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S U M M A R Y 

Extensive aftershock sequences present a significant problem to seismological data centres at- 
tempting to produce near real-time comprehensive seismic event bulletins. An elevated number 
of events to process and poorer performance of automatic phase association algorithms can 

lead to large delays in processing and a greatly increased human workload. Global monitoring 

is often performed using seismic array stations at considerable distances from the events in- 
volved. Empirical matched field processing (EMFP) is a narrow-frequency band array signal 
processing technique that recognizes the inter-sensor phase and amplitude relations associated 

with wavefronts approaching a sensor array from a given direction. We demonstrate that EMFP, 
using a template obtained from the first P arri v al from the main shock alone, can ef ficientl y 

detect and identify P arri v als on that array from subsequent events in the aftershock zone 
with exceptionally few false alarms (signals from other sources). The empirical wavefield 

template encodes all the narrow-band phase and amplitude relations observed for the main 

shock signal. These relations are also often robust and repeatable characteristics of signals 
from nearby events. The EMFP detection statistic compares the phase and amplitude relations 
at a given time in the incoming data stream with those for the template and is sensitive to very 

short-duration signals with the required characteristics. Significant deviations from the plane 
wavefront model that typically degrade the performance of standard beamforming techniques 
can enhance signal characterization using EMFP. Waveform correlation techniques typically 

perform poorly for aftershocks from large earthquakes due to the distances between hypocen- 
tres and the wide range of event magnitudes and source mechanisms. EMFP on remote seismic 
arrays mitigates these difficulties; the narrow-band nature of the procedure makes arri v al iden- 
tification less sensitive to the signals’ temporal form and spectral content. The empirical 
steering v ectors deriv ed for the main shock P arri v al can reduce the frequenc y dependenc y 

of the slowness vector estimates. This property helps us to automatically screen out arri v als 
from outside of the aftershock zone. Standard array processing pipelines could be enhanced by 

including both plane-wave and empirical matched field steering vectors. This would maintain 

present capability for the plane-wave steering vectors and provide increased sensitivity and 

resolution for those sources for which we have empirical calibrations. 

Key words: Time-series analysis; Body waves; Earthquake monitoring and test-ban treaty 

verification. 
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 I N T RO D U C T I O N  

he task of compiling near real-time global seismic event bulletins
ecomes significantly more difficult during e xtensiv e aftershock
equences following large earthquakes. The difficulties extend be-
ond the vast increase in the number of seismic events occurring
n a short time duration. The increased number of seismic signals,
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License ( h
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ften combined with the absence or poor quality of detections on
e y stations, can de g rade the perfor mance of phase association (PA)
lgorithms and the quality of automatic event bulletins. As a result,
he workload associated with the subsequent preparation of ana-
 yst re vie wed bulletins is strongl y increased. On regional and local
cales, correlation and subspace detectors may be able to catego-
ize entire sequences with a remarkable completeness (e.g. Harris &
oyal Astronomical Society. This is an Open Access 
ttps://cr eativecommons.or g/licenses/by/4.0/ ), which 
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Dodge 2011 ; Benz et al. 2015 ). Globally, Gibbons et al. ( 2016 ) sug- 
gest that iterativ e strate gies may be needed in which the world-wide 
PA procedure is performed repeatedly with the input modified on 
each iteration as the picture of seismicity becomes more complete. 
Specifically, it is suggested that events in the aftershock region can 
be detected and located in the first iteration using a separate pro- 
cess, and that the phase detections associated with these events are 
removed from the input to the PA algorithm. 

This targeted aftershock classification could probably be per- 
formed ef ficientl y using pattern detectors or grid-search methods 
over dense local and regional seismic networks (e.g. Tang et al. 
2014 ), but may be challenging given only a sparse global network. 
Considering specifically the seismic network of the International 
Monitoring System (IMS), for monitoring compliance with the 
Comprehensive Nuclear-Test-Ban Treaty (CTBT), we note that the 
network is dominated by array stations. Arrays provide enhanced 
information about individual signal detections and wav efronts, e x- 
ploiting measurements of phase- or time-shifts between signals 
recorded on closely spaced sensors. We here seek to explore the 
limits of how seismicity in a given source region can be character- 
ized by distant arrays using advanced signal processing. 

Fig. 1 displays a dayplot of the data from a short-period vertical 
motion seismometer at one site of the Karatau array (KKAR) in 
southern Kazakhstan at several hundred kilometres distance from 

the Kashmir earthquake on 2005 October 8. This array is part of 
the observational network operated by the Institute of Geophysical 
Research of the National Nuclear Center of the Republic of Kaza- 
khstan. Each signal arri v al that is confidently identified as a first 
Pn onset from the aftershock region, based upon array analysis, is 
marked with a red filled circle. At this distance of about 900 km, 
around 100 s separate the Pn and Sn arri v als. The duration of the 
KKAR wave train from a single Kashmir earthquake can exceed 3 
min from first Pn arri v al to the end of the S -wave coda, and there 
are many occasions during this day when Pn arrivals from multiple 
events will be recorded within such a time span. Note that the Lg 
phase that often dominates regional signals along continental prop- 
agation paths is not observed at this station from this source region 
(see e.g. Sanborn & Cormier 2018 , and references therein). Many 
of the apparent gaps in Pn detections (red symbols) in Fig. 1 corre- 
spond to the wave trains from the larger earthquakes, and it is very 
likely that the signals from smaller earthquakes in these intervals 
are simply masked by the coda. 

Fig. 2 displa ys wa v eform se gments and the corresponding signal 
and noise spectra for three earthquakes in the Kashmir sequence. 
The first event is the magnitude 7.6 main shock, for which the signal 
is emergent but obtains high amplitudes. The signal and noise spec- 
tra (Fig. 2 c) show that the energy following the signal arri v al greatl y 
exceeds the energy in the background noise over the full frequency 
range of this short-period seismometer. The second event displayed 
is a magnitude 5.4 aftershock. The regional signals are recorded 
with a high signal-to-noise ratio (SNR), even in the raw data, and 
the earthquake is well-recorded teleseismically. The maximum SNR 

is at around 2 Hz (Fig. 2 d). The third event is a magnitude 4 after- 
shock that is not visible in the raw data and is only recorded with 
a satisfactory SNR above 3–4 Hz (Fig. 2 e). The duration of this 
third signal is far shorter than for the larger earthquakes, with only 
a direct arri v al visible. Slinkard et al. ( 2013 ) demonstrated that this 
particular aftershock sequence had very few pairs of events with 
similar waveforms, such that waveform correlation would make a 
poor classifier identifying aftershocks belonging to the sequence. 
The waveform dissimilarity quantified by Slinkard et al. ( 2013 ) is 
clear in Fig. 2 . 
The noise spectra (the shaded regions) in Fig. 2 highlight an- 
other of the challenges in seismic monitoring of aftershocks. The 
first Pn arri v al from the main shock rises from quiet, ambient, 
background noise, but the aftershock Pn arri v als emerge from a 
much higher noise level comprising coda wave energy from pre- 
vious earthquakes in the sequence. If we were to plot the signal 
spectrum for aftershock 2 (Fig. 2 e) with the noise spectrum for the 
main shock (Fig. 2 c), it is clear that this magnitude 4 earthquake 
would be detected with a high SNR over a broad frequency range 
under nor mal backg round noise conditions. The wave trains of pre- 
ceding aftershocks reduce both the SNR and the frequency band in 
which SNR is sufficient for confident detection. The frequencies at 
which signal coherence between sensors is strongest, and at which 
classical array processing performs best (typically between 1 and 
4 Hz on an array with the dimensions of the KKAR station), are 
also the frequencies where the coda noise is strongest. A key to con- 
fident identification of signal arri v als in increased noise may be a 
method that extends coherent array processing to higher frequencies 
at which the level of coda noise is lower (see also, e.g. Kværna et al. 
2021 ). 

