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Dense avalanche numerical modeling
Interaction between avalanche and structures

Mohamed Naaim
Snow and avalanches control- ETNAlCemagref

BP .' 76 Domaine universitaire
F-38402 Saint Martin d'Hères

ABSTRACT: Applications of the Saint Venant equations were extended to rapid gravity
flows of geophysical fluid with a non-newtonian behavior such as snow avalanches. This
paper presents a numerical and physical approach for snow avalanches considered as a
granular material. The mathematical equation system is numerically solved. In order to
validate the numerical modeling, a reduced scale model is built. The materials are retained
behind a dam by a rapid opening gate. The downhill slope is divided into two sections: a
steep slope with a channeled flowing zone and a section with an abrupt widening with a
slope angle of zero degree. Several experiments have been done with various volumes of
different materials. The following parameters were measured in each experiment: 1) the
evolution of the height and the forces in three locations along the flowing zone, 2) the
velocity field at the surface of the avalanche, and 3) the mapping of the deposition zone.
The whole experiments have been numerically reproduced. Engineers in charge of the
protection against dense avalanches, increasingly recommend the construction of protection
devices whose function, at the end of the flow zone, is to dissipate the avalanche energy.
The last section of this paper deals with an attempt of efficiency evaluation of these
structures using numerical modeling.

1. INTRODUCTION

In winter and in mountain regions, one often observes two
kind of snow avalanches: dense avalanches and powder
avalanches. Earlier studies approached the totality of these
flows by a theory issued from hydraulics [Vollemy 1955].
In recent studies, the two type of flows are approached by
two different theories. The study of powder avalanche flow
is based on the analogy with the density current. The
powder avalanche (air + snow particles) is considered as a
Newtonian fluid and its flow is turbulent [Naaim, 1997]. On
the other hand, dense flows, without aerosol, have been
assimilated to a continuous material with a non-newtonian
behavior, to which laws issued from fluid mechanics are
applied.
The dense avalanche is composed of snow particles with
different forms and dimensions. It contains snow blocks and
snow spheres. The snow metamorphosis produces different
kind of cohesion. One can also find some water as
interstitial fluid that strongly modifies the structure and
behavior of the snow.
The assimilation of the snow flow to a granular material
flow knocks to several reserves that are modification of the
material structure and particle form during the flow and the
appearance of the water by snow fusion due to friction and
energy dissipation in heat. For snow in very cold weather, it
appears reasonable to assimilate the moving snow to a
granular material. However, this assimilation becomes
disputable when the snow is humid. In humid snow flow,

one observes the formation of spheres with various
dimensions.
In this paper's framework, we only consider the ideal case
of a cold and dry snow composed exclusively of snow
grain. Its assimilation to a dry granular material is more
well off in this case. The case of flows of dry granular
materials has for a long time been the objective of
researches in terms of rheology. Since the pioneer works of
[Bagnold, 1954], several theoretical researches have dealt
with behavior laws of material flows, such as works of Haff
(1983), and Savage and Hutter (1989).
Haff (1983) has described the limits of the assimilation of a
granular material to a simple fluid. Important differences
exist between the grains and the molecules. A grain of sand
is 1018 times heavier and more voluminous than a water
molecule. The interaction between molecules is completely
elastic while the grain interactions can be made by shocking
and friction, and it is always accompanied by energy loss.
The poorly sorted granulometry, the irregular form of
grains, and the fact that grain shocks are not always
centered will create new difficulties that the theory has to
take into account for the establishment of behavior laws for
granular materials.
Dense flows are characterized, by the fact that a very weak
distance compared to the average grain diameter separates
neighboring grain surfaces, which results in a weak air
incorporation during the flow. The dilatation of the initial
volume is therefore considered to be weak and the porosity
of such material does not evolve during its flow.
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For a "simple" fluid (Newtonian), the equation of the
momentum conservation contains a viscous force term, that
is proportional to the velocity gradient. The proportionality
coefficient, called dynamic viscosity, is a physical
characteristic of the fluid. For a granular fluid, a similar
viscosity can be constructed. But, it is a more complex
function than in the case of a Newtonian fluid. We can find
in the literature several behavior laws that differ in the
function connecting to the velocity gradient.
The main existing behavior laws for a planar flow are the
. d auBingham mo el: 't = 't + ¡.t- , the Bagnold model:
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and the Mohr-Coulomb model:

