as discussed

in Sec. 2, we obtain

 
sind mr

sent k å = 67 — Fy (41)

In the limit 7, > 0,7 — h, an eroding Newtonian fluid is recovered. The

equation is transcendental and must be solved for w. by numerical methods.

Note, however, that integration of Eq. (28) from 0 to h and application of the

boundary conditions leads to the simple relation

Weulh) = 64 — Te, (42)

with 0; = hg sin 0,as is to be expected on physical grounds.

In order to compare the steady-state profiles of shear stresses, shear rates and

velocities in Newtonian and Bingham fluids with and without entrainment,it is

useful to scale the variables in the following way:

= z/h, V= Oxz/Og Vy =Ty/0g,
——Ug SPK AA (43)

gs Net TE
where 07 = prghsin0 will be called *gravitational traction” in the following.

The expressions obtained after scaling arelisted in Table 1, and Fig. 6.b shows

the scaled velocity profiles for selected parameter values. In order to highlight

the differences in the shapes of the velocity profiles, they are rescaled by the

respective maximum velocity in Fig. 6.c.

In depth-averaged models, we can obtain a first-order approximation and cir-

cumvent the expensive evaluation of a non-linear equation for each grid cell and

at each timestep by using the velocity profiles of non-entraining flows even with



Si
NGI
Doc. no.: 20110112-00-1-TN
Date: 18!" May, 2012
Page: 19

Table 1. Vertical profiles of shear stress and longitudinal velocity in steady-

state flows of Newtonian and Bingham fluids with and without entrainment.

All quantities are non-dimensionalized according to Eq. (43). In the limit of

vanishing entrainment, i.e. y > 0, all profiles with entrainment reduce to

the corresponding profiles without entrainment. The Boussinesq form factor
2

f=h F u?dz/ (gå ud») is evaluated for $ = 0.5 for the Bingham fluid and

for v = 0.7 in the case of entrainment. The values of x indicated in brackets

correspond to physically consistent entrainmentrates.

 

Interval Shear-stress profile Ø(C) Velocity profile v(C) Boussinesq
form factor f
 

Newtonian G

fluid, (0, 1] AG 2 -C 1.20

no entrainment

Newtonian 1.22

fluid, [0, 1] I (1-ex0-9) 2 [0-2 (ex0-0 — ex] Ar
entrainment (x = 0.76)

Bingham fluid, [0,5] EN sere vr
no entrainment Is, 1] 2 ,

RE LG) BE ENETO NG
Brdernad bas l-6t, re MT er he Kg
entrainment Is, 1] 1=€ : [s g - å e)| (x = 4.46)

 

entrainment or deposition. Combining eqs. (42), (32) and (36) with the bottom

boundary condition for the shear stress, one arrives at

SN
KES GR (44)

Gu VET Vy

v(l) = 6 (Ve Vy). (45)

The Boussinesq form factor (which appears in the momentum balance) changes

only by a small amount as long as dynamically sustainable entrainment rates

are specified, see the last column of Table 1. However, the relative error in the

entrainment rate and velocity increases rapidly with increasing entrainmentrate,

i.e., with decreasing ratio (7. — 7y)/04. In the case v. = 0.7, y = 0.5 (implying
5 = 0.5), the approximation yields y = 6.0 and v(1) = 0.1, whereas the self-
consistent solution is x = 4.46 and v(1) = 0.134.

Comparison of the predicted entrainment rates with experimental datais difficult

because erosion rates have rarely been measured, and then mostly in dry-snow

avalanches (Gauer and Issler, 2004; Sovilla, 2004) for which a Bingham fluid is å
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Table 2. Examples of entrainment rates obtained for different combinations of

snowcoverstrength (7.), yield strength (7,,) and Bingham viscosity (vp) in the

flow. Idealized stationaryflow with constant density 200 kgm>>, flow height I m

 

 

and surface velocity 20ms) at slope angle 30".

