
Technical note

NORWEGIAN GEOTECHNICAL INSTITUTE Main office Trondheim office T 22 02 30 00 BIC NO. DNBANOKK ISO 9001/14001
NGI.NO PO Box 3930 Ullevaal St. PO Box 5687 Torgarden F 22 23 04 48 IBAN NO26 5096 05 01281 CERTIFIED BY BSI
 NO-0806 Oslo NO-7485 Trondheim NGI@ngi.no ORGANISATION NO. FS 32989/EMS 612006
 Norway Norway 958 254 318MVA

p:\2017\01\20170131\leveransedokumenter_og_publikasjoner\2018\tekniske_notater\20170131-10-tn.options_probroc_final.docx

To: Norges Vassdrags- og energidirektorat
Attn.: Aart Verhage
Copy to:
Date: 2018-12-11
Revision no./Rev.date: 0 /
Document no.: 20170131-10-TN
Project: SP 4 FoU Snøskred
Project manager: Dieter Issler
Prepared by: Dieter Issler, Zhongqiang Liu
Reviewed by: Malte Vöge

Design Alternatives for a Tool for Probabilistic Run-Out Calculations
With MoT-Voellmy

Contents

1 The problem 2
2 Standard MoT-Voellmy called from Python script (Method A) 2
3 MoT-Voellmy as a shared library called by a Python script (Method B) 3
4 A new version of MoT-Voellmy including Monte-Carlo simulations (Method C) 4
5 Preliminary conclusion 4

Review and reference page

http://www.ngi.no/
mailto:ngi@ngi.no

p:\2017\01\20170131\leveransedokumenter_og_publikasjoner\2018\tekniske_notater\20170131-10-tn.options_probroc_final.docx

Document no.: 20170131-10-TN
Date: 2018-12-11
Rev.no.: 0
Page: 2

1 The problem

As part of WP 2 – Analyses of the joint Natural Hazards GBV project HARM1 (project
number 20180069), it was decided to develop a tool for carrying out probabilistic run-
out calculations. This task was later moved to FoU Snøskred due to lack of resources.
First discussions indicated that simulations with a fast, quasi-3D model like MoT-
Voellmy should be feasible if parallelization of the most time-consuming parts is used.
Moreover, NAKSIN already contains many features that will be needed in such an ap-
plication. This suggested writing a Python script that prepares the input for each simu-
lation, then calls MoT-Voellmy, and finally counts the number of hits in each cell of the
computational grid.

Closer scrutiny of such a solution reveals quickly, however, that the Python script and
MoT-Voellmy interact through ASCII files that must be written by the Python script and
read by MoT-Voellmy. Also, MoT-Voellmy computes curvatures for the entire compu-
tational domain every time it is run, but in this application the terrain is the same for all
simulations. It is therefore of interest to consider alternative approaches that might be
more efficient. Below, the originally envisaged approach (Method A below) is compared
to two other possible approaches B and C, and finally conclusions are drawn.

2 Standard MoT-Voellmy called from Python script

(Method A)

This is the originally envisaged solution: The Python script collects all necessary infor-
mation about the avalanche to be simulated and about the Monte-Carlo procedure. In
parallel threads, it then

 creates command files for MoT-Voellmy,
 prepares the release-depth and friction-coefficient raster files for each simula-

tion according to the specified statistical descriptions (i.e. mean, standard devi-
ation and probability distribution) of these input data,

 runs multiple instances of MoT-Voellmy and stores the calculated results from
each simulation,

 blocks the probability-distribution array for other processes and modifies it ac-
cording to the simulation results from MoT-Voellmy.

When all simulations are done, a simple division of the hit-count raster by the number
of years represented by the Monte-Carlo trials produces the final map file showing the
spatial distribution of probability. To reduce the number of simulations and the signifi-
cant time demands on calculations, the Latin Hypercube Sampling (LHS) method could
be used,

Advantages:

 Minimal programming effort, much can be adapted from NAKSIN.

p:\2017\01\20170131\leveransedokumenter_og_publikasjoner\2018\tekniske_notater\20170131-10-tn.options_probroc_final.docx

Document no.: 20170131-10-TN
Date: 2018-12-11
Rev.no.: 0
Page: 3

+ Most of the work can be parallelized in a simple way.
+ Much of the framework can be reused for similar codes using other simulation

engines (RAMMS, BingClaw, ...).
Disadvantages:

− Considerable duplicate effort (e.g., computation of curvatures inside MoT-
Voellmy for each simulation)

− Parameter passing between Python and C via ASCII files is inefficient.

3 MoT-Voellmy as a shared library called by a Python

script (Method B)

1. Strip MoT-Voellmy of all reading of input files and writing of output files. In-
stead, the parameters read from the command file for the usual version are passed
as parameters during the function call and the hmax values are returned as an array
pointer. Take out the calculation of curvature and use the curvature passed as a
parameter instead.