The last one was proposed and used by Savage and Hutter
(1989). The friction between the ground and the flowing
material produces the momentum dissipation.
By analogy with a Newtonian fluid, conservation of the
momentum for a granular fluid can be written as:
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Where p is the pressure, g the gravity coefficient, 'tjj the
stress tensor and xi the base system of the axis (Oxyz) in
which Oxy stands for the horizontal plane and Oz stands for
the up-ward vertical axis.

2. NUMERICAL MODELING

In order to study the dense flows we choose a model from
Hydraulics. In this case, the velocity vector (ú ) is replaced

by its vertical average (u). Equations describing the flow
are obtained by integrating vertically the mass and the
momentum conservation taking into account the following
hypotheses

The flow is made of snow particles and the momentum
dissipation results from the friction at the ground
surface interface, and from grain shocks.
The vertical pressure distribution is hydrostatic.

This allows neglecting the internal dissipation and makes
the vertical integration easier. We obtain the following
equation system:
ah + ahu + ahv = o
at ax ax
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Where h is the flow height, ex and ey are the slopes in x and
y directions and e is the total terrain slope.
So, in order to study the flow of dense snow avalanches on
a given site, we need to access its topography. We have
chosen to process it under the form of a digital terrain
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model, which is composed of a triangular irregular network.
On each element of the mesh the equations between two
different times are integrated. Let Th a topology of the space
formed by all the elements. For each element Kj of Th, we
denote C its contour, Aj its surface and rij its common
contour with Kj. We have solved the system of equations in
finite volumes by a Godunov numerical scheme, which is
second order in space and in time.

2.1 Numerical scheme

We begin by defining a spatial average of U = (h.hu.hv) on
each element Kj in time t" and tn+1 by the projection:

Uki = _1_ JU(x, tn )dv and
Yki ki

ukt1 =_1_ JU(x,tn+1)dv
Yki ki

The numerical solution is then made by integration of the
equations system on [Ki] x [t", tn+i], we obtain the following
numerical scheme:

A na [E]~ Un Un+1
U~+I = U~i - _D_tL n r, + I'lt.G( ki + ki )

Ski 1 F 2

Where G is contribution of the second member and na is the
number of neighboring edges of Kj. We determine the
numerical flux through each edge using simplified Riemann
solver [Naaim, 1991].
The gradient are calculated by minimizing the function F:

nev [ [au / ax] ]2F= I.( Uk,-Uk'- (xk·-xki»j = l J i au / ay J

Where nev is the number of neighbors of Ki. These
gradients are then limited in order to avoid the creation of
new extremum. The Riemann problem is written as:

[] j
U=Uka+[uUXk.g](x -xka)ifx <O

au a E b Yka a b n
-+-- =0/ b

at ax n F _ [U x kd ]_ _ .
U - Ukd + UYkd (xa -xkd)Ifxn >O

Where a is indication of neighbor facet of the element.
After the numerical flux calculation, the contribution of
source terms (second member terms) is explicitly calculated
and added to the final solution.

3. SCALE MODEL

In order to validate our numerical modeling, we have build
and implemented a scale model.