Fa Ti vB We Å

[Pa] [Pa] [m?s7] [ms] [kgm?s]
700 500 0.0168 0.075 15.0

800 600 0.0125 0.050 10.0

800 300 0.0489 0.050 10.0

900 600 0.0165 0.025 5.0
 

poor approximation. Nevertheless, assuming typical values such as a slope angle

of 30*, a flow depth of I m, a density of 200 kg m7 and a surface velocity of

20ms-*, we obtain the values listed in Table 2 for several internally consistent

combinationsof 7., 7, and vg, Which are ofthe right order of magnitude.

Most entrainment models specify the entrainment rate as a function of either

Og — 7. Or å (Eglit and Demidov, 2005). For the present proposal, Eq. (41)

shows we to depend on 7. — Ty, 0, g, v and—through the shear-layer depth r—

on h. Even though the equation cannot be solved for, e.g., we(h), keeping the
other parameters fixed, w. and h can be expressed as functions of x = we.h/v

and plotted (Fig. 7, bottom panel). Similarly, the surface velocity and h can be

expressed through x (top panel). It is also possible to solve for w, in terms of u(*)

using suitable algebraic manipulations, but it would be misleading to consider

this as the velocity dependence of the entrainmentrate because the velocity is a

dependent variable in this setting: Choosing uat will with given 0, v, 7. and 7,

determines the unique flow height that realizes this value of u.

The present method can be straightforwardly extended to non-linear rheologies.

However,the differential equation corresponding to (37) becomes non-linear and

will in general defy analytic solution. Accordingly, no closed (even if transcen-

dental) equation can be formulated for the entrainmentrate in terms ofthe thresh-

old shear stress. This circumstance severely limits the practical applicability

of the approach unless a simple yet sufficiently accurate parametrization of the

profile function can be found such that q. can be obtained by solving a single

equation for each grid node and timestep. Even though the general condition

(42) together with the rheological equation and the bed stress boundary condi-

tion 05 = 7. provide an approximate solution, its accuracy cannot be assessed

without solving the full problem.

The solution for the entrainmentrate obtained for sliding-slab models in Sec. 4

cannot be recovered from the present model as the limit 7, > hg sind and v
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(hgsind — 7,)* for some suitably chosen exponent a. The reasonis that 6, =
7. < Ty is requiredin this limit, whereas the shear stress increases monotonically

with depth in the Bingham model and thus necessarily 7, < 7.. Only if one

admits different rheologies in the plug layer and the shear layer can a solution be

found with 7,, > Te-

To conclude this section and illustrate the similarities and differences between

deposition and entrainment, we modify our toy model, supplying material at the

top at surface velocity and removing it at the bottom after it has cometo rest.

Deposition makes the non-dimensionalized shear stress profile (cf. Fig. 6.a) con-

vex instead of concave in the shear layer; the value at the bed interface exceeds

the gravitational traction. Similarly, the velocity normalized by its value at the

surfaceis larger in the shear layer than in the flow without deposition, opposite

to the effect of entrainment(see Fig. 6.c). In contrast to the eroding flow, the ma-

terial properties do not impose å boundary condition for the bottom shear stress

in the depositing flow. The rate at which massis supplied to the flow atits sur-

face speed determines the flow velocity according to Eq. (39), with negative wq

instead of positive w.. We stress, however, that determination of the deposition

rate in more realistic situations requires explicit modeling of the flow dynamics

and consolidation processes at the bed-flow interface, which cannot be carried

outstrictly within the framework of depth-averaged equations.

6 Extension to non-stationary flows

The value of the toy model discussed above consists in its analytic solvability

that allows us to analyze all aspects in detail. It has four features that are not

realistic in the context of GMFs, namely (i) it neglects frontal entrainment and

variations of flow properties in the streamwise direction, (ii) it is restricted to

Bingham-type rheologies, (iii) it requires mass to be continually removed from

the system to keep the flow depth constant, and (iv) the flow is assumed quasi-

stationary. A numerical approach addressing problems (ii) and (iii) is proposed

by Issler and Pastor (2011). We may anticipate that the fundamental relation (42)

is modified substantially: First, if mass is not artificially removed from the top,

the eroded mass only needs to be accelerated to the depth-averaged velocity u,

instead of the surface velocity u,(h). Second, the difference between gravita-

tional traction and bed shear strength is reduced or enhanced by inertial forces

as the flow accelerates or decelerates.

