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ABSTRACT

A derivation is given for the equation of thermodynamic

equilibrium between ice and water in porous media. The

equation accounts for a difference between the pressure

of the ice phase and the total potential (in pressure

units) of the water phase. Emphasis is laid on the distinc-

tion between this total potential and the hydrostatic

pressure and osmotic pressure of the unfrozen soil solution.

The difference between the hydrostatic pressure of the

solution and the ice pressure is accounted for by the ice-

water interfacial tension, as expressed by the generalized

form of Laplace's equation. The resulting generalized form

of the Clausius-Clapeyron equation is an equlibrium expression,

whereas the Laplace equation only expresses a definition,

valid under any circumstances. It is emphasized that all

influences of the pore wall, whether working via the diffuse

double layer or not, and which cause the liquid to have lower

Gibbs free energy than the equilibrium liquid at the same

temperature, are collected in the osmotic pressure term.
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INTRODUCTION

Recently an equation has been spaposed for the thermodynamic

equilibrium between ice and water in porous media (Miller, 1973;

Kay and Groenevelt 1974). The equation allows for a difference

in pressure between the two phases and has been called a

generalized form of the Clausius-Clapeyron equation. The best

justification for this equation was given by Miller, when he

referred to the so-called phase barrier principle as treated

by Lewis and Randall (1961) for a vapor/liquid system. aA

derivation of this equation for ice/water equilibrium in

porous media seems lacking. Saetersdal (1973) expressed

doubts about an equilibrium with differences in pressure

between the phases. Rosenqvist (1971) illustrated in words

that the equilibrium exists under a difference in pressure

and he pointed out that the classical form of the Clausius-

Clapeyron equation is not valid here. In the following we

will derive the proposed equilibrium equation from basic

thermodynamics.

THEORETICAL DERIVATIONS

A fundamental equation of thermodynamics gives the differential

of the Gibbs Free Energy of a mono-component system as

dG = - SAT + Vdp (1)

in which S = entropy of the system |

T = absolute temperature

V = volume

p = pressure



When the system consists of a mixture of components, for

instance a binary system of salt and water, the expression

for AG of the solution takes a more complicated form:

dG = - SAT + Vdp + usdn, + Han, (2)

in which n, and n, are the mass (in grams) of

the components salt and water in the

solution.

and Va and Ke are respectively the chemical

potentials of the salt and the water

(on a mass basis).

The variable Vi needs some explanation. It is usually

defined as,

IG
Va = lg) 13)
J Nå La Pr Vyr Vy seer

for åa mixture of components jJ, Kk, ll, «ee...

In most cases Ns is the number of moles of component 3

in the system. In Eq. (2) we have chosen Vs to be the

change in the Gibbs free energy of the solutton due to a

change of 1 gram tn the amount of component jJ present.



For the mixture we then know that

SE EN (4)

so that

dG = ndu, + usdn, + nÅ, + Un, | (5)

Combination of Eqs. (2) and (5) gives the Gibbs-Duhem

equation

nu, + ndu, = - SAT + Vdp (6)

So

nÅ, = -= SAT + Vdp - nsAU, ' | ' (7)

The chemical potential of the salt component can be written

as (e.g. Castellan, 1966),

RT
M
S

— O
Ln Xs (8)

in which ug (p,T) is the chemical potential for

the pure.salt at the same pressure and

temperature.

R = gas constant

+« M = molecular weight of the salt
s

Xs = mole fraction of the salt

N N Mm n
gå mr nenflmn (9)
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Substitution of (9) into (8) gives,-

M n
= u"(p,7) ÅL 2,4 RI 5fi Ug (PrT) + M Ln H + Ln ae

S s s W

and

RT , 1

d s M  n d S
S

So

n
= 3n,Aug = RITA (7 )

S

Substitution of (11) into (7) gives,

ng
)

Mn
sw

 ÅSAT + Vdp - RITA (

in which S = entropy of the solution per gram

of water

V = volume of the solution per gram

of water.