3.1 Dimensionless equations

The governing equations are written in dimensionless form
using h, and ua respectively as a length and velocity
scales:
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The classical Fraude number expresses the dynamic
similarity by:

uF =__ 0_
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3.2 Scale model

The scale model is composed of three parts. The first part is
a reservoir where the material is initially stored. A gate ends
this reservoir and it can be quickly opened. In this case, we
can simulate the instantaneous release of the avalanche. The
second part of the model is a canalized flowing zone with a
high slope angle. The last part is the horizontal run-out zone
characterized by a brusque widening. For each experimental
material, the surface of scale model was covered by plastic
cloth in order to have a friction angle between the material
and the scale model equal to the internal friction angle.
The geometric scale of our model compared to a real
avalanche path is not easy to define. In the scale model, the
vertical distance covered by the avalanche is about 2 m. In
nature, the vertical distance covered by avalanches varies
between 200 m and 1000 m. This means that our geometric
scale varies between 1/50 and 1/500.

3.3 Measurements devices

Three materials were used: sand, gravel and PVC balls.
Several experiments were realized using different initial
volumes. For each experiment the following measurements
were done:

the evolution of the height versus time in three
locations along the flowing zone. Three sensors were
placed at 50-em, llO-cm and l30-cm from the gate.
These sensors allowed us measuring the height of the
flow. The frequency of these sensors is 100 Hertz. The
measurements are very accurate but the irregularities of
the materials induce an error of about 3.10-3 -m.
The evolution of the tangential and the normal forces
exerted by the flow on the flowing zone surface. By
doing this, we were able to confirm the behavior of the
flowing material and to determine the real (dynamic)
friction angle.
Once the flow stopped in the run-out zone, the device
consisting of two ultra-sonic sensors allowed us
measuring and mapping the deposit. This was done by
measuring in a grid of S-cm edge, the height of the
deposit.
The velocity of the granular material flow is obtained
by a camera and image processing system. Colored
particles were placed initially in the starting zone and
their movements are recorded and analyzed by the
image processing system.
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Characteristics of the experimental materials are reported in
the following table.
Table 1 .- -- -

Mean Density <p
diameter (m) (kg.m") (0)

Gravel 2.5 10-3 • 1500 35.5
Sand 1.8 10-4 1380 32.5
Balls of PVC 1.2 10-4 600 29
Where <p is the friction angle. All these materials were dry
and their granulometry curves were very narrow.

4. COMPARISON BETWEEN THE NUMERICAL
AND EXPERIMENT AL RESULTS

In this section, the objective was to compare the numerical
model with the experimental results. Through this
comparison, we analyzed the role of different factors
influencing the flow of such granular material. The main
factors influencing the flow are the initial volume, the slope
angle of the flowing zone and the friction angle between the
material and the ground.
This analysis allowed us quantifying the importance of
these factors and demonstrating the model ability to
reproduce the experimental results in the flowing zone and
the run-out zone.

4.1 Forces measurements:

Using the force and height measurements, we were able to
determine the friction angle and to show that the Mohr-
Coulomb model is valid for this kind of flow.
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Figure 1: Force measurements

4.2 Flow phase

The flowing zone corresponds to the zone located between
the gate and the brusque widening. In this zone we studied
the roles played by the initial volume, the slope angle and
the friction coefficient. For the three materials, we studied
three slope angles and three initial volumes.

4.2.1 Volume
In order to illustrate the initial volume importance, we
present here the results obtained using a slope angle of 45°
and the gravel material. We realize three experiments using
three different volumes VI, V2 and V3 corresponding to 20
kg, 30 kg and 40 kg. The numerical and experimental
results are displayed in figure 2. This figure shows that the
height increases with the initial volume. The front velocity



represented in this figure by the arriving time increases also
according to the initial volume.
Taking into account the measurements accuracy, we
concluded that the numerical results are close to the
experimental ones and that the numerical model can
reproduce well the experimental initial volume effect.
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Figure 2: initial volume Influence
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4.2.2 Friction angle effect
In order to illustrate the importance of the friction angle, we
numerically and experimentally studied two different
materials, the gravel and the PVC balls.
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Figure 3 : friction angle influence
Figure 3, in which the results obtained for a slope angle
equal to 60° are displayed, shows that a small variation of
the friction angle induce important change of the maximum
height of the flow. Comparing the numerical results with the
experimental results we conclude that the numerical model
can reproduce the experimental results well.