In the present paper, we investigate approximations that allow us to address prob-

lem (iv) by analytical methods. The essential problem can be highlighted by

writing the force balance for a slice inside the flow as

GT HE OTNO (46)

where a, is the gravitational traction pgh sint and 0; = phis the inertial
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Figure 7. Dependence of the surface flow velocity us (top panel) and entrain-

ment speed w, (bottom panel) on the total flow depth h for (quasi-)stationary

Newtonian and Binghamfluids with and without entrainment. A slope angle of

30>, a flowdensity of 200 kg m> and a viscosity of 0.1m? s are assumed.

force per unit length of flow. The right-hand side of (46) is known at each stage

of the calculation, hence the problem consists in (1) determining the value of the

bed shear stress, and (ii) apportioning the available traction 0; — 05 + Orxa

between acceleration ofthe flow (0;) and entrainment (0. = qetz(N)).

The arguments why the bed shear stress should be equalto the bed shear strength,

ol?) = 7,, essentially carry over to non-stationary flows. One should expectthat

the bed shear stress will fluctuate somewhat in reality, but for the purpose of

modeling it should be sufficient to use 7, as an estimate of its mean value.

On physical grounds,it is clear that the entrainmentrate must be determined by

the unknowninstantaneous shearstress profile near the bed-flow interface. If we

boldly approximate the shape of the non-stationary velocity profile by the shape

of the quasi-stationary one, we conclude that the instantaneous entrainment rate
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in the non-stationary case is (approximately) the same as in a stationary flow

with equal bed shear strength, flow height and depth-averaged flow velocity.

However, the slope angle 0, on which the corresponding stationary flow would

developis different from the slope angle Å of our non-stationary flow. This pro-

posal may be formulated mathematically as

WP 3 WE);gm; (47)

superseripts ($) and (ns) denote the stationary flow with slope angle 0, and the

original non-stationary flow with slope angle 0, respectively. Once w. is known,

the acceleration of the flow can be determined from

dj = 00 Te RANG PU. (48)

We emphasize, however, that numerical tools are needed to assess the error in-

duced by this approximation.

Applying this approach to åa Bingham fluid, we first note that the depth of the

shear layer, 7, is determined by the gravitational acceleration minus the accel-

eration of the plug layer, a,,, which is not known a priori. Within the plug layer,

the resulting shear stress is the sameas the one due to gravity on a different slope

with inclination 6,:

Öpr(2, t) = (h— 2) (g sin — ag) = (h — z)gsind,. (49)

The non-dimensionalized shear-layer depth then results as

Trå Ty Vy

 

s=—=1-— ——— = 1- ==,
5 h gh sind, D. ae

where å
sin 05je SD)
sin 0

Now assumethat the velocity profile has the same shape, given in Table I, as in

a quasi-stationary entraining flow of åa Bingham fluid with the same flow depth

h and instantaneous shear-layer depth 7, given by Eq. (50). Through the con-

stitutive equation, the velocity profile determines the vertical shear stress profile.

An approximate vertical profile of acceleration can also be calculated from the

approximate instantaneous velocity profile and the rates of change of u, and rs.

There will, in general, be an inconsistency when the approximate vertical pro-

files of acceleration, velocity and shearstress are used in the momentum balance

equation (the local form of Eq. (14)), but we proceed assuming that the error is

tolerably small.

