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ABSTRACT: A simple extension of the von Mises plasticity is proposed in which the equivalent stress is
defined as a function of deviatoric and hydrostatic stresses. Non-linearity is accounted by extending Norton-
Hoff equation for incompressible material to snow, a porous material. For developing a multi-axial constitutive
equation a complementary viscoplastic potential, expressed as a function of the equivalent stress tensor, is
introduced. With this potential the strain-rate tensor is obtained. Coefficients of the constitutive equation were
computed with the help of experimental data. This constitutive equation is utilized to investigate the stress and
velocity distribution in a snow-pack with a weak layer on a uniform slope. This weak layer has a super weak
zone, responsible for initiating avalanches. Self-weight of snow is the only external force being considered. The
finite-element code, based upon a plane-strain idealization, is used. Linear constitutive equation is used to give
an initial guess as Newton-Raphson method has been employed for solving the system of non-linear equations.
For non-linear case convergence criterion is implemented for both unknown velocities and residual forces. The
effects of super-weak zone, thickness of weak layer and length of snow slab on shear stresses and deformation
rates have been studied.

INTRODUCTION

In the progression of analysis of steeply
sloping snow-packs, emphasis has been placed
upon the state of stress in attempts to understand
the mechanisms leading to avalanche release.
Hafeli (1963) hypothesizes a material
transformation based upon change of axes of
principal stress with depth leading to deep slab
failures. Perla (1971) develops a proof of the
existence of a weak basal plane as a prerequisite
for avalanche release, drawing upon the observed
characteristics of the crown-region fracture
geometry, and the associated stress distribution.
Smith and Curtis (1975 ) demonstrate the
applicability of numerical methods to slab analysis,
and model stress distribution and failure prediction
based upon material layering and local geometric
effects. A first attempt at deformation prediction
was made by Lang and Brown (1975) in which a
nominal visco-elastic material idealization is used
in conjunction with an assumed shear weakness in
the basal plane to predict stress and strain-rate
distribution theoretically. Lang and Sommerfeld

(1977) compared analytically predicted snow-pack
deformation with actual measured deformations
obtained by use of strain gauges mounted in
creeping snow-pack.

The basis for the present study is the work
done by Bader and Salm (1989), in which they
have presented numerical and analytical
investigations about stress and strain-rate
distribution in a snow-pack on a uniform slope
containing an initial crack of infinite length across
the slope. They have used a linear constitutive
equation for all the three layers. They concluded
that a snow slab cannot fracture until a critical
strain rate is reached or exceeded. Natural release
of snow slab avalanches seem impossible without
a-priori existing perturbations in the weak layer.
However, this is a necessary but not sufficient
condition for avalanche formation.

Chenot et al [1990] developed the
constitutive equation for isotropic compressible
plasticity. The generalization of the compressible
plasticity is to use the Norton-Hoff equation for
incompressible material and extend it to porous
material. They have given finite element models



for hot isostatic pressing and forging of powder
metals.

BACKGROUND

To study the effect of a weak layer in a
snow-pack on the stresses and deformation rates, a
simple three layer model proposed by Bader and
Salm (1989) has been considered. The significant
difference is that in the present case a nonlinear
equation has been developed and utilized. Angle of
slope has been increased to 50° as applicable to the
formation zone of an avalanche.

NONLINEAR CONSTITUTIVE EQUATION

It was assumed that creep movement of
snow follows viscoplastic behaviour, because snow
behaves as a compressible material. Though,
Bader and Salm (1989) solved the problem using a
linear viscoelastic constitutive law, in reality snow
is a nonlinear viscoplastic granular material and a
suitable law has to be used. Since metal powders
behave in viscoplastic nature, it is .felt that a
constitutive law used for them can be extended to
snow and attempts are being made in this direction.

MATERIAL BEHAVIOUR

A simple extension of the von Mises
plasticity ( Chenot et al ) has been considered in
which the equivalent stress is defmed by
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c and f are the functions of the relative density p,

of the material. The definitions of equivalent stress
and equivalent strain reduce to that for
incompressible plasticity for c(l) = 1 and fel) =0.
The equivalent strain rate is defmed by
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deviatoric strain rate tensor

VISCOPLASTICITY

The complementry viscoplastic potential
for three dimension ( Chenot et al ) is defmed by
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with this potential the stress tensor is
immediately obtained by

a<p l a<p(PrE) 2· l .
8a= - = -_ ----[-e+-(tr(E))']
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FINITE ELEMENT MODELING

Flow approach has been used since the
problem is concerned with large deformation and
the elastic deformation is almost negligible
(Kobayashi et al). Thickness of the weak layer has
been taken to be 0.002 m while top and bottom
layers are 1 m thick. In plane strain idealization, 40
m length of the slope has been considered. Strong
layers has been divided into 4 elements lengthwise
and 3 elements heightwise i.e. 12 elements for top
layer and 12 elements for bottom layer. A 2-D 4-
noded isoparametric quadrilateral element is used
for both top and bottom layers. The thin weak
layer is modeled using l-D shear spring elements
connecting the corresponding nodes on top and
bottom layers.