Harris & Kværna ( 2010 ) describe the application of empirical 
matched field processing (EMFP) on a small aperture seismic array 
for classification of seismic arri v als generated b y closel y spaced 
mining explosions. EMFP recognizes characteristics in the seismic 
w avefronts arri ving at closel y spaced sensors from a giv en re gion. 
The EMFP fingerprint corresponding to a seismic arri v al in the ar- 
ray traces is closely related to the (frequency-dependent) moveout 
in time of the signals across the array. These characteristics are de- 
termined both by the source location and by properties of the path, 
all the way from source to receiver. The deviation of the observed 
wavefront from the predicted far-field plane wavefront increases 
with increasing frequency. This is because the form of higher fre- 
quency signals is affected more by scattering and diffraction on 
heterogeneities of smaller length scales. Such deformations of the 
ideal wav efront de g rade the perfor mance of classical beamfor ming 
but are indeed exploited by EMFP to obtain the best characterization 
of a wavefront from a given source region. It has been demonstrated 
(e.g. Wang et al. 2015 ) that EMFP as a pattern detector can re- 
duce detection thresholds for low-magnitude seismicity recorded 
on a local network. The application in Harris & Kværna ( 2010 ) was 
assigning a source to ripple-fired mining explosions, the different 
source-time functions in the signals typically precluding the effec- 
tive use of waveform correlation. The narrow-band nature of EMFP 

mitigated this problem since the phase and amplitude relations be- 
tween sensors in the array in each frequency band are relati vel y 
insensitive to the temporal nature of the signal. K öhler et al. ( 2022 ) 
exploited the same properties of the narrow-band formulation to 
detect the occurrence of signals from glacial calving events in ar- 
ray data. Even if the events originated from the same glacier, the 
signals differed significantly because of differences in the source- 
time function. Thus, waveform correlation methods were found to 
be unsuitable for detection of these calving events. In this paper, 
we demonstrate how properties of the narrow-band EMFP formula- 
tion can provide enhanced characterization of aftershock sequences 
using EMFP templates from P arri v als from the main shocks only. 
This monitoring situation has very different challenges to the glacial 
calving study: the geographical extent of the source region, the short 
duration of the arri v als and the vast range of amplitudes and spectral 
shapes that need to be covered. 

Signal pattern detectors (correlation and subspace detectors) rec- 
o gnize familiar w aveform shapes and usuall y perform best when 
using the full wave train and a high time-bandwidth product (TBP). 
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Figure 1. A dayplot of waveform data, bandpass filtered 2–8 Hz, from the KK01 SHZ element of the KKAR array on 2005 October 8. The red symbols indicate 
detections for which array analysis ( f − k analysis) returned an apparent velocity in the interval 7–10 km s −1 and a backazimuth between 150 ◦ and 175 ◦, 
corresponding to Pn phases from the aftershock region of the magnitude 7.6 Kashmir earthquake. The f − k analyses were performed in the fixed frequency 
band 2–4 Hz, in a 3.5 s time window starting at the signal onset determined by the autore gressiv e AR-AIC method. Note the lack of signal detections (red 
symbols) within the wave trains of the larger earthquakes. Smaller earthquakes in these time intervals are masked by the phase arrivals and associated coda of 
the larger events. KKAR consists of nine vertical component sensors deployed in two concentric circles with approximate radii of 500 and 2000 m, respecti vel y. 
The geometry of the KKAR array is shown in Fig. 3 . 
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etectors searching for transient signals of unknown form, with-
ut a priori knowledge of the fine signal structure, usually identify
hanges in the waveform properties (e.g. amplitude and frequency
ontent) over time windows of the order of only a few seconds. We
pply a form of EMFP here as a bridge between these two categories
f detectors, to identify rapid changes in the incoming wavefield that
ave fine-structure consistent with pre viousl y observed signals. In
ection 2 , we examine the structure of wavefronts arriving on an
rray station from an intensive aftershock sequence and explore
ow properties of these wavefronts can be exploited in a matched
eld detection framework. In Section 3 , we sketch a framework for
obust detection of arri v als from aftershocks using only the spatial
ngerprint of the first arri v al from the main shock and, in Section 4 ,
e discuss considerations in applying the methods to networks of
rrays and more general processing pipelines. 

 E X P L O I TAT I O N  O F  WAV E F RO N T  

RO P E RT I E S  F O R  I M P ROV E D  

E T E C T I O N  A N D  E S T I M AT I O N  

o make the most complete and accurate inventory of aftershocks
ossible following a large earthquake, we want a process that detects
nd identifies every arrival from the aftershock region on a network
f seismic stations. This network will probably be a significant sub-
et of our global monitoring network: those stations with the best
etection capability for the source region in question. We want to
etect as many aftershock arrivals as possible within the elevated
oise levels following the main shock and, at the same time, make
ure that we eliminate all signals that do not come from this source
egion from this event-specific process. The process should be op-
imal for the kind of seismic stations that dominate our monitoring
etwork; for the IMS, this means seismic arrays with apertures of a
ew kilometres. Since the process is to act following a first arri v al
rom the main shock, it would be beneficial if we could exploit
pecifically the form of the main shock signal to enhance the detec-
ion capability for aftershocks. In this section, we outline the basis
or selecting EMFP as an ideal method for this purpose. 