The equations for the bed shear stress and the surface velocity can be obtained

from Eqs. (41) and (39) by substituting 0, for 0 (0,(h74+) = 0 for our exam-

ple) and non-dimensionalizing with respect to the Newtonian surface velocity

gh? sin 0/(2v) and gravitational traction pghsin 0 at the true slope angle :

p- - (1=d.y, (52)
/
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Figure 8. Velocity dependence of the entrainment rate q. (left axis) and accel-

eration a (right axis) on the surface velocity of åa Binghamfluid according to

the approximate extended model. The flow height is held constant at I m, the

slope angle is 30” and the density 200kgm”>. The colored squares represent

the entrainment rate values from the exact quasi-stationary equation, listed in

Table 2.

2 1
p:= E —= (1 — Es == vil). (53)

X X

Dividing both equations by p and substituting (52) in (53) results in

2 k pE 2) = vi) (54)
X p p

In terms of x and known quantities,p is thus given by

å
== 3(dx + Ve: (55)

This we insert back into (52), using (55)in (50):

(5 + &) (2 — etaten = Ve Vy (56)

Once y is known, (55) is used again to obtain p. The acceleration of the flow

(with D;, = 0 + u,0, in this context) is given by

hD;u, = 6; = 6g(1 — p) = hg(sinø — sinØs). (57)

As in the case of the quasi-stationary flow discussed earlier, the instantaneous

local entrainment rate can be obtained by solving å non-linear equation. How-

ever, in addition to the bed and flow material parameters, %., Vy and v, the non-

equilibrium flow velocity now also appears as a parameter in the equation. By
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inserting the quasi-stationary value, v(1) = (1/x) [ss — (L/x) (1 — exp(=ssX))|:
one verifies that (56) is equivalent to Eq. (41) in the quasi-stationary case. Fig-

ure 8 showsthe result of numerically solving the approximate equations for the

entrainment rate and the acceleration as a function of the surface velocity in the

case of the flows whose quasi-stationary solutions are given in Table 2. The ex-

tended approximate model reproduces the exact quasi-stationary solutions quite

well.

Two features are notable: (1) Thereis an effective threshold velocity below which

erosion ceases, and(ii) g.(u(h)) diverges at some value of u(h). Taking the limit
X > 0 in Eq. (56) shows immediately that Unax = 2(%e — Vy) in this approx-
imate model, and this is confirmed by the numerical solution plotted in Fig. 8.

However, the divergence of y is an unphysical artifact of our approximations.

Furthermore, expanding Eq. (56) around x = 0, one finds that positive solutions

for x exist onlyif

(ve- Vy)?

VE
which is again confirmed by the numerical solution. Note that negative solutions

cannot simply be interpreted as deposition because the boundary conditions im-

plemented in Eq. (56) no longer apply,cf. the discussion in Sec. 2. The condition

(58) is physical: At the threshold for entrainment, the depth-averaged flow ac-

celeration is å = (g sind — 7.)/h. We approximate the plug-layer acceleration
by a, = å and obtain the depth ofthe shear layer at erosion threshold as

v(1) > (58)

7 7 D,khbeea. (59)
g sind — ag Te Ve

The bed shear stress becomes 4(” = 7 +v3. Asthis must be equalto 7,
we again obtain the condition (58) upon non-dimensionalization according to
Eq. (43).

g Conclusions and outlook

The main results of this investigation may be summarized as follows:

1. Depending on the precise definition of the system boundaries in a flow

with entrainment of ambient fluid or bed material, different formulations

of the momentum balance may be obtained that need to be interpreted con-

sistently. In the case of entrainment from a bed at rest without splashing,

the most natural system definition leaves no "entrainment force” term in

the momentum balance equation, but thereis a significant retarding term

—qu in the equation of motion. Entrainment from moving ambientfluid

or due to splashing requires åa momentum source term gu |;nterface TD Ne

momentum balance and a corresponding term in the equation of motion.
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2. Contrary to claims in the literature, the equations presented here do not

allow a flow to accelerate due to strong deposition because the internal

shear stresses in the flow limit the deposition rate.

3. For a class of materials characterizable by brittle fracture at an erosion

threshold stress 7., the erosion and entrainment behavior is determined

by the boundary condition that the shear stress at the bed-flow interface

should be equal to 7.. Several flows of geophysical importance—among

them snow and rock avalanches, perhaps also debris flows—are expected

to be adequately described in this way.