Rewriting Eq. (12) gives,

n
Sdu == Sar + Vdp - VRTA ( ==

W MSnyV
 )

The osmotic pressure of dilute solutions is written as

ng

Mn vVv
Sw

 TI = RTc = RT

where c is the salt concentration in moles per

unit volume.

(10)

(11)

(12)

(13)

(14)



So we write Eq. (13) as,

dy, = = Sar + Våp - Van | (15)

Equation (15) gives the change in the chemical potential of

the component water (on a mass base) due to a change in

temperature, T, hydrostatic (or tensiometer-)pressure, p,

and osmotic pressure, I. We rewrite this equation as,

du, = = SaT + Våp, (16)

in which Ba is defined as

pj=P-1 (17)

Pu is often called the "total potential" (energy on a

volume basis) of the component water. It is the pressure

which one would nøste in åa soil water solution with a

tensiometer if the tensiometer cup were a perfect semiper-

meable membrane.

' Since S = = in which H is the enthalpy per unit mass ofT'!

the solution, integration of Eq. (16) between a reference

level (T = Tor Py = 0) and the actual temperature T = T, + AT

and pressure Pu! gives

RE AT, $L. Hln(1+ T) + VP, (18)

or for small AT,

= = HAL q
Vy 7 T, t+ VP, uke)

In these equations To is the melting point of the pure

solvent and AT is the actual temperature in %.



When we consider equilibrium between this solution and ice,

then it is this Ve which one has to equate with Hj This

becomes clear when one carefully looks at the definition of

u as given below Eq. (3) and realizing that ice excludes
w'

solutes.

The condition for equilibrium between this solution and ice

is,

Vy Hi | (20)

Knowing that ice has no inclusions of solutes in it, we

can write, for bulk tee, an equation similar to Eq. (15)

but without the last term. This results in,

Hjar -— '
å en menneEt ve)

Ice in fine pores is different from bulk ice in that its

surface free energy plays a large (additional) role in its

chemical potential (the surface area is large relative to

its mass). So for pore ice we have to write (Everett, 1961),

V= Vi) bulk surface? (22)

in which

surface = Aljw (23)

where A = surface area

o = interfacial energy ice/water
iw



The mass of the ice, Dir can be written as,

nj, = V/Ni

where V is the volume of the ice.

SO

Grace =- , 7 OA
on, iw i oV

And Eq. (22) becomes,

= —- ee + V.p + V.o OAVi P iP iiw WV

Equilibrium exists when,

H EG H; < = 3A- T, AT + VP, = - T AT + Vip + ViGiy 3y

Rearranging gives,

V.(pt+ o 9 Vp = -(H-H.)AT/T
i iw aV W i Oo

H - Hj = Le

where Ly = heat of fusion per unit mass.

In the first term of Eq. (28) we can define,

«JA >

Pt'Gyw VA

which is a generalized form of the Laplace equation.

Now Eq. (28) becomes,

ViPL TV FT AT
o

It should be emphasized that in Eqs. (17), (26) and (29)

p is the hydrostatic pressure of the solution.

(24)

(25)

(26)

(27)

(28)

(29)

(30)



Equations (29) and (30) have their analogous forms in

respectively the Laplace equation for the curved interface

liquid/gas and the Clausius-Clapeyron equation for the

equilibrium between bulk ice and pure bulk water. It may

be inappropriate to call Eq. (30) a Clausius-Clapeyron

equation, but it certainly correctly describes the

- equilibrium between ice and water solution in porous media.

In fact, the best equation to be used is (28).

INTERPRETATION OF THE TERM TI

The meaning of Tin this discussion can be generalized.

We called I the osmotic pressure of the solution. In a porous

medium the solution is.mainly the liquid film between mineral

 particle walls and the ice. In part it is also "islands" of

liquid in pores, too narrow for ice to be stable in. In the

films solutes are close enough to the pore wall to be strongly

under the influence of the electrostatic force field emanating

from the charged wall surface. In modern soil physics it is

agreed among many that the combination of charged pore wall

and solute ions constitutes a so called diffuse double layer.