Fig. 3 shows the locations of the 2005 Kashmir earthquake and
ts aftershocks (Gibbons & Kværna 2017 ). Over 100 km separates
he most distant aftershocks in the cluster, although even these dis-
ances are relati vel y small in comparison with the approximately
00 km to the KKAR (Karatau) array in Kazakhstan. The array is
pproximately 4 km in diameter and the great circle backazimuth
rom receiver to source varies from between 157 ◦ and 167 ◦ for
he events displayed. The distances between events, compounded
y the tectonic complexity of the source region and wide range of

art/ggad297_f1.eps
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(a) (b)

(c) (d) (e)

Figure 2. Signals on the KKAR array from three events in the Kashmir earthquake sequence recorded on 2005 October 8. Waveforms from the channel KK01 
SHZ are displayed centred on three Pn arri v als in panels (a) (unfiltered) and (b) (bandpass filtered, 4–8 Hz). The times of the arri v als are specified in the 
spectrum estimates in panels (c), (d) and (e) for which a multitaper estimate (Thomson 1982 ) of the ADS is calculated for 10-s windows for the signal arri v al 
(black line) and the preceding noise (grey-shaded). 
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focal mechanisms (e.g. Butler 2019 ), together with the high fre- 
quencies at which the signals are observed, result in waveforms that 
are insuf ficientl y similar ov er the source re gion for good perfor- 
mance by correlation detectors (Slinkard et al. 2013 ). The accuracy 
with which the array can measure the direction of arri v al (DOA) or 
backazimuth using standard procedures is not sufficient to differ- 
entiate between different parts of this source region. The resolution 
is not only limited by the Rayleigh criterion but also by frequency- 
dependent biases in the backazimuth and slowness estimates with 
respect to their theoretical v alues gi ven b y standard velocity models 
(e.g. Kværna & Doornbos 1991 ). The reduced Pn signal coherence 
between signals on the KKAR sensors at higher frequencies (see 
Ringdal et al. 2009 ) also imposes constraints on the frequency range 
usable for coherent array processing. Given the signal and noise 
spectra (Fig. 2 ), we are restricted to frequencies between around 
1 and 5 Hz. The 2–4 Hz band provides the best capability given 
lo w SNR belo w 2 Hz for the smaller events and diminished signal 
coherence above 4 Hz. Harris & Kværna ( 2010 ) demonstrate how 

the frequency range amenable to coherent processing is increased 
using empirical signal processing in narrow-frequency bands, since 
the need to satisfy uniform time delays and perfect coherence for 
all frequencies, at all sensors, is removed. 

Fig. 4 displays narrow-band slowness beam power grids for the 
Pn wavefronts crossing the KKAR array for the three earthquake 
signals displayed in Fig. 2 . For a given short data window starting at 
time t , and frequency ω, the panels in Fig. 4 display relative power 
as a function of slowness, s , 

ˆ P ( t, ω, s ) = 

ε ( ω, s ) H R ( t, ω) ε ( ω, s ) 

tr { R ( t, ω) } (1) 

where H denotes the Hermitian transpose and the plane-wave steer- 
ing vectors ε ( ω, s ) are given by 

ε ( ω, s ) = 

[
e −iω s . x 1 . . . e −iω s . x N 

]T 
(2) 

with x i denoting the N sensor locations. The narrow band N by 
N spatial covariance matrices, R ( t, ω) , (see Johnson & Dudgeon 
1993 ) are calculated using the multitaper coherence routines of Pri- 
eto et al. ( 2009 ) on short windows, typically 3 or 4 s long, starting at 

art/ggad297_f2.eps
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Figure 3. Relocated aftershocks (red filled circles) of the 2005 October 8, Kashmir earthquake in relation to the KKAR array (geometry shown in the inset). 
The distance from the aftershock region to KKAR is about 900 km. 
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ime t (see Gibbons et al. 2017 , for details). The multitaper routines
rovide very stable estimates of the phase differences between sig-
als over short time windows, mitigating the spectral leakage issues
hat can make narrow-band f − k estimates less stable than broad-
and estimates when standard fast Fourier transform approaches are
pplied. 

For each Pn arri v al in Fig. 4 , the optimal slowness vector at 2 Hz
left) is significantly different from the optimal slowness vector at
 Hz (right). For each event, the apparent velocity ( v app ) for the
 Hz estimate is slower than 8 km s −1 , whereas v app for the 4 Hz
stimate is faster than 10 km s −1 . This is a qualitative difference
ince the slower apparent velocity would usually identify the ar-
i v al as a Pn - or Pg -phase from regional distances whereas the
aster apparent velocity is indicative of a teleseismic or far-regional
 arri v al. Broad-band estimates of the slowness vector are made
y summing the narrow-band frequenc y–wav enumber spectra (the
rids as displayed in Fig. 4 ). There are many different ways in which
his summation over frequencies can be performed. One alternative,
he simplest, is to stack all of the narrow-band grids with each grid
eighted equall y. Alternati vel y, dif ferent weights could be applied
o the different g rids, either deter mined beforehand or calculated in
ome way based on properties of the data. In this study, we consider
nl y uniforml y weighted grid summations. Broad-band estimates
esult in a scatter consistent with the narrow-band patterns in Fig. 4 ,
ith the precise backazimuth and v app measured depending upon

he quality of the estimates at each frequency. Different results may
e anticipated if different weightings were to be applied to the grids.

There is a striking similarity between the narrow-band slowness
rids of the Fig. 4 e vents, especiall y gi ven the dif ferent w aveform
nd spectral characteristics (Fig. 2 ). The lowest SNR signal shows
 weaker relative power than the higher SNR signal, although the
ainlobe and sidelobe structures are similar between events. The

emporal waveforms vary greatly between the Fig. 2 events, lim-
ting the viability of correlation detectors. The narrow-band grid
imilarity between events suggests a fingerprint that can be used to
dentify subsequent arri v als. The 2 and 4 Hz slowness grids indi-
ate very different patterns, suggesting that the narrow-band phase
elations contain a richer wavefront description than a plane-wave

art/ggad297_f3.eps
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Figure 4. Narrow-band f − k analysis at 2 Hz (left) and 4 Hz (right) for the Pn phase arri v als displayed in Fig. 2 . The colour scale shows relative beam 

power on the slowness grid with the maximum (the backazimuth and apparent velocity estimate) indicated by the filled white circular symbol. The slowness 
vector corresponding to the maximum relative power is referred to in the text as the optimal slowness vector. The red circle indicates a constant apparent 
velocity of 8.1 km s −1 and the red line labelled 163.5 ◦ points in the geographical direction of the 2005 October 8, Kashmir main shock. Note the differences 
in backazimuth and apparent velocities when estimated at 2 and 4 Hz, respecti vel y, as well as the similarity between the events at a particular frequency. The 
frequencies between 2 and 4 Hz (not shown) indicate a progression from one pattern to the other, with the peak narrowing and the relative strength of the 
sidelobes increasing with increasing frequenc y. Abov e 4 Hz, the ability to discern a clear direction of the incoming wavefield diminishes as the combined 
effects of aliasing and signal incoherence make the main lobe indistinguishable from the multiple sidelobes. 
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parametrization. How reliable is this signature in identifying after- 
shock sequence arri v als? Is it so specific to a single source location 
that it will fail to recognize aftershocks further from the main shock, 
or is it so general that it will trigger on an y w avefront arri ving from 

the same general direction? 
Assuming that the array traces corresponding to a seismic arri v al 
gives the following spatial covariance matrix estimate at time t 0 : 