The domain n is discretized into fmite
elements in the usual way. The elements are
defmed by the vector coordinates X, of each node
n. The unknown velocity field v is discretized in
terms of the interpolation functions
v = ¿v'' N n where Vn is the velocity at node n,

n
with the components v], and v is the vector of all
the nodal coordinates, N, is the global interpolation
function which takes the value 1 at node n and O
for any other node. The strain rate tensor can be
evaluated

l", nôNn(X) nôNn(X)
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The B operator is defmed such that

• = ¿Bijnk v~
Eij nk
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Potential Energy of the system is given by
I .

II=-IcrTEdn-IyTfdn-fTnYds (4)
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Where n is the region occupied, dn is the
boundry of n on which tractions are prescribed.
Since, any external force other than gravity is not



being considered, the last term can be neglected in
further development. f is the body force, which can
be resolved into two components, one parallel to
the slope and other perpendicular to the slope.

VELOCITY INTERFACE CONDITIONS

The weak layer is modeled by l-D shear
spring elements. The reason for this is apparent.
For continuity, the components of the velocity V2!OP

and V2
bO! ( where V2!OP and V}O! represents 2nd

DOF of top and bottom node of l-D element) must
be equal. To achieve this interface condition, a
penalty formulation is used. The stiffness(C) of the
spring is taken very large in z-direction. It is
approximately equal to 106 times of the largest
diagonal element in the stiffness matrix.

The strain energy of the spring is equal to

U = ..!..C(vtop_vbot)2s 2 2 2
(5)

This strain energy contributes to the total potential
energy. As a result, the modified potential energy
of the system is

ITm =..!..J crT~dn- J vT fdn+..!..¿C(v~oP-v~ot)2
2 n o 2 e

(6)

SOLUTION PROCEDURE

The solution to the problem is obtained by
minimization of the potential energy function.
Since the constitutive law is nonlinear, equation for
potential energy is to be linearized

R (v) = a ITm = o (7)
naVn

Newton-Raphson iterative method was employed
for solving the system of nonlinear equations.
Starting from an initial velocity
V (Ol, at iteration r

v(r+l) = v(r)+M(r)
(8)

Substituting this in eq. (7)

R(v(r+l» = R(v(r)+ aR (v(r»ß ver)
av

(9)

A line search procedure is necessary to speed up
convergence.
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v(r+l) = ver) _e[H(r) J-l R(v(r» where e is selected
between O and I such that

R(v(r+l» $ R(v(r»

VELOCITY CONVERGENCE

Convergence will occur if the norm of the
residual velocities becomes less than TOLER times
the norm of the total velocities. The parameter
TOLER is chosen to be 0.01. The same
convergence criterion was applied to unknown
forces also. The norm of the residual velocities is
calculated as

IIßvl1= Jfß vr and the norm of total velocities

IIvii= Jf vr· Here, p is the total number of

unknowns. Similar formula is applied for
calculating the norm of residual forces and the
norm of the total forces. The force vector is
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Hessian is defined by
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First and second terms of Hessian are being
represented by suffix a and b
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Now considering the remaining terms in eq. (6),
the force vectors can be obtained as

a sín B
_(fvTfdn)= JNkP { }dn
aVk n g cos ê

a l 2
--Œ-C(v~oP-v~ot) = ¿C(v~op_v~ot)a¡toP_8bot)

aVk e 2
(15)

where k is even.

RESULTS

The values of c, f and n has been
computed with the help of 21 unconfined
compression creep tests and 10 confmed creep tests
performed in a cold room. Temperature was kept at
-10°e. Samples of snow were prepared and
subjected to stresses in the range of 0.015 MFa to
0.06 MFa. Strain rate in the secondary creep region
has been recorded at various time intervals. Due to
the inherent property of snow constant strain-rate is
not witnessed. Finding secondary strain-rate by
averaging doesn't seem to be a errorfree method
however, error may not be very high as the
variation in strain-rate was low except on two
occasions. Values of c, f and n were determined by
least square method. The equation used were taken
from Mishra et al (1996). Values of c, f and n were
1.35,0.57 and 1.37 respectively.

185

Fig 1.Shear stress as a function
of thickness of weak layer
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Fig 2. Deformation velocity
as a function of length of

weak layer
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Fig 3. Deformation velocity
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Fig 4. Shear stress as a
function of crack length
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The effect of the thickness of weak layer,
length of the crack and span length of weak thin
layer on shear stresses and deformation velocities
were studied. Deformation velocity peak increases
with increase of thickness of weak layer (Fig. 3)
while the shear stress peak decreases with increase
in thickness of weak layer (Fig 1). It can be
observed that there is small increase in the peak
deformation velocities and shear stress peak with
increase in crack length (Fig. 4). There is no
considerable difference in the location of
deformation velocity and shear stress peak. When
the length of the thin weak layer increases the peak
deformation velocity and peak shear stress values
shift towards right (Fig. 2).



CONCLUSION

It has been observed that shear stress is
almost independent of thickness of weak layer.
However, the thickness of weak layer plays an
important role in crack propagation. The strain-
rates corresponding to the thickness of weak layer
more than 0.005 m is always less than the critical
strain-rate for crack propagation. It is unlikely that
crack will ever propagate if thickness is more than
0.005m. To know the critical crack length to start
propagation, thickness of the weak layer was kept
constant at 2 mm. The critical strain rates for
ductile and brittle fractures are 10-4 S-I and 10-3 S-I
respectively ( Narita ). The critical crack length to
start propagation is found to be aer = 6.32 m. The
study shows larger crack length and smaller
thickness lead to higher strain-rates which in turn
means shorter time to fracture.
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