2. Compile stripped-down MoT-Voellmy as a shared library.
3. Create Python code that does the following:

o Ask the user for the necessary input files and simulation parameters.
o Ask the user for the mean values and standard deviations of the stochastic

parameters as well as the number of Monte Carlo trials (prepared accord-
ing to the LHS method).

o Read all input raster files into arrays and compute curvature as an array.
o Use the ctypes module to convert these parameters and arrays into C-

compatible objects.
o Create the values of the stochastic variables and call the MoT-Voellmy

module with the right parameters.
o Receive the hmax output array from all simulation runs and count the num-

ber of hits per cell.
o Output a raster file with the spatial probability distribution.

Advantages:

+ Duplication of computational work (e.g., calculation of curvature) is largely
avoided.

+ The full functionality of MoT-Voellmy is retained.
+ The new parts should be relatively easy to program in Python.
+ The Python code is easy to parallelize, with one instance of MoT-Voellmy run-

ning per process. Little work is left outside the parallelized code section.
Disadvantages:

− Need to learn how to use ctypes.

p:\2017\01\20170131\leveransedokumenter_og_publikasjoner\2018\tekniske_notater\20170131-10-tn.options_probroc_final.docx

Document no.: 20170131-10-TN
Date: 2018-12-11
Rev.no.: 0
Page: 4

Some of the set-up work for each simulation may be less efficient in Python than
C-code.

4 A new version of MoT-Voellmy including Monte-Carlo

simulations (Method C)

1. Make the computational loop of MoT-Voellmy's main function into a new sub-
routine.

2. Extend that subroutine to update the shared array that counts hits to each grid
cell.

3. Write a new main function that generates multipliers for the friction coefficients
and release depths according to the specified statistical descriptions and starts
the MoT-Voellmy simulations with the correct parameter values in parallel pro-
cesses.

Advantages:

 Is expected to generate the most efficient code.
 A single, compact executable, no need to install Python.

Disadvantages:

 Significant changes to the MoT-Voellmy code required.
 Author has no experience with parallelizing C-code yet.

5 Preliminary conclusion

Performance-wise, the three variants are clearly ranked as A < B < C. Some conjectures
concerning the degree of performance differences and the reasons for them can be made
based on experience from NAKSIN runs:

 The Python module subprocesses.py makes it relatively painless to set up par-
allelized computation, but the bookkeeping needed for this seems to be time-
consuming.

 The Python code preparing the input data may consume up to an order of mag-
nitude more time than the MoT-Voellmy run in the case of small avalanches in
much larger computational domains.

 In the case of large avalanches running for a long time with short time steps,
MoT-Voellmy may use one to two orders of magnitude more time than the Py-
thon code. Also, in the first case, the preparatory work within MoT-Voellmy
consumes a fair fraction of the total computing time.

Accordingly, in poorly set up problems, an optimized code of type C might require a
hundred times less computing time than the type A code. A well-programmed type-B
code will probably be closer in performance to a type-C code.

p:\2017\01\20170131\leveransedokumenter_og_publikasjoner\2018\tekniske_notater\20170131-10-tn.options_probroc_final.docx

Document no.: 20170131-10-TN
Date: 2018-12-11
Rev.no.: 0
Page: 5

When it comes to development time and uncertainty in the outcome, the ordering is again
A < B < C, but this time in favor of approach A. There, MoT-Voellmy is not modified,
and all ingredients in the Python code – like writing command and raster input files and
running the MoT-Voellmy simulations in parallel – are tested and available in NAKSIN.

The main stumbling block of approach B is the need to correctly apply the ctypes module
in both the Python and the C code. It is somewhat unpredictable how difficult this will
be – the module is extensively documented, but it is likely that there are some subtleties
that need to be figured out, as has been the case when the Python code of NAKSIN was
parallelized with subprocess.py. Even disregarding this risk, while not fundamental the
changes in MoT-Voellmy are still considerable.

Approach C does not use ctypes, as the entire code would be written in ISO-C with
extensions for parallel processing. A search on the Internet arrived at OpenMP as a can-
didate API or at ISO-C11 as a recent standard for C that has support for multiprocessing.
Note that OpenMP supports parallelization on a multiple-core single node, i.e., a single
PC or workstation or even a supercomputer, but not a cluster of different machines. A
single machine is presently the most realistic scenario for applications at NGI. For dis-
tributed nodes, a Message Passing Interface would have to be used.

OpenMP appears to be reasonably easy to use, but the programmer needs to understand
precisely how threads that work in parallel, e.g. in a loop, interact with each other indi-
rectly through access to shared resources. The efficient parallel running of MoT-
Voellmy simulations in NAKSIN indicates, however, that this should not be a major
problem.

At this design stage, approach B appears the least attractive because it achieves only a
moderate (albeit significant) speed-up compared to approach A but requires mastery of
ctypes. The development effort is probably similar to that of approach C.