R 0 ( ω) = R ( t 0 , ω) , (3) 

the principal eigenvector of R 0 ( ω) becomes a complex vector of 

art/ggad297_f4.eps
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ength N . In our case this reference time, t 0 , is the onset of the first
 wave from the main shock, and we wish to compare the form of

he arriving wavefront at a given time t with the form of the arriving
avefront at the reference time, t 0 . Fig. 5 visualizes the narrow-band

patial covariance matrices generated from short segments of wave-
orm data on all array sensors. In panel (a), the wavefront satisfies
erfectly the plane wavefront model; that is to say that the synthetic
avelets are identical (perfect coherence) and that the time delays

atisfy exactly the relations determined by the sensor locations and
he slowness vector of the incoming wavefront. In panel (b), the data
re real; the signals are not identical and the apparent time delays are
 function of frequency and do not fit a plane-wave model exactly.
he coloured symbols in the covariance matrix representations in
anel (a) all have identical size for all frequencies, a consequence
f the perfect coherence. The symbol sizes in the covariance matrix
epresentations in panel (b) diminish in size as the frequency in-
reases, a consequence of the reduced waveform similarity. At the
owest frequencies, the observed phase shifts closely resemble the
heoretical phase shifts, although there are notable differences. At
igher frequencies, the differences in phase shift for given channel
ombinations increase. Also displayed in Fig. 5 are the principal
igenvectors of the covariance matrices. The principal eigenvectors
n panel (a) are the theoretical steering vectors, ε ( ω, s ) , defined
y the plane-wave model delay times. The principal eigenvectors
n panel (b) are the empirical steering vectors, ε 0 ( ω) = ε 0 ( t 0 , ω) .
oth the covariance matrices and principal eigenvectors displayed

n Fig. 5 synthesize array data properties that represent the imping-
ng waves. These matrices and vectors describe the inter-sensor
rray data similarity structure and have different, and potentially
ore repeatable, characteristics of the wavefront structure than the

emporal evolution of the waveform recordings themselves. 
Just as ˆ P ( t, ω, s ) in eq. ( 1 ) provides a measure of the energy

ncident on the array consistent with the plane wavefront hypothesis,
s , 

ˆ P 0 ( t, ω ) = 

ε 0 ( ω ) H R ( t, ω ) ε 0 ( ω ) 

tr { R ( t, ω ) } (4) 

rovides a measure of the energy incident on the array consis-
ent with the so-called empirical steering vector, ε 0 ( ω) . Harris &
værna ( 2010 ) demonstrate how the empirical steering vectors de-

i ved from e vents at a template location capture more of the energy
rom subsequent co-located events than the optimal plane-wave
terring vectors. This is to say that deviations from the plane-wave
odels ( s ), observed in the real-world wavefronts, are captured by

he empirical steering vectors. 
We can form a measure 

ˆ P 0 ( t, ω, s ′ ) = 

[ ε ( ω, s ′ ) ◦ ε 0 ( ω) ] H R ( t, ω) [ ε ( ω, s ′ ) ◦ ε 0 ( ω) ] 

tr { R ( t, ω) } (5) 

here we consider a plane wav efront v ector perturbation, s ′ , im-
osed upon the empirical phase shifts, ε 0 ( ω). [ a ◦ b ] denotes the
adamard (element-wise) product between the comple x v ectors a 

nd b with 

 a ◦ b ] j = a j b j . (6) 

Fig. 6 displays the narrow-band beam power slowness grids
eq. 5 ) e v aluated for the Pn arri v als for aftershocks 1 and 2 for
he perturbation vector 

s ′ = ( s ′ x , s 
′ 
y ) (7) 

hen the empirical steering vector for the main shock Pn arri v al is
mposed. In Fig. 4 , with no imposed empirical steering vector we
aw a qualitative difference between the directions from which the
avefield appears to approach the array at 2 and 4 Hz. In Fig. 6 , the
aximum beam power is approximately centred for both aftershock

rri v als at both frequencies. We can exploit this result to screen out
alse alarms, identifying any detected signals that are not P -wave
rri v als from within the aftershock zone. If we perform f –k analysis
n a detected signal with the empirical steering vector from the
ain shock imposed, and a clear non-zero slowness vector is mea-

ured, the signal can be assumed to be unrelated to our aftershock
equence. 

Having confirmed the stability of the steering vectors of a typical
n arri v al from the aftershock sequence, from one event to another,
e need to devise a detection framework that reports most reliably
hen, and only when, a wavefront from this same source region

s detected. The estimates of the covariance matrices are measured
n short time windows (compared with, say, the full duration of the
ave train) and we seek a process which interrogates the waveforms

ontinuously to find a characteristic set of phase shifts in the incom-
ng data stream. If x i and x j denote the position vectors of stations
 and j in our seismic array then the set of locations x i j given by 

x i j = x j − x i (8) 

efine the so-called co-array (see also, e.g. Johnson & Dudgeon
993 , Ch. 3 for an explanation of the co-array concept in array
ignal processing). The elements R ij of the covariance matrices R 

isplay ed in F ig. 5 can also be drawn as a function of the location
x i j of the corresponding element in the co-array. Fig. 7 displays the
hase differences and coherence measures as a function of posi-
ion in the co-array. The theoretical ‘bubble plot’ for 2 Hz (top left)
hows bands in the phase differences tilted in the DOA with the band
pacing dictated by the sensor geometry, the apparent velocity, and
he wavelength. The corresponding theoretical phase shift bands at
 Hz (lower left) have the same angle but are narrower due to the
horter wavelength. The remaining panels in Fig. 7 are measured
rom the data at the time of the Pn arri v als for the three events
isplay ed in F ig. 4 . Although the properties of the wavefronts are
ore easily interpreted in the narrow-band slowness plots in Fig. 4 ,
e can make predictions about the wavefront behaviour from ob-

erving these phase and coherence relations. For the 2 Hz bubble
lots, the measured banded patterns are very close to the theoretical
atterns but with a perceptible change in the angle (also visible as
n azimuth deviation in the left-hand panels of Fig. 4 ). For the 4 Hz
ubble plots, the measured bands are wider than for the theoretical
atterns (also visible as an increase in the apparent velocity in the
eft-hand panels of Fig. 4 ). The size of the symbols in the theoret-
cal bubble plots are identical (perfect signal coherence assumed).
he size of symbols for the empirical bubble plots are diminished
s the signal coherence decreases. For aftershock 1, the diminish-
ng coherence is most notable at 4 Hz as a result of the increased
avefield scattering at the smaller length scale. For aftershock 2,

he diminishing coherence is even more acute at 2 Hz: a result of
educed SNR. 