4.2.3 Slope angle effect
In order to illustrate the importance of the slope angle we
present two cases using the same material and two different
slope angles: 40° et 60°. Figure 4 shows the comparison
between the experimental and the numerical results in the
case of gravel material with an initial volume corresponding
to 30 kg. From this figure, we can conclude that the slope is
very important because the front velocity and maximum
height are very sensitive to it. We can also observe that the
numerical model results are very close to the experimental
ones.

4.3 Phase of deposit

In order to illustrate the numerical model ability to
reproduce geometry of the deposit we present the case of
gravel material with a slope angle of 45° and an initial
volume corresponding to 30 kg. For this case, the result is
presented in figures 5 and 6 under two profiles: profile

190

along the deposit and profile transverse to the deposit. The
profile along deposit is realized in the axis of the flowing
zone and the transverse deposit profile is realized
orthogonaly to this axis.
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Figure 4: slope angle effect
Through these two profiles, we can show that the model can
reproduce the deposit geometry very well.
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The numerical model reproduced all experimental
observations. It is very important to notice the importance
of the initial volume, the slope angle and the friction angle.
This remark shows that these parameters have to be
estimated very carefully when applying these kind of
models to real cases.

(

S, EFFICIENCY OF DISSIPATION STRUCTURE:

Engineers in charge of the protection against dense
avalanches, increasingly recommend the construction of
protection devices which function, at the end of the flowing
zone, is to dissipate the energy of the avalanche. The



objective here is to determine the reduction in terms of
dynamic pressure of this structure. That is why we used the
numerical model. The studied device is presented in figure
7.

Figure 7: device used in numerical experiments
We introduce as initial condition, an avalanche with the
height h, the friction angle of 300 and 11=0.01. The obstacle
is conic determined by its height (d) and its surface diameter
near the ground (21).
In AB section, we determine the pressure coefficient
reduction comparing the result obtained with the obstacle to
the one obtained without the obstacle. The pressure
reduction coefficient is defined as:

Max( f !phü 2ds - f !phü2ds)
AB d=O 2 AB d=l 20:=' ,

max( f !phü2ds)
AB,d=O 2

Using the same device, we determined the coefficient o: for
the following avalanche heights 1m, 2m, 3m and 4m.
In the case of h=I m, and with the obstacle presence, the
avalanche stopped before getting to the line AB. In this
case œ is taken to be equal to 1. For h=2m, h=3m and h=lm
the coefficient o: is calculated and presented in figure 10.
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Figure 8: Avalanche with h=2 m
We observe through these results that the structure is more
efficient if the dimension of avalanche is close to the
dimension of the structure. With the obstacle the avalanche
stopped before AB section. The reduction of the dynamic
pressure of the avalanche is 100%. If the avalanche height is
twice the structure height, the reduction of the dynamic
pressure is 30 %. If the height is three or four times the
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structure dimension, the reduction is smaller than 16% and

11% respectively. o: is approximated by: œ = 0.96[h / drlS8
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Figure 9: Avalanche with h=3 m
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Figure 10: Dynamic pressure coefficient reduction

6. CONCLUSIONS:

A numerical model based on Saint Venant equations was
built to study the flow of a dry avalanches. The behavior
law is a granular material one. In order to validate the
numerical modeling, a reduced scale model is built. Several
experiments allowed us to validate the model. Engineers in
charge of the protection against dense avalanches,
increasingly recommend the construction of protection
devices which function, at the end of the flow zone, is to
dissipate the energy of the avalanche. The last section of
this paper deals with an attempt of efficiency evaluation for
these structures using numerical modeling. The reducing
effect is optimal when the obstacle dimension is close to the
avalanche one.
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