With this, the choice is mainly between fast and easy development in approach A on the
one hand and a larger and less predictable development effort in approach C that prom-
ises a potentially huge gain of speed. In the present situation, this essentially means that
approach A must be chosen if the task should be completed within 2018, but approach
C holds more promise for a usable tool, provided development can be scheduled for
early 2019.

Kontroll- og referanseside/
Review and reference page

P:\2017\01\20170131\Leveransedokumenter_og_publikasjoner\2018\Tekniske_notater\20170131-10-TN.Options_ProbROC_final.docx

20
15

-1
0-

16
, 0

43
 n

/e
, r

ev
.0

3

Dokumentinformasjon/Document information
Dokumenttittel/Document title
Design Alternatives for a Tool for Probabilistic Run-Out Calculations With MoT-
Voellmy

Dokumentnr./Document no.
20170131-10-TN

Dokumenttype/Type of document
Teknisk notat / Technical note

Oppdragsgiver/Client
Norges vassdrags- og energidirekto-
rat

Dato/Date
2018-12-11

Rettigheter til dokumentet iht kontrakt/ Proprietary rights to the document ac-
cording to contract
NGI

Rev.nr.&dato/Rev.no.&date
 0 /

Distribusjon/Distribution
FRI: Kan distribueres av Dokumentsenteret ved henvendelser / FREE: Can be distributed by the Document Centre
on request
Emneord/Keywords
Probabilistic hazard mapping, MoT-Voellmy, parallel processing, Python, ISO-C

Stedfesting/Geographical information
Land, fylke/Country
—

Havområde/Offshore area
—

Kommune/Municipality
—

Feltnavn/Field name
—

Sted/Location
—

Sted/Location
—

Kartblad/Map

Felt, blokknr./Field, Block No.
—

UTM-koordinater/UTM-coordinates
Zone: — East: — North: —

Koordinater/Coordinates
Projection, datum: — East: — North: —

Dokumentkontroll/Document control
Kvalitetssikring i henhold til/Quality assurance according to NS-EN ISO9001

Rev/
Rev.

Revisjonsgrunnlag/Reason for revision
Egenkontroll

av/
Self review by:

Sidemanns-
kontroll av/

Colleague re-
view by:

Uavhengig kon-
troll av/

Independent re-
view by:

Tverrfaglig kon-
troll av/

Interdisciplinary
review by:

0 Original document
2018-12-11
Dieter Issler

2018-12-17
Zhongqiang Liu

2018-12-18
Malte Vöge

Dokument godkjent for utsendelse/
Document approved for release

Dato/Date

18 December 2018

Prosjektleder/Project Manager

Dieter Issler

Neither the confidentiality nor the integrity of this document
can be guaranteed following electronic transmission. The ad-
dressee should consider this risk and take full responsibility for
use of this document.

This document shall not be used in parts, or for other purposes
than the document was prepared for. The document shall not
be copied, in parts or in whole, or be given to a third party
without the owner’s consent. No changes to the document
shall be made without consent from NGI.

Ved elektronisk overføring kan ikke konfidensialiteten eller
autentisiteten av dette dokumentet garanteres. Adressaten
bør vurdere denne risikoen og ta fullt ansvar for bruk av dette
dokumentet.

Dokumentet skal ikke benyttes i utdrag eller til andre formål
enn det dokumentet omhandler. Dokumentet må ikke repro-
duseres eller leveres til tredjemann uten eiers samtykke.
Dokumentet må ikke endres uten samtykke fra NGI.

NGI (Norwegian Geotechnical Institute) is a leading international centre
for research and consulting within the geosciences. NGI develops opti-
mum solutions for society and offers expertise on the behaviour of soil,
rock and snow and their interaction with the natural and built environ-
ment.

NGI works within the following sectors: Offshore energy – Building, Con-
struction and Transportation – Natural Hazards – Environmental Engi-
neering.

NGI is a private foundation with office and laboratories in Oslo, a branch
office in Trondheim and daughter companies in Houston, Texas, USA and
in Perth, Western Australia

www.ngi.no

NGI (Norges Geotekniske Institutt) er et internasjonalt ledende senter for
forskning og rådgivning innen ingeniørrelaterte geofag. Vi tilbyr eksper-
tise om jord, berg og snø og deres påvirkning på miljøet, konstruksjoner
og anlegg, og hvordan jord og berg kan benyttes som byggegrunn og byg-
gemateriale.

Vi arbeider i følgende markeder: Offshore energi – Bygg, anlegg og sam-
ferdsel – Naturfare – Miljøteknologi.

NGI er en privat næringsdrivende stiftelse med kontor og laboratorier i
Oslo, avdelingskontor i Trondheim og datterselskaper i Houston, Texas,
USA og i Perth, Western Australia.

www.ngi.no

	Technical note 20170131-10-TN
	Contents
	1 The problem
	2 Standard MoT-Voellmy called from Python script (Method A)
	3 MoT-Voellmy as a shared library called by a Python script (Method B)
	4 A new version of MoT-Voellmy including Monte-Carlo simulations (Method C)
	5 Preliminary conclusion
	Review and reference page