The differences between the phase and coherence patterns be-
ween the theoretical expectations and the measurements allow us
o e v aluate the deformation of the w avefront on the v arious sen-
ors as a function of frequency. In each panel of Fig. 7 is a square
ontaining two very closely spaced elements of the co-array; ’that
s, two pairs of sensors with very similar relative positions. For
he theoretical patterns (left) the two symbols in the square have
ery similar colours, reflecting the very similar time delays that
hould take place between the sensors in each of the pairs. For the
mpirically measured phase shifts, the colours of the two symbols
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(a) (b)

Figure 5. Covariance matrices and empirical steering vectors from KKAR array data for (a) a simulated perfect plane wavefront and (b) the first P -wave 
arri v al for the Kashmir main shock. The differences between the theoretical and real-world covariance matrices increase with increasing frequency. The colours 
represent the phase shifts at each frequency band. Details in the text. 
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in the square are very different, meaning that the wavefront has 
used different time intervals to cover the same horizontal distance 
in different parts of the arra y. A wa y to visualize a matched field 
detector is a pattern detector which compares the set of phase shifts 
(coloured symbols in Fig. 7 ) with either a theoretical set of phase 
shifts or a measured set of phase shifts. It is the latter of these cases 

that is referred to as EMFP. 
3  A NAT O M Y  O F  A  M AT C H E D  F I E L D  

D E T E C T O R  

Our results from single Pn phase observations demonstrate that the 
empirical matched field representation is consistent for first arri v als 
from dif ferent e vents in the aftershock region with very different 
characteristics (e.g. spectral content and SNR). We wish to use the 
similarity between the narrow-band phase shift pattern in our tem- 

art/ggad297_f5.eps
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Figure 6. Narrow-band f − k analysis at 2 Hz (left) and 4 Hz (right) for the Pn phase arri v als for the two aftershocks (see Fig. 2 ) relative to the imposed 
empirical steering vector calculated for the main shock Pn arri v al (cf. eq. 5 ). The arri v al times for the two aftershocks, both occurring on 2005 October 8, are 
given in the figure. The panels visualize the sensitivity of the EMFP beam power to a changing source location. High power at zero slowness means that a small 
variation in source location in the aftershock region does not have a significant impact on the EMFP results. We can say that the array is not able to resolve a 
difference between the directions of arri v al for the three events. Whereas estimating the slowness vector using classical plane-wave f − k analysis will give a 
different result depending upon the frequency band (Fig. 4 ), the zero-slowness vector relative estimates displayed here appear stable over different frequency 
bands. 
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late and the narrow-band phase shifts measured at an y gi ven time
n the incoming data as a means of detecting the presence of an
ftershock arri v al. The question is whether a detection statistic that
easures this similarity can be a suf ficientl y reliable indicator of

he presence of a signal of interest. In other words, is the EMFP
etection statistic e v aluated at the times of aftershock arri v als suf-
ciently greater than the background level, and is the variability
f the background level of the detection statistic low enough to
e able to set a practical detection threshold? In this section, we
xplore how to develop a robust detection framework based on
MFP. 
In Fig. 8, we sketch the foundations of a detection procedure using

atched field statistics calculated in very short, overlapping, time
indows. For a given time window, we calculate elements R ij of the

ovariance matrix for traces i , j ∈ { 1,. . . , N } and distinct frequen-
ies ω k : k ∈ { 1,. . . , K } : for example, using the multitaper coherence
outines of Prieto et al. ( 2009 ). For our given time, t , we can then
alculate K scalar values of the quadratic form 

ˆ P 0 ( t, ω) (eq. 4 ) using
ur chosen steering vector. Each one of these K values tells us how
imilar the phase shifts at this time and this frequency are to the cor-
esponding phase shifts defined in our empirical steering vector. In
he same way that a spectrogram holds power density estimates as a
unction of time and frequency, we here have a wavefield-similarity
etric that is a function of time and frequency. We will here refer

o this as a pseudo-spectrogram so as to remind the reader of the
orm of its time and frequency dependence, while simultaneously
mphasizing that it is not a conventional spectrogram. We build
ur pseudo-spectrogram by repeating this process for each of many
verlapping windows. Detecting short-period seismic signals (e.g.
etween 1 and 5 Hz), on arrays with apertures of several kilome-
res typically requires time windows of between 3 and 5 s. This
ime duration is long enough to estimate the phase and amplitude
elations between the signals on the different sensors, but still short
nough that stationarity over the data interval is maintained. The
ampling density in time of the pseudo-spectrogram should be suf-
cient to record changes in the coherence relati vel y smoothl y such

art/ggad297_f6.eps
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Figure 7. Bubble plots for the KKAR array at 2 and 4 Hz for a theoretical plane-wave arrival from the location of the Kashmir main shock and for the 
empirically measured phase shifts for the three events on ’2005 October 8, as indicated (see waveforms in Fig. 2 ). The dashed lines represent wavefronts, 
separated with a half w avelength, arri ving at the array with an apparent velocity of 8.1 km s −1 and a backazimuth of 163.5 ◦. The reference times for ‘main 
shock’, ‘aftershock 1’ and ‘aftershock 2’ are given above the upper panels. The small black box in the different panels highlights two points in the co-array 
with almost identical locations. The phase differences are indicated in colour and the circle diameters are proportional to coherence. 
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that no significant discontinuities are recorded between time sam- 
ples. Based on observations of the rate of change of the coherence 
with a given slowness, 0.5 s is found to be a good sampling inter- 
val. More rapid sampling than this increases the computational cost 
without providing new information. 

The uppermost panel in Fig. 9 displays a real-data expression of 
the pseudo-spectrogram sketched in Fig. 8 . Each pixel displays the 
value of ˆ P 0 ( t, ω) (as defined in eq. 4 ) where t and ω denote the time 
and frequenc y respectiv ely. The 0 subscript indicates the application 
of the empirical steering vector ε 0 ( ω) = ε 0 ( t 0 , ω) extracted as the 
principal eigenvector of the covariance matrix of the Pn -onset at 
time t 0 for the signal from the main shock. A 20-min-long data 
segment is displayed, containing three moderate sized aftershocks 
in addition to many smaller events. Aftershocks 1 and 2 displayed in 
the previous figures are the arrivals labelled ‘A1’ and ‘A2’ in Fig. 9 , 
both clearly visible as vertical red bars. The pixels shown at the 
times of the Sn arri v als are largel y blue, indicating that the slowness 
vector for the Sn arri v al is suf ficientl y dif ferent from the Pn arri v al
slowness vector to prevent a significant match. This is significant 
since a classical beam steered with the time delays applicable to 
the Pn arri v al will have a significant burst of energy at the time of 
Sn ; the 

√ 

N noise reduction will not completely suppress this. The 
absence of red pixels at the time of this Sn arri v al time suggests that 
Sn -triggers will generally not occur using a detection statistic based 
upon this ˆ P 0 ( t, ω) measurement. 