4. Entraining and deposition modify the velocity and shearstress profiles of

GMFsdueto the gradual acceleration/deceleration of the entrained/deposited

mass. The difference is expected to be small in most practical applications,

however. In the case of entrainment ofbrittle bed material, we argued that

the erosion rate tends to the value that makes the interfacial shear stress

equal to the erosion threshold. Deposition depends on additional material

properties that control the consolidation of the deposited material.

5. When using heuristic parameterizations of the entrainmentrate, they need

to be chosen to be consistent with the rheology or the friction law of the

flow. In general, only a complete, non-averaged analysis will produce a

fully consistent solution, but we presented a simple solution for plug-like

models with a friction law describing the basal shearstress.

6. A practically important class of eroding flows are those limited by their

entrainment capacity rather than by their erosive capacity. Our analysis in

Sec. 5 shows how to determine the entrainmentrate in the case of quasi-

stationary flow of a Bingham fluid. Extension of this approach to other

rheologies is possible in principle, but contingent on the availability of (at

least approximate) closed-form solutions tothe profile equations.

7. We give physical arguments for a criterion that allows extension of our

method to non-stationary flows if the velocity and shear-stress profiles re-

main self-similar. The velocity dependence of the entrainment rate can

then be determined approximately. Further work is needed to elucidate the

range of applicability of the scheme.

The following general issues need to be considered in more detail to make this

theory fully applicable in computational models: (i) How can deviations of the

velocity profile from its non-entrainment equilibrium shape be parameterized in

a simple way applicable in one- and two-dimensional depth-averaged flow mod-

els? (ii) How rapidly do the velocity and shear-stress profiles adapt themselves to

changed conditions,e. g. at slope breaks or dueto variability of the bed material?

(iii) How well can the erosion behavior of specific bed materials be described by

a single threshold shear stress? (iv) How does the threshold shear stress depend

on other, more easily measurable parameters of a given material?
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The first question can be studied by searching for analytic solutions to simpli-

fied flow situations like the one assumed in Sec. 5. Of particular interest are

expressions for rheologies other than Bingham andforsituations where the flow

depth is allowed to grow in proportion with the entrained mass and the velocity

increases accordingly. In contrast, the second problem can be effectively studied

by numerically solving the evolution equation of the velocity profile in a simpli-

fied, but non-stationary situation, e.g., after åa sudden slope break and neglecting

longitudinal stress gradients. This results in å one-dimensional evolution equa-

tion.Its solutions will hopefully suggest useful parameterizations ofthe transient

velocity profile for use in depth-averaged models.

The third question requires dedicated experimental work, mainly in the labora-

tory along the lines indicated by Barboliniet al. (2005). The goal of measuring

the erosion rate as well as the density, velocity and shear stress profiles with

sufficient accuracy to test Eq. (5) represents a major experimental challenge,

however. The fourth problem will also require experimental work, the methods

of which will have to be adapted to the specific properties of the material to be

studied.

The scope of this paper was deliberately narrowed to just one mechanism of

entrainment, namely continuous erosion along the bottom of the flow. In many

situations of practical interest, entrainmentat the front is of similar importance

or even dominant. Many of the general results from the first three sections also

apply to frontal entrainment, but a different approach is needed for modeling the

frontresistance, plowing depth and front shape. The recent paper by Cherepanov

and Esparragoza (2008) approaches the problem with concepts from fracture

mechanics, making assumptions that are in many ways opposite to ours: They

neglect inertial forces near the erosion front, which are crucial in our model, but

they stress the role of fracture energy, which we neglect by assuming perfectly

brittle behavior. The two approaches should not be considered conflicting but

complementary, focusing on two different zones of the bedflow interface where

different entrainment mechanisms dominate. One of the challenges ahead is

to merge both concepts into a unified description of entrainment based on the

relevant physical processes.
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