This diffuse double layer inyolves in most soils an elevated

cation concentration, which, in clays, is responsible for the

swelling phenomenon. In clays the diffuse double layer creates

the necessary "suction" for water intake. In the frozen system



the "suction" for water intake for heave is quite analogous

to the swelling clay system. The adsorbed cations represent

the osmotic pressure, so that the "suction" for water intake

is Puy = p-I.

For those who do not .agree with the theory of the diffuse

double layer and/or those who suspect other or additional

adsorption forces to be responsible for water intake, we can

generalize V.IT such that it stands for all these forms of energy

together.

THE MEANING OF EQUILIBRIUM

Equation (30) is an equation for thermodynamic equilibrium.

The equilibrium is disturbed when, due to changes in any of

the variables T, p, I or r, the situation

Ui 2 Vy is created.

When ice is being formed in situ, Vi SH: This means that,

å ee Le | .

ViPi = VP, < - T. AT (31)

<

This is for instance the case when the temperature drops

locally. Then, if Pi stays constant, Pr is less negative

than one would predict from the equilibrium eaquation. It

is the case when we deal with a penetrating frost front.



W < v, also prevails when the radius of an ice/water inter-

face is larger than the equilibrium radius. If this is a

spherical particle in supercooled bulk water in a beaker-

glass, this pålpédele will continue to grow, SO that r con-

tinues to increase and the ice will spontaneously fill the

whole beakerglass.

Ui < pr, With spontaneous local ice formation would also
å wW

prevail when suddenly pi or IT are aropped.

From this reasoning we also åetfve that Eq. (29) is not

necessarily an equilibrium equation. It is only a definition

of Pir which is valid under all circumstances. AS Rosenqvist

(1971) pointed out, one should be careful to ascribe the

surface energy to PiTP instead of PiTPy:

Equation (30) represents Zocal equilibrium. It is valid

everywhere in the porous medium if at each localtty p, I, r

and T do not change in time. This does not mean that these

variables cannot change with location. We can, for instance,

haye a steady state temperature distribution with a gradient

in temperature. In such a situation we derive from Eq. (30)

that there exists a gradient in Py Cross the system, which

does not change with time. And since grad Py is the driving

force for water movement (Darcy's law), we get a steady flow of

mass through our frozen system. This is the case in a freely

heaving system, in which the frost front does not



penetrate further. It is obvious that then we can express

the steady mass flow rate as a function of the temperature

gradient (and of the gradient of Pi if it exists) - see Loch

and Kay, 1977.

To emphasize again what was said before: Eq. (30) is not

valid during frost front penetration, during increasing heaving

pressure(= Pi at the ice lens) or during decreasing suction.

Equation (30) was recently verified experimentally by Biermans

et.al. (1976) who showed that, in order to stop steady water

a aintake into their system at a constant temperature AT C an

ice pressure Pir they had to reduce the pressure in their

equilibrium reservoir to Py:

SUMMARY AND CONCLUSIONS

A thermodynamic derivation was given of a generalized form of

the C1abétus-Clapayron equation, applicable to.ice/water

equilibrium in frozen porous media. A careful distinction was

made between various pressure terms in the equation. In the

process of this derivation evolved a Gendmeda form of the

Laplace equation, which accounts for the ice/water interfacial

energy.

It was pointed out that the former equation is an expression,

only valid under thermodynamic equilibrium, whereas the latter

is a definition, valid under non-equilibrium conditions as well.



It was emphasized under what conditions we have thermodynamic

equilibrium; this can be a local equilibrium, allowing for

gradients in the thermodynamic variables.

Finally it was emphasized that all influences of the pore wall

on the system's liquid water can be symbolized by an osmotic

pressure.
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