There are many examples of seismic signal detectors that exploit 
both time and frequency signatures. Joswig ( 1990 ) demonstrates 
signal identification through pattern matching in the time–frequency 
space. Taylor et al. ( 2010 ) sought short-duration transients on spec- 
trograms that appeared as vertical lines and applied image process- 
ing filters optimized for such shapes. A slightly different approach 
is required when detecting signal onsets in spectrograms from long 
codas. Gibbons et al. ( 2008 ) apply a transformation of the form 

S( ω, t) = 

(
log 10 [ P ( ω) t+ ] − log 10 [ P ( ω) t−] 

)
log 10 [ P ( ω) t+ ] (9) 

where P ( ω) t + = P ( ω, t , L ) denotes the amplitude density spectrum 

(ADS) measured for the window immediately following a time t , 
and P ( ω) t− = P ( ω, t − L − ε , L ) the estimate from the window 

ending at time t . Here L is the window length used to make the 
measurement and ε is the shorter separation between the sliding 
windows P ( ω) t + and P ( ω) t −. This transformation is intended to 
provide local maxima at times with both high signal amplitude 
and a high signal amplitude increase. This is necessary given that 

art/ggad297_f7.eps
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Figure 8. A sketch illustrating the generation of a matched field pseudo-spectrogram from a single seismic array. For short overlapping time windows, the 
array covariance matrix is computed for different narrow filter bands. Multiplication with empirical steering vectors of the main shock results in beam power 
for different frequencies according to eq. ( 4 ). The colours and size of the elements of the covariance matrices R represent, respectiv ely, the relativ e phase shift 
and the coherence between the array sensor pairs. Similarly, the colours and size of the steering vectors ε correspond to the phase and amplitude. 
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eismic signals can obtain the greatest amplitudes significantly later
han the onset. 

The function ˆ P 0 ( t, ω) in Fig. 9 has a rather different form de-
ending on the event size. For the three largest aftershocks, coher-
nt energy consistent with the imposed phase shifts occurs across
he full frequency range (1–5 Hz). At the lowest frequencies, the
atch with the empirical steering vectors persists far into the coda.
he match with the Pn -phase shifts ends, over a minute later, with

he Sn arri v al. At this time, a coherent arri v al with a dif ferent set of
ime delays starts to dominate. As the frequency increases, the dura-
ion of the high match with the empirical steering vectors decreases
ntil only a short transient at the signal onset matches. For many
maller signals, only a shor t-duration ver tical band is observed, typ-
call y onl y at higher frequencies. Identifying signal arri v als from the
 F  
seudo-spectrogram appears simple for the human ey e. A transfor -
ation 

S( ω, t) = 

(
ˆ P ( ω ) t+ − ˆ P ( ω ) t−

)
ˆ P ( ω) t+ (10) 

laces strong vertical bars at the signal arri v als and diminishes into
he signal coda (Fig. 9 , middle panel). Note that the logarithm is
equired in eq. ( 9 ) since the un-normalized amplitude density spec-
r um ter ms P ( ω , t , L ) cover a v ast range. The relati ve power terms
ˆ P in eq. ( 10 ) are all between zero and unity and so no logarithm is
eeded. 

We wish to transform a broad-band signal with a visible impres-
ion in the time–frequency domain to a simple time-series from
hich triggers are identified reliably. In the lowermost panel of
ig. 9 are simple mean values of the time–frequency grids in the

art/ggad297_f8.eps
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(a)

(b)

(c)

Figure 9. Panel (a) shows the pseudo-spectrog ram 

ˆ P 0 ( t, ω ) , that is, beam po wer for narro w frequency bands and short overlapping time windows using the 
empirical steering vector of the main shock, for a 20 min segment of KKAR data on 2005 October 8. The waveforms centred on 1.5, 3 and 4.5 Hz display the 
plane-wave KKAR Pn beam steered towards the source region, bandpass filtered at the centre frequencies indicated with bandwidth 1 Hz. Blue pixels indicate 
times and frequencies with little energy incident on the array consistent with the phase shifts in the empirical steering vector; red pixels indicate that incident 
energy is dominated by a wavefront consistent with this phase pattern. Panel (b) shows S ( t , ω ), a transfor mation of ˆ P 0 ( t, ω) enhancing changes in consistency 
with the template steering v ector. P anel (c) shows a black line for beam power ˆ P 0 ( t, ω) av eraged ov er all frequencies of the top panel. Similarly, the orange line 
is frequenc y av erage of the S ( t , ω) of the middle panel as a function of time. The time of the P arri v als from the two aftershocks displayed in Fig. 2 are labelled 
‘A1’ and ‘A2’, respecti vel y. The dashed black arrows correspond to Pn signals from the four aftershocks reported during this time interval in the REB. The 
solid blue arrows indicate Sn arri v als from the three largest aftershocks in the time window. Note that these Sn arri v als are ef ficientl y suppressed b y the EMFP 
processing procedure. 
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other two panels. The black line is the mean over all frequencies of 
ˆ P 0 ( t, ω ) . The cur ve v aries relati vel y smoothl y, and the human eye
can identify several of the likely arrivals from the steep disconti- 
nuities. The limited dynamic range may make the signals difficult 
to identify using, for example, a power detector. The orange trace 
shows the mean over ω of S ( ω, t ). The peaks are clearer, but the 
variability in the noise floor is still high. The difference term in 
eq. ( 10 ) means that small contributions, in particular from coda 
energy at the lower frequencies, can lead to an oscillation unrelated 
to new signal arrivals. The array response for the lower frequencies 

art/ggad297_f9.eps
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as a broader peak such that the likelihood of coincidental match
f coherent noise energy with the imposed phase shifts is greater at
ower frequencies than at high frequencies. 

Panels (a) and (b) of Fig. 10 ) show single frequency scalar traces
elected from the upper two panels of Fig. 9 . For a single frequency,
 , ˆ P 0 ( t, ω ) is a noisy time-series spanning the interval [0, 1]. There
re many frequencies at which a given arrival fails to provide a
ignificant imprint. It is the consistency of behaviour over a broad
ange of ω that provides useful signal and allows for enhanced de-
ection through stacking. S ( t , ω) is a less noisy time-series and now
pans the range [ − 0.25, 1] with ne gativ e values indicating a de-
rease in ˆ P 0 ( t, ω) from one time window to the next. A stacking
peration over ω may degrade local maxima over some frequency
ange if there are coincidentally ne gativ e values at different fre-
uencies. Replacing S ( t , ω) with exp 10 S ( t , ω) (panel c) provides a
unction theoretically spanning the range [0.56, 10], but increasing
he significance of the local maxima of S ( t , ω). The mean over ω of
xp 10 S ( t , ω) − 1.0 (panel d) finally gives us a scalar time series in
hich a very limited number of peaks can be identified by setting a

imple threshold value. 
The trace in Fig. 10 (d) can be considered to be the equi v alent

f a beam output for a single empirical steering vector, ε 0 ( ω) . The
ignificance is that it uses only the first few seconds of the signal
enerated by the main shock of the earthquake sequence as a tem-
late; we do not need to wait for multiple aftershocks to build up
 database of templates. It detects more signals than a correlation
etector using the main shock signal as a template (Slinkard et al.
013 ) but fewer signals than an ST A/LT A detector on a filtered
eam (which would, e.g. also have detected the Sn arri v als). The
rocedure performed at each frequency ω is designed to reduce the
nfluence of frequencies at which the signal is not well observed. As
ibbons ( 2014 ) points out for detectors using multitaper spectro-
rams, this detector would be quite stable to strong noise in narrow
ands provided that the band affected is small in comparison with
he band occupied by the signal. 

 C O N S I D E R AT I O N S  I N  N E T W O R K  

RO C E S S I N G  A N D  P H A S E  

S S O C I AT I O N  

he preceding sections have focused only upon the single seismic
rray KKAR. We will now consider a network monitoring operation,
here the aftershock sequence will be observed on seismic arrays,
ith different geometries and placements, at many different direc-

ions and distances. Fig. 11 displays ˆ P 0 ( t, ω) and S ( t , ω) pseudo-
pectrograms for four different seismic arrays. BVAR (Boro vo ye),

RA (Warramunga) and ILAR (Eielson) are IMS arrays. 
The KKAR array is unique among these stations in recording the

ull regional wave train with Pn and Sn with coda. BVAR, ILAR and
RA record teleseismic P from this sequence with varying lengths

f coda-wave energy. The P arrivals at BVAR typically have high
NR and, while many of the smaller events visible at KKAR are not
bserved at BVAR, there are a few signals at BVAR not visible at
KAR because of high amplitude S -w ave coda. The P -w ave coda

t BVAR can have quite long duration, even for relati vel y small
vents. 

The WRA 

ˆ P 0 ( t, ω) pseudo-spectrogram shows considerably less
ed, that is, high beam po wer , than for KKAR and BVAR although
any of the faint vertical lines generate significant stripes in the
 ( t , ω ) pseudo-spectrog ram. The bursts of red areas have a shorter
uration than at the closer arrays. WRA is a significantly larger array
han KKAR and BVAR (aperture exceeding 20 km, as opposed to
 km). This may lead to a slightly reduced relative po wer , especially
or higher frequencies. Ho wever , the reduction in coherence for
he background noise is at least as significant as the reduction in
oherence for the signal and the WRA noise floor appears to be
xceptionally low. WRA also has 20 sensors compared with the
 sensors at KKAR and BVAR which also increase the contrast
etween signal and noise. The larger aperture at WRA means that
he peak in the slowness grid for a given frequency is much narrower
han at the smaller arrays. Given the much greater distance between
he aftershock zone and WRA, the sharpness of the peak in slowness
pace is less significant than it would have been for KKAR since the
ame range of backazimuth angles at this greater distance covers a
ar wider geographical region. 

F inally in F ig. 11 is ILAR, Alaska. As for WRA, coherent signals
onsistent with the first arri v al phase shifts of the main shock are of
hort duration. Although marginally closer to Kashmir than WRA,
LAR appears to have the poorest sensitivity to aftershock zone
vents. While WRA records energy from these events at frequencies
bove 4 Hz, ILAR appears to be limited to frequencies up to 3 Hz. 

There are many considerations in the definition of the matched
eld templates used in this study. W indo w length, frequency band
nd sampling interval for the pseudo-spectrums are key questions
o be addressed, although we note that a good knowledge of the
ignal and noise spectra is beneficial for any form of targeted signal
rocessing. 

Fig. 12 displays four different traces targeting Pn arrivals at
KAR from the Kashmir aftershock sequence. Panel (a) displays

he filtered Pn beam as would be applied in a classical plane-wave
eam deployment. Although optimized for the best-fitting plane-
ave Pn time delays from the main shock, it is clear that several

ignals with different slowness vectors would also record a high
NR. A further problem (cf. Fig. 4 ) is that the time delays predicted
or this arri v al do not correspond exactly to the phase shifts valid for
he different frequency bands; the differences between, for example,
 and 4 Hz mean that no set of time delays will perfectly define the
orrect phase shifts. Smaller events are seen only at higher frequen-
ies and, given the shorter wa velength, these wa veforms are more
iminished by beamforming misalignment. 

Panel (b) shows the AR-AIC trace discussed by Gibbons et al.
 2016 ). This trace is calculated from the beam displayed in panel
a). An advantage of this trace is that the times of the local maxima
rovide exceptionally good estimates of the signal onset time. The
race has a lower dynamic range than the beam itself and it is easier
o identify at a glance arri v als from the smaller events than from the
riginal waveforms. Since the AR-AIC trace is calculated purely
rom auto-re gressiv e models of se gments of the beam, it is also
nable to differentiate between the signals of interest and unrelated
ignals. 

Panel (c) displays two matched field scalar traces as developed
n the previous section. In the first, labelled ‘Plane-Wave Matched
ield Scalar Function’, we have used the steering vector generated
sing the plane-wave model time delays, the same as used for the
eam in (a) (cf. Fig. 5 a). In the second, labelled ‘Empirical Matched
ield Scalar Function’, we have used the empirical steering vector
enerated using the P -w ave arri v al from the main shock signal
cf. Fig. 5 b). Both of these traces have an even lower dynamic range
han the AR-AIC trace, but far lower noise floors. The matched field
calar traces are only sensitive to first Pn arrivals from the source
egion and, unlike the AR-AIC trace, do not generate a trigger at
he time of the Sn arri v als. These traces are sampled more coarsely
han the AR-AIC trace and have the same sampling interval used
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(a)

(b)

(c)

(d)

Figure 10. Generation of a robust detection statistic from matched field pseudo-spectrograms. Panels (a) and (b) display the functions in panels (a) and (b) of 
Fig. 9 for three discrete frequencies. Panel (c) shows the exponential of the scalar functions in panel (b) and (d) shows the mean over ω of the functions in (c). 
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for constructing the pseudo-spectrograms. Again, there is little to 
be gained by using a shorter sampling interval. The need for a short 
sampling interval is diminished by the length of data necessary to 
make robust estimates of the narrow-band phase shifts and the rate 
at which the phase shifts change over the signal wave train. We 
recommend using the matched field traces to confirm the presence 
of a signal of interest and subsequently using the AR-AIC trace for 
an optimal estimate of the phase arri v al time. 

A number of signals at the noise level in the plane-wave matched 
field detection trace are ele v ated to clear detections in the empirical 
matched field detection trace. This is primarily a result of the phase 
shifts changing to match the observ ed wav efield as a function of 
frequency and therefore compensating for the deformation of the 
wav efield observ ed. We know from the differences between the 
plane-wave and empirical steering vectors (Fig. 5 ) that waveform 

misalignment will occur at the higher frequencies if the plane-wave 
time-shifts are applied. We also know (Fig. 2 ) that the smaller events 
are only well observ ed abov e the coda noise at these frequencies. 
An observation that was not obvious prior to the study is that the 
phase shifts measured from the main shock first arri v al would also 
be applicable to the vast majority of events in the aftershock zone 
(see Figs 6 and 7 ). 

We note that each of the matched field traces displayed in 
Fig. 12 (c) is generated by a single steering vector. It may be sufficient 
when tracking an aftershock sequence to have a single template (e.g. 
the first arri v al from the main shock) on each array being used, and 
there are clear operational advantages to restricting the process to a 
single steering vector. Whether additional matched field templates 
from subsequent aftershocks would significantly improve aftershock 
recovery rates, or simply provide duplication of effort, would need 
to be investigated empirically. The answer to this question would 
depend upon the size of the aftershock zone and the relative location 
and properties of the observing array. An exceptionally large after- 
shock zone may necessitate multiple templates aimed at different 
parts of the aftershock region. The templates in this paper have been 
e xclusiv ely initial P arrivals from the main shock at each array. The 
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Figure 11. Pseudo-spectrograms for the KKAR, BVAR, WRA and ILAR arrays on 2005 October 8. Distances from the Kashmir main shock are 9 ◦ (KKAR, 
Kazakhstan), 19 ◦ (BVAR, Kazakhstan), 80 ◦ (WRA, Australia) and 76 ◦ (ILAR, Alaska, USA). The ˆ P ( t, ω) and S ( t , ω) pseudo-spectrograms have been shifted 
according to the traveltimes from the main shock to the different stations. The vertical dashed arrows correspond to aftershocks reported in the REB. Note that 
there are several instances of concurrent vertical red stripes across the dif ferent S ( t , ω) pseudo-spectro grams which are not associated with an y REB e vents. 
These instances correspond to P arri v als from additional aftershocks. The black ovals indicate EMFP detections at BVAR that are likely to correspond to events 
in the sequence for which the Pn arri v al at KKAR is obscured by coda-wave energy from earlier events. 
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rocedure could be extended to use different templates for different
hases in the wave train at a given station, for example, Pn , Pg ,
n , Lg , P and S as appropriate, in order to increase the sensitiv-
ty. K öhler et al. ( 2022 ), for example, used an empirical steering
ector of an S -wave template in addition to the P -wave template to
etect repeating events at a calving glacier in Sv albard, mainl y to
ompensate for the lack of multiple array observations. This could
e applied without difficulty in that study given the very limited
eographical extent of the source region; a single S –P time delay
as applicable to the entire zone of glacial calving. For an extended

ftershock zone, the time offsets between the different phases in
ingle wave trains would need to be accounted for. The restriction
o the initial P arri v al from the main shock is advantageous for a
emi-autonomous procedure. Any extension of the method that re-
uires secondary phases for matched field templates will demand
dditional human interaction and supervision. Given an observa-
ional network with multiple arrays, using secondary phases may
e both unnecessary and detrimental to performance. 

 C O N C LU S I O N S  

e wish to characterize aftershock sequences as accurately as pos-
ible using automatic signal processing in order to reduce the human
ffort of compiling comprehensive seismic event bulletins. The clas-
ical processing pipeline of single-station phase detection, followed
y global PA, frequently breaks down under e xtensiv e aftershock
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(a)

(b)

(c)

Figure 12. Detection statistics for identifying Pn arri v als from Kashmir earthquake aftershocks on the KKAR array. Subpart (a) shows the optimized plane-wave 
Pn beam, bandpass filtered 1–5 Hz, (b) shows the continuous AR-AIC detection statistic (Gibbons et al. 2016 ) and (c) displays the scalar functions derived (cf. 
Fig. 10 d) for two different steering v ectors: the plane-wav e phase shifts predicted for the Kashmir main shock and the empirical phase shifts measured from 

the main shock first arri v al. The two matched field traces in panel (c) are displayed with the same vertical scale. 
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sequences due to the vast number of detections and limitations in 
current algorithms for building events. Correlation and subspace 
detectors show promise for building event lists for many categories 
of aftershock sequences. Ho wever , for the largest sequences, the 
full-waveform signal detectors often perform poorly due to large 
inter-e vent distances, dif ferences in spectral properties and differ- 
ences in source mechanism. 

We advocate the use of matched field detectors on array 
stations, using templates constructed from the first P arri v als 
from the main shock, to detect and identify aftershocks reli- 
ably. EMFP is a pattern detector that recognizes phase pat- 
terns in the wavefronts incident on an arra y, although w e here 
apply it as a single-phase detector analogous to beams used 
in classical array processing. The deviations from the plane 
wavefront model often observed on seismic arrays can be very 
frequency-dependent and the narrow-band wavefield representa- 
tion of EMFP allows optimal steering over a wide range of discrete 
frequencies. 
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Using the aftershock sequence of the 2005 October 8, Kashmir
arthquake as an example, we describe many of the complications
rising in existing pipelines and demonstrate how EMFP helps to
itigate them. Three clear complications can be listed: 

(i) There can be significant deviations from the plane wavefront
odel. EMFP mitigates this by calculating empirical and frequency-

ependent phase shifts. 
(ii) There is often dominant energy at frequencies higher than

hose amenable to classical beamforming. (This is particularly an
ssue for the smaller aftershocks for which the SNR at low frequen-
ies is diminished.) EMFP mitigates this by extending the frequency
ange at which coherent array-processing can be performed. 

(iii) The spectral content of signals from different events in the se-
uence varies greatly. (This affects both the classical beamforming
ain and the bias in direction estimates using f–k analysis.) EMFP
itigates this with a frequenc y-by-frequenc y approach that recog-

izes coherence between array elements at all frequencies where it
s observed, and that diminishes the influence of frequencies where
he signals are e xcessiv ely incoherent or poorly observed. 

The process described for tracking aftershock sequences can be
pplied to multiple stations in a regional or global network. When
pplying the methodology presented here to four large aftershock
equences using data from stations of the IMS of the CTBT O ,
he conference presentation K öhler et al. ( 2020 ) demonstrated that
bout 50 per cent of the verified aftershocks could be automatically
etected and located with high accuracy. A general grid search
ethodolo gy w as used for associating the EMFP phase detections at

he different stations (e.g. Gibbons et al. 2016 ). The parametric data
hat can be obtained using the methods described in this paper can
 acilitate f ar more advanced association models (e.g. Arora et al.
013 ; Le Bras et al. 2021 ), which again could provide improved
ftershock processing results. 

Significant progress has been made using waveform similarity
or aftershock processing and more general seismic pipelines (e.g.
arris & Dodge 2011 ; Junek et al. 2015 ; Dodge & Harris 2016 ) and
e are now likely entering the phase in which pattern recognition
nd deep learning algorithms will start to take a dominant role
n seismic signal detection and interpretation, both regionally and
lobally (e.g. Mousavi et al. 2019 ; Shen et al. 2019 ; Mousavi &
eroza 2022 ). EMFP exploits features of the seismic wavefield at
rray stations that are more characteristic than the shapes of the
av eforms themselv es and will lik ely mak e a contribution to future

s well as current seismic processing pipelines